
40 Elementary Cryptography

Modular Arithmetic

In this lecture we assume that R is one of the rings Z or F2[x], m is an element of R,
and we denote by (m) or mR the set {mx : x ∈ R}, which is called an ideal of R. The
principle goal is to introduce the quotient or residue class rings R/mR and to understand
how to work with its elements. We refer to m as the modulus of R/mR.

Quotient rings

The residue class ring R/mR is a commutative ring, whose elements are sets, called
cosets of mR, of the form

a = a + mR = {a + mx : xinR},

and multiplication and addition laws are derived from that on R:

a + b = (a + mR) + (b + mR) = (a + b) + mR = (a + b),

a ∗ b = (a + mR) ∗ (b + mR) = (a ∗ b) + mR = (a ∗ b).

The fact that R/mR is a ring means that the addition (+) and multiplication (∗) are
well-defined on cosets, and satisfy the usual associative and distributive laws.

Example. Consider the ring R/mR = Z/mZ with modulus m = 21. We consider the
addition and muliplication of 2 = 23 and −2 = 19, and show that in each pair of equal
elements, we can use either the first or the second representative to define the sum and
product. First, for addition, we find:

2 +−2 = 2 + (−2) = 0,

but on the other hand:
23 + 19 = 23 + 19 = 42,

which equals 0 since 42 is in 21Z. Multiplication is similarly independent of the represen-
tatives we chose:

2 ∗ −2 = 2 ∗ (−2) = −4 = 17,

which holds since −4 = 17 + (−1) ∗ 21, or

23 + 19 = 437 = 17,

where the latter identity is determined by 437 = 17 + 420 = 17 + 20 ∗ 21.

The mod operator

In both rings R = Z and R = F2[x], we have an operator modm for producing a
canonical smallest representative for elements of the quotient rings R/mR. This means
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that we can work with this smallest or reduced representative in computations in R/mR.
In particular, we note that working with this representative is well-defined:

((a mod m) + (b mod m)) mod m = (a + b) mod m
((a mod m) ∗ (b mod m)) mod m = (a ∗ b) mod m

since, a mod m = b mod m if and only if a = b.

The value a mod m can be computed by long division — successively subtracting off
multiples until the result is smaller, until the final result is smaller than m. The definition
of x smaller than y is x < y for positive x, y in Z, and deg(x) < deg(y) for polynomials
x, y in F2[x].

N.B. Occasionally we will use the similar binary boolean-valued operator ≡ mod m.
The value a ≡ b mod m is true if and only if a = b, or equivalently if (a − b) mod m is
zero.

Example. We use the operator mod to determine a canonical representative for x7 in
F2[x]/(x2 + x + 1). First we write x7 = (x3)2 ∗ x, and compute:

x3 mod (x2 + x + 1)

= (x3 + x ∗ (x2 + x + 1)) mod (x2 + x + 1)

= (x2 + x) mod (x2 + x + 1)

= ((x2 + x) + (x2 + x + 1)) mod (x2 + x + 1) = 1.

It follows that x7 mod x2 +x+1 = (12∗x) mod (x2 +x+1) = x. By explicit long division:

x5+ x4+ x2 + x
x2 + x + 1

)
x7

x7+ x6+ x5

x6+ x5

x6+ x5 + x4

x4

x4 + x3 + x2

x3 + x2

x3 + x2 + x
x

we find similarly that x7 = (x5 + x4 + x2 + x) ∗ (x2 + x + 1) + x, verifying the equality
x7 mod (x2 + x + 1) = x.

Primes and Irreducibles

A nonzero ideal (p) in R (= Z or F2[x]) is said to be a prime ideal if p is a prime number
or an irreducible polynomial. The following theorem is a generalization of Fermat’s Little
Theorem.
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Theorem 5 Let (p) be a prime ideal of R and let N equal #R/(p)− 1. Then aN = 1 for
every nonzero a in R/(p). Conversely if there exists an element a in R/(p) of exact order
N , then (p) is prime.

N.B. Recall that we define the polynomial g(x) to be primitive if and only if the
element x has exact order N in R/(g(x)).

Irreducible polynomials

We now want to enumerate the the irreducible polynomials in F2[x] of low degree, and
in the process explain some of the steps for more efficiently determining [ir]reducibility of
polynomials.

Degree 1: The linear polynomials x, x + 1 are necessarily irreducible.

Degree 2: The polynomial x2 + x + 1 is irreducible by the previous theorem and the fact
that x, x2 = x+1, and x3 = 1. Conversely, it is clear to see that the only other candidates:
x2, x2 + x, and x2 + 1 = (x + 1)2 are reducible.

Lemma 6 If f(x) is a polynomial, then f(x) mod (x − a) = f(a), and in particular
f(x) = (x− a)g(x) if and only if f(a) = 0

For polynomials over F2, the value f(0) is the constant term, and f(1) is the number of
nonzero coefficients mod2, which gives an easy test for divisibility by linear polynomials.

Degree 3: By the previous test, it is clear that the only nontrivial candidates to consider
are

x3 + x + 1, x3 + x2 + 1,

and that these are automatically irreducible, since they have no linear factor.

Degree 4: We first exclude (x2+x+1)2 = x4+x2+1, the only degree four polynomial which
is divisible by an irreducible polynomial of degree 2. Every other reducible polynomial
must therefore have a divisor of degree 1, and we apply the lemma to reduce to the list
of irreducible polynomials:

x4 + x3 + 1, x4 + x + 1, x4 + x3 + x2 + x + 1.

Degree 5: As in degree 4, we exclude those polynomials which have a divisor of degree 2:

(x2 + x + 1)(x3 + x + 1) = x5 + x4 + 1
(x2 + x + 1)(x3 + x3 + 1) = x5 + x + 1,

after which we conclude that all other polynomials of degree 5 with constant term 1 and
an odd number of coefficients are irreducible:

x5 + x3 + 1, x5 + x2 + 1,
x5 + x4 + x3 + x2 + 1, x5 + x4 + x3 + x + 1,
x5 + x4 + x2 + x + 1, x5 + x3 + x2 + x + 1.

Exercise. Determine which of the above polynomials are primitive.
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Cyclotomic polynomials

In the previous lecture we found that there are six irreducible polynomials of de-
gree five. In order to understand and to count the numbers of irreducible and primitive
polynomials, we first introduce cyclotomic polynomials.

Definition. The cyclotomic polynomials ΦN(x) are defined recursively by the identity:

xN − 1 =
∏

m|N
Φm(x).

Example. To demonstrate how this serves to define the cyclotomic polynomials, we
compute the first few examples:

Φ1(x) = x− 1 Φ4(x) = x2 + 1
Φ2(x) = x + 1 Φ5(x) = x4 + x3 + x3 + x2 + x + 1
Φ3(x) = x2 + x + 1 Φ6(x) = x2 − x + 1

Moreover, if p is a prime, then

Φp(x) =
xp − 1

x− 1
= xp−1 + · · ·+ x + 1.

So far, the definition of cyclotomic polynomials does not make use of polynomials
being defined over F2, and if we instead let the coefficient ring be Z, then we have the
following classical result.

Theorem 7 The cyclotomic polynomial ΦN(x) is irreducible over Z, of degree ϕ(N).

The function ϕ(N) is called the Euler ϕ-function, and is defined by

ϕ(N) =
∏

pr||N
pr−1(p− 1),

where pr||N means that pr divides N but that pr1 does not divide N .

The analogous statement about irreducibility over F2 is false, but we can make a very
precise statement of the form of the factorization of cyclotomic polynomials over F2.

Theorem 8 An irreducible polynomial g(x) ∈ F2[x] of degree n divides the polynomial
xN +1 and no other polynomial xm +1 for m < N if and only if g(x) divides ΦN(x). The
integer N equals 2n − 1 if and only if g(x) is primitive.

Corollary 9 The cyclotomic polynomial ΦN(x) ∈ F2[x] for N = 2n − 1 is the product of
the distinct primitive polynomials of degree n.
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Example. Previously we found that there were 6 irreducible polynomials of degree 5 in
F2[x]. Since N = 25 − 1 = 31 is prime, every irreducible polynomial of degree 5 is in fact
primitive. Since the degree of Φ31(x) is ϕ(31) = 31− 1 = 30, we could have concluded in
advance that there were exactly 6 primitive and irreducible polynomials of this degree.

LFSR Keystreams

Since the period N = 2n − 1 of the LFSR output sequence, with primitive connection
polynomial, grows exponentially in the size of n, LFSR’s provide good constructions for
sequences of large period. Moreover a LFSR can be made computationally efficient by
choosing a sparse primitive polynomial such as

14 : x14 + x7 + x5 + x3 + 1
15 : x15 + x5 + x4 + x2 + 1
16 : x16 + x5 + x3 + x2 + 1
17 : x17 + x3 + 1

A näıve stream cryptosystem can be built from a LFSR by taking the bit sum of the
keystream with the message stream to produce ciphertext. Unfortunately, knowledge of
just 2n bits of the LFSR keysteam allows the determination of the entire sequence, by an
algorithm due to Berlekamp and Massey. Therefore such a LFSR cryptosystem should be
considered insecure. A relatively new stream cryptosystem, called the shrinking generator
cryptosystem, using two LFSR’s in unison, has so far resisted any such algorithms.

Shrinking generator. Let L1 and L2 be two LFSR’s with output sequences t0t1t2 . . .
and s0s1s2 . . . . The first sequence is called the controlling sequence and the second se-
quence the input sequence. At clock cycle i bits ti and si are output. If ti is 0 then the
bit si is discarded, and otherwise si forms part of the output keystream. The resulting
keystream si1si2si3 . . . is used for forming the bit sum with the message stream to form
ciphertext.

Public Key Cryptography

The theory of public key cryptography was introduced by Diffie and Hellman in 1976.
Public key cryptography does not displace symmetric key cryptography — they solve
different problems. The recent NIST contest which resulted in the Advanced Encryption
Standard did not resulted in a new symmetric key, not public key standard. Why? Sym-
metric key algorithms do the bulk of encryption, and are orders of magnitude faster than
public key systems of comparable security. They dispense with the restrictive conditions
needed to build the split of public and private keys, and focus on speed. Public key
cryptography, on the other hand, solves the key exchange problem — how to establish a
common key between two parties that may have never met. It also finds use in specialized
algorithms for digital signatures and message authentication.

The foundational concept of public key cryptography is that of the invertible one-way
function f : X → Y — a function which is efficiently computable on any value x ∈ X, but
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for which the inverse is hard: given y finding an x such that y = f(x) is computationally
hard. Most public key systems rely on trapdoor one-way functions. For such a function the
constructor of the function has priviledged information which allows the efficient inversion
of the function.

We begin with a description of symmetric and public protocols for message exchange
in order to understand the role of each in cryptography.


