THE UNIVERSITY OF SYDNEY
MATH3024 ELEMENTARY CRYPTOGRAPHY AND PROTOCOLS

Semester 1 Exercises and Solutions for Week 11 2004

RSA Cryptosystems

The RSA cryptosystem is based on the difficulty of factoring large integers into its
composite primes.

Based on Fermat’s little theorem, we know that ™ = 1 mod p exactly when p — 1
divides m. Therefore we recover the identity a* = a mod p where u is of the form
1+ (p—1)r. Now given any e such that e and p — 1 have no common divisors, there exists
a d such that ed = 1 mod p — 1. In other words, u = ed is of the form 1+ (p — 1)r. This
means that the map

a+— a® mod p

followed by
a® mod p — (a® mod p)? mod p = a* mod p = a mod p

are inverse maps. This only works for a prime p.

1. Use Magma to find a large prime p and to compute inverse exponentiation pairs e
and d. The following functions are of use:

RandomPrime, Random, GCD, XGCD, and InverseMod.

The RSA cryptosystem is based on the fact that for primes p and ¢ and any integer
e with no common factors with p —1 and ¢ — 1, it is possible to find an d; such that

edy =1 mod (p — 1),
edy =1 mod (¢ — 1).

Using the Chinese remainder theorem, it is possible to then find the unique d such
that
d=d; mod (p—1) and d = dy mod (¢ — 1)

in the range 1 < d < (p—1)(¢ — 1). This d has the property that
a* = a mod n.

The send a message securely, the public key (e,n) is used. First we encoding the
message as an integer a mod n, then form the ciphertext a® mod n. The recipient
recovers the message using the secret exponent d.

Solution The function call RandomPrime (100) returns a random prime of up to 100
bits. Suppose that the primes

p = 1172991670841347272989353064539,
q = 300997517969507552061104346547,



are found with this function, and set e = 5. We want to build the inverse exponent d
such that ed = 1 mod (p—1) and ed = 1 mod (¢—1). Note first that GCD(e,p—1) =
1 and GCD(e,q — 1) = 1, so that such a d must exist. We first compute each of
dmod (p — 1) and d mod (q — 1).

> dl1 := InverseMod(e,p-1);

> di;
703795002504808363793611838723
> d2 := InverseMod(e,q-1);

> d2;
240798014375606041648883477237

The value of d can now be computed modulo the value LCM(p — 1, — 1) — this
is sufficient to determine the inverse, rather than the larger value of the product

(p—1D(—1).
We would like to compute the value of d, but the Magma function CRT complains
that the moduli p — 1 and ¢ — 1 have a common factor.

> GCD(p-1,9-1);

6

> TrialDivision(p-1);

[ <2, 1>, <3, 3>, <13, 1> ]

[ 1670928306041805232178565619 ]

> TrialDivision(q-1);

[ <2, 1>, <3, 1>, <17, 1>, <5297, 1> ]

We can divide ¢ — 1 by 6 to remove the common factor, and so compute the Chinese
remainder lifting as follows. Note first that the system is consistent — d; and ds
are the same modulo 6 since they are both inverses to e mod 6.

> d1 mod 6;
5
> d2 mod 6;
5

Since (¢—1)/6 is not divisible by 2 or 3, we can proceed with the Chinese remainder
lifting with p — 1 and (¢ — 1)/6.

> d := CRT([d1,d2], [p-1,(g-1) div 6]);
> d;
35306758152215111348997570443072341096420788599987705538575

Alternatively we could have computed the inverse exponent d in one step by

> d := InverseMod(e,LCM(p-1,9-1));
> d;
35306758152215111348997570443072341096420788599987705538575



2. Use your exponents e, d, verify the identities mod p:

ed

(a®)? = amod n, (a®)®=amodn, and a a mod n,

for various random values of a.

Note that after construction of d, the primes p and ¢ are not needed, but that
without knowing the original factorization of n, Fermat’s little theorem does not
apply, and finding the inverse exponent for e is considered a hard problem.

Solution Now we can verify that e and d are inverses modulo p — 1 and modulo
q — 1, and, moreover, that they determine inverse exponential maps modulo the
RSA modulus n = pq.

(exd) mod (p-1);

(exd) mod (g-1);

n = pkq;

m := Random(n);

c := Modexp(m,e,n);

> m eq Modexp(c,d,n);
true

> m eq Modexp(m,e*xd,n);
true

>
1
>
1
>
>
>

We use the RSA cryptosystem in Magma as follows. First begin with encoding ASCII
text numerically:

> C := RSACryptosystem(128);

> Encoding(C,"The dog ate my lunch.");
0101010001101000011001010010000001100100011011110110011100100\
0000110000101110100011001010010000001101101011110010010000001\
1011000111010101101110011000110110100000101110

> Decoding($1);

The dog ate my lunch.

Note that, as with LFSR cryptosystems, RSA encoding uses the information-preserving
ASCII bit encoding, and encoding and decoding are true inverses. Caution: we note
that decoding ciphertext might render an xterm nonfunctional, since the resulting ASCII
text might contain escape characters which reset the terminal display.

To encipher, first we must create a key pair:

> K, L := RandomKeys(C);

> K;

[ 49338921862830381807760291818994034053,
86398677368792768067556452456311743331 ]



This returns a pair of inverse keys K and L. We will consider X to be the public K and L
to be the private key.

N.B. The argument to RSACryptosystem specifies the number of bits in the RSA mod-
ulus. With a value of 128, the modulus is of size 2!%, or about 39 decimal digits. Each
of the primes is of size approximately 20 decimal digits. This particular example can be
easily broken by the factorization:

> time Factorization(86398677368792768067556452456311743331);
[ <6046864213681032211, 1>, <14288178850339607921, 1> ]
Time: 3.310

3. Use the above factorization to reproduce the private key L (generated but not printed
above) for this K.

Solution Given the factorization
86398677368792768067556452456311743331
= 6046864213681032211 - 14288178850339607921,
we can find the inverse to the exponent

e = 49338921862830381807760291818994034053.

> e := 49338921862830381807760291818994034053;
> p := 6046864213681032211;

> q := 14288178850339607921;

> d := InverseMod(e,LCM(p-1,9-1));

> d;

285484457605725559400259141876035917
It is now possible to verify as above that (e,n) and (d,n) server as inverse RSA
keys.

4. Why is the choice for which key is the public key and which key is the private key
arbitrary? Practice encoding, decoding, enciphering, and deciphering with the RSA
cryptosystem. Why do the functions Enciphering and Deciphering return the
same values?

Solution Provided that e is chosen as a random number in the range
1<e<LCM(p—1,q—1),

which has no common factors with p — 1 or ¢ — 1, then its inverse is a similarly
random value in this range. Therefore after creation, the decision of which key to
publish as the public key, and which key to guard as the private key is arbitrary.

N.B. Sometimes a special value, such as 3, 5, 17, 257, or 65537, is chosen as the
public exponent. These are each of the form 2" + 1, so that the enciphering can be
done rapidly using only r squarings and one multiplication. In such a case it is clear
that no such “obvious” value is suitable for the private key, and the symmetry of
the choice between public and private keys is broken.



