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Linear Feedback Shift Registers

Linear feedback shift registers (LFSR’s) are an efficient way of describing and generat-
ing certain sequences in hardware implementations. We derive and work with equivalent
mathematical descriptions of the sequences produced by a LFSR, along with some gener-
alized sequences which do not arise in this way.

A linear feedback shift register is composed of a shift register R which contains a
sequence of bits and a feedback function f which is the bit sum (xor) of a subset of the
entries of the shift register. The shift register contains n memory cells, or stages, labelled
Rn−1,. . . , R1, R0, each holding one bit. Each time a bit is needed the entry in stage R0 is
output while the entry in cell Ri is passed to cell Ri−1 and the top stage Rn−1 is updated
with the value f(R).

The following is a schematic of a linear feedback shift register:
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1. In the above LFSR, let the initial entries of stages Ri be si, for 0 ≤ i ≤ n. For each
of the following initial entries below:

s3 s2 s1 s0

a) 0 1 1 0
b) 1 1 1 0
c) 1 0 1 0
d) 1 1 0 0

compute the first 16 bits in the output sequence. Show that the output sequence is
defined by the initial entries and the recursion si+4 = si+3 + si.

Solution The recursion si+4 = si+3 + si is immediately apparent as that specified
by the diagram of the LFSR. From this recursion, the given initial states expand to
the following sequences:

(a) 0110010001111010. . .
(b) 1110101100100011. . .
(c) 1010110010001111. . .
(d) 1100100011110101. . .



2. Show that every linear feedback register defines and is defined by a recursion of the
form si+n =

∑n−1
j=0 cjsi+j, where the cj are bits in Z/2Z; the products cjsi+j and the

summation are operations in Z/2Z.

N.B. The ring Z/2Z is also referred to as F2, the unique finite field of two elements.
Note that the addition operation is the same xor that we have been using and the
multiplication operation is the logical and operation.)

Solution The data of a LFSR diagram, of a linear recurrences relation, and of a
connection polynomial are equivalent — they express the same information. The
connection polynomial g(x) =

∑
j cjx

j encodes the wiring of a LFSR which im-

plements a recurrence relation. Thinking of xj as a shift operator acting on the
sequence s0, s1, s2, . . . , the behaviour of g(x) in the product g(x)s(x) (below) is
precisely this recurrence relation.

3. For a linear feedback register of length n, define a power series

s(x) =
∞∑
i=1

six
i

from the output sequence si. Suppose that the linear feedback register defines the
recursion si+n =

∑n−1
j=0 cn−jsi+j. Define a polynomial g(x) =

∑n−1
j=0 cjx

j + 1. Show
that f(x) = g(x)s(x) is a polynomial, that is, all of its coefficients are eventually
zero. What is the polynomial f(x)?

Solution The expression f(x) = s(x)g(x) for a polynomial f(x) of degree less than
n = deg(g(x)) is another equivalent formulation of the recurrence relation. The
initial n coefficients of s(x) are the entries of the shift register, and the n coefficients
of f(x) is a linear combination of these coefficients. Although the coefficients of
f(x) are not equal to the initial state, for a nonsingular LFSR, the initial states are
in bijection with the numerator polynomials f(x).

4. In the previous exercise we showed that the power series s(x) has the form f(x)/g(x)
in the power series ring F2[[x]]. In Magma it is possible to form power series rings in
the following way

> F2 := FiniteField(2);

> PS<x> := PowerSeriesRing(F2);

> f := x^2 + x;

> g := x^3 + x + 1;

> f/g + O(x^16);

x + x^4 + x^5 + x^6 + x^8 + x^11 + x^12 + x^13 + x^15 + O(x^16)

Consider the linear feedback shift register at the beginning of the worksheet. Con-
struct the corresponding power series and verify that these are the same of the
output sequences that you computed.



Solution The power series expansions of the first question are:

s(x) = x + x2 + x5 + x9 + x10 + x11 + x12 + x14 + · · ·
s(x) = 1 + x + x2 + x4 + x6 + x7 + x10 + x14 + x15 + · · ·
s(x) = 1 + x2 + x4 + x5 + x8 + x12 + x13 + x14 + x15 + · · ·
s(x) = 1 + x + x4 + x8 + x9 + x10 + x11 + x13 + x15 + · · ·

Multiplying each through by the connection polynomial g(x) = x4 + x + 1, we find
the numerator polynomials for each of the sequences:

f(x) = x + x3

f(x) = 1 + x3

f(x) = 1 + x + x2 + x3

f(x) = 1 + x2

This verifies that the sequences output are consistent with their expected structure
as coefficients of a rational power series.


