Secret Sharing

A secret sharing scheme is a means for n parties to carry shares or parts s_i of a message s, called the *secret*, such that the complete set s_1, \ldots, s_n of the parts determines the message. The secret sharing scheme is said to be *perfect* if no proper subset of shares leaks any information regarding the secret.

Two party secret sharing. Let s be a secret, encoding as an integer in $\mathbb{Z}/m\mathbb{Z}$. Let $s_1 \in \mathbb{Z}/m\mathbb{Z}$ be generated at random by a trusted party. Then the two shares are defined to be s_1 and $s - s_1$. The secret is recovered as $s = s_1 + s_2$.

Multiple party secret sharing. Let $s \in \mathbb{Z}/m\mathbb{Z}$ be a secret to be shared among n parties. Generate the first n-1 shares s_1, \ldots, s_{n-1} at random and set

$$s_n = s - \sum_{i=1}^{n-1}.$$

The secret is recovered as $s = \sum_{i=1}^{n} s_i$.

A (t, n) threshold secret sharing scheme is a method for n parties to carry shares s_i of a message s such that any t of the them to reconstruct the message, but so that no t - 1of them can easy do so. The threshold scheme is *perfect* if knowledge of t - 1 or fewer shares provides no information regarding s.

Shamir's (t, n)-threshold scheme. A scheme of Shamir provide an elegant construction of a perfect (t, n)-threshold scheme using a classical algorithm called Lagrange interpolation. First we introduce Lagrange interpolation as a theorem.

Theorem 10 (Lagrange interpolation) Given t distinct points (x_i, y_i) of the form $(x_i, f(x_i))$, where f(x) is a polynomial of degree less that t, then f(x) is determined by

$$f(x) = \sum_{i=1}^{t} y_i \prod_{\substack{1 \le j \le t \\ i \ne j}} \frac{x - x_j}{x_i - x_j}.$$
(3)

Shamir's scheme is defined for a secret $s \in \mathbb{Z}/p\mathbb{Z}$ with p prime, by setting $a_0 = s$, and choosing a_1, \ldots, a_{t-1} at random in $\mathbb{Z}/p\mathbb{Z}$. The trusted party computes f(i), where

$$f(x) = \sum_{k=0}^{t-1} a_k x^k,$$

for all $1 \leq i \leq n$. The shares (i, f(i)) are distributed to the *n* distinct parties. Since the secret is the constant term $s = a_0 = f(0)$, the secret is reovered from any *t* shares (i, f(i)), for $I \subset \{1, \ldots, n\}$ by

$$s = \sum_{i \in I} c_i f(i)$$
, where each $c_i = \prod_{\substack{j \in I \\ j \neq i}} \frac{i}{j-i}$.

Exercise. Verify the correctness of the formula for the secret by substituting into the formula of Lagrange's interpolation theorem.

Properties. Shamir's secret sharing scheme is (1) perfect — no information is leaked by the shares, (2) ideal — every share is of the same size p as the secret, and (3) involves no unproven hypotheses. In comparison, most public key cryptosystems rely on certain well-known problems (integer factorization, discrete logarithm problems) to be hard in order to guarantee security.

Proof of Lagrange interpolation theorem. Let g(x) be the right hand side of (3). For each x_i in we verify directly that $f(x_i) = g(x_i)$, so that f(x) - g(x) is divisible by $x - x_i$. It follows that

$$\prod_{i=1}^{t} (x - x_i) \big| (f(x) - g(x)), \tag{4}$$

but since $\deg(f(x) - g(x)) \le t$, the only polynomial of this degree satisfying equation (4) is f(x) - g(x) = 0.

Example. Shamir secret sharing with p = 31. Let the threshold be t = 3, and the secret be $7 \in \mathbb{Z}/31\mathbb{Z}$. We choose elements at random $a_1 = 19$ and $a_2 = 21$ in $\mathbb{Z}/31\mathbb{Z}$, and set $f(x) = 7 + 19x + 21x^2$. As the trusted pary, we can now generate as many shares as we like,

$$\begin{array}{ll} (1,f(1)) = (1,16) & (5,f(5)) = (5,7) \\ (2,f(2)) = (2,5) & (6,f(6)) = (6,9) \\ (3,f(3)) = (3,5) & (7,f(7)) = (7,22) \\ (4,f(4)) = (4,16) & (8,f(8)) = (8,15) \end{array}$$

which are distributed to the holders of the share recipients, and the original polynomial f(x) is destroyed. The secret can be recovered from the formula

$$f(x) = \sum_{i=1}^{t} y_i \prod_{\substack{1 \le i \le t \\ i \ne j}} \frac{x - x_j}{x_i - x_j} \quad = \rangle \quad f(0) = \sum_{i=1}^{t} y_i \prod_{\substack{1 \le i \le t \\ i \ne j}} \frac{x_j}{x_j - x_i}$$

using any t shares $(x_1, y_1), \ldots, (x_t, y_t)$. If we take the first three shares (1, 16), (2, 5), (3, 5), we compute

$$f(0) = \frac{16 \cdot 2 \cdot 3}{(1-2)(1-3)} + \frac{5 \cdot 1 \cdot 3}{(2-1)(2-3)} + \frac{5 \cdot 1 \cdot 2}{(3-1)(3-2)}$$
$$= 3 \cdot 2^{-1} + 15 \cdot (-1) + 10 \cdot 2^{-1} = 17 - 15 + 5 = 7.$$

This agrees with the same calculation for the shares (1, 16), (5, 7), and (7, 22),

$$f(0) = \frac{16 \cdot 5 \cdot 7}{(1-5)(1-7)} + \frac{7 \cdot 1 \cdot 7}{(5-1)(5-7)} + \frac{22 \cdot 1 \cdot 5}{(7-1)(7-5)}$$
$$= 2 \cdot 24^{-1} + 18 \cdot (-8)^{-1} + 17 \cdot 12^{-1} = 13 + 21 + 4 = 7.$$