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Semester 1 Exercises and Solutions for Week 12 2004

Diffie–Hellman and Discrete Logarithms

An El Gamal cryptosystem is based on the difficulty of the Diffie–Hellman problem:
Given a prime p, a primitive element a of (Z/pZ)∗ = {c ∈ Z/pZ : c 6= 0}, and elements
c1 = ax and c2 = ay, find the element axy in (Z/pZ)∗.

1. Recall the discrete logarithm problem: Given a prime p, a primitive element a of
(Z/pZ)∗, and an element c of (Z/pZ)∗, find an integer x such that c = ax. Explain
how a general solution to the discrete logarithm problem for p and a implies a
solution to the Diffie–Hellman problem.

Solution Suppose that the discrete logarithm problem has an efficient solution.
Then, given a primitive element a of Fp, for every ax and ay we could solve for
x = loga(a

x) and for y = loga(a
y). It follows that we could then produce the value

axy, which solves the Diffie-Hellman problem.

2. Fermat’s little theorem tells us that ap−1 = 1 for all a in (Z/pZ)∗. Recall that a
primitive element a has the property that Z/(p− 1)Z → (Z/pZ)∗ given by x 7→ ax

is a bijection.

a. Show that a is primitive if and only if ax = 1 only when p− 1 divides x.

b. Let p be prime 232 + 15. Show that a = 3 is a primitive element of (Z/pZ)∗.
Use the Magma function Log to compute discrete logarithms of elements of
FiniteField(p) with respect to a.

c. Let p be the prime 232+61. Show that the element a = 2 is a primitive element
for (Z/pZ)∗. Use the Magma function Log to compute discrete logarithms of
elements of FiniteField(p) with respect to a.

Solution The statement of the definition of primitive is a formal statement equiva-
lent to that which follows. An element a of Z/pZ is primitive if and only if

1, a, a2, . . . , ap−2

are all distinct, and therefore enumerate all nonzero elements of Z/pZ.

a. Fermat’s little theorem tells us that the next value, ap−1 in this list is 1, and
therefore ax = 1 for all x = r(p − 1), and indeed, we have run out of nonzero
elements so must have a repeat at this point.



Conversely for any nonzero element a there must be some value t such that
at = 1, hence art = 1 for all r. We may assume that t divides p − 1, since if
t′ = GCD(t, p− 1) then there exist r and s such that t′ = rt + s(p− 1), so

1 = artas(p−1) = art+s(p−1) = at′ ,

and we can replace t by t′. Therefore the maximum length of a cycle 1, a, a2, . . . , at−1

divides p− 1 and is equal l to p− 1 exactly when a is primitive.

b. For p = 232 + 15, the factorization of p− 1 is 2 · 32 · 5 · 131 · 364289. We need
to check that 3x is not 1 mod p for any divisor of p− 1.

> p := 2^32+15;

> Modexp(3,(p-1) div 2,p);

4294967310

> Modexp(3,(p-1) div 3,p);

2086193154

> Modexp(3,(p-1) div 5,p);

239247313

> Modexp(3,(p-1) div 131,p);

1859000016

> Modexp(3,(p-1) div 364289,p);

1338913740

How does this prove that 3 is a primitive element?

By producing random elements in Fp and computing discrete logarithms with
respect to a, we find that the time to compute discrete logarithms in Fp = Z/pZ
is trivial.

> FF := FiniteField(p);

> for i in [1..4] do

> time x := Log(FF!3,Random(FF));

> end for;

Time: 0.010

Time: 0.000

Time: 0.000

Time: 0.000

c. For p = 232 + 61, the factorization of p − 1 is 22 · 1073741839. We repeat the
same test as in the previous part.

> p := 2^32+61;

> Modexp(2,(p-1) div 2,p);

4294967356

> Modexp(2,(p-1) div 1073741839,p);

16

The shows that 2 is a primitive element. Next we find that, for this prime p,
that the time to compute discrete logarithms in Fp = Z/pZ is nontrivial.

> FF := FiniteField(p);

> for i in [1..4] do



> time x := Log(FF!2,Random(FF));

> end for;

Time: 0.510

Time: 0.460

Time: 0.460

Time: 0.650

3. Compare the times to compute discrete logarithms in the previous exercise. Now
factor p− 1 for each p. What difference do you note? Explain the timings in terms
of the Chinese remainder theorem for Z/(p− 1)Z.

Solution The nontrivial time for the discrete logarithm is due to the large prime
divisor of p−1. The amount of time required to compute a discrete logarithm in Fp

is dependent on the size of the largest prime divisor of p−1. The discrete logarithm
can be computed independently for each prime divisor of p−1 — more correctly for
prime power divisor — and the discrete logarithm can be recovered by the Chinese
remainder theorem, as is the next example.

4. Let p be the prime 2131 + 1883 and verify the factorization

p− 1 = 2 · 3 · 5 · 37 · 634466267339108669 · 3865430919824322067.

Let a = 109 and c = 1014452131230551128319928312434869768346 and set

n5 = (p− 1) div 634466267339108669

n6 = (p− 1) div 3865430919824322067.

Then verify that cn5 = a129n5 and cn6 = a127n6 . Find similar relations for

n1 = (p− 1) div 2 n3 = (p− 1) div 5,
n2 = (p− 1) div 3 n4 = (p− 1) div 37.

and use this information to find the discrete logarithm of c with respect to a.

Solution We set up the problem in Magma in the following way.

> p := 2^131+1883;

> fac := Factorization(p-1);

> TrialDivision(p-1);

[ <2, 1>, <3, 1>, <5, 1>, <37, 1> ]

[ 2452485527358115051988285458967698823 ]

> Factorization(2452485527358115051988285458967698823);

[ <634466267339108669, 1>, <3865430919824322067, 1> ]

> primes := [ f[1] : f in Factorization(p-1) ];

> p1, p2, p3, p4, p5, p6 := Explode(primes);

> exponents := [ (p-1) div r : r in primes ];

> n1, n2, n3, n4, n5, n6 := Explode(exponents);

> FF := FiniteField(p);

> a := FF!109;

> c := FF!1014452131230551128319928312434869768346;



where the command Explode outputs the elements of the sequence so that we can
assign them to variables n1, n2, n3, n4, n5, and n6.

Raising both generator a and its power c to the large exponents n1, n2, n3, and n4

reduces the solution to the discrete logarithm to one modulo p1 = 2, p2 = 3, p3 = 5,
and p4 = 37, which can be easily solved by enumerating all possibilities.

> Index({@ a^(n1*i) : i in [1..2] @}, c^n1);

1

> Index({@ a^(n2*i) : i in [1..3] @}, c^n2);

2

> Index({@ a^(n3*i) : i in [1..5] @}, c^n3);

4

> Index({@ a^(n4*i) : i in [1..37] @}, c^n4);

29

> CRT([1,2,4,29],[2,3,5,37]);

29

For the larger primes

p5 = 634466267339108669 and p6 = 3865430919824322067,

we verify the given discrete logarithms.

> a5 := a^n5;

> c5 := c^n5;

> a5^129;

1106532280219457618983939634726858708298

> c5;

1106532280219457618983939634726858708298

> a6 := a^n6;

> c6 := c^n6;

> a6^127;

809579285918008980133272648385832028198

> c6;

809579285918008980133272648385832028198

The discrete logarithm x can be recovered from the discrete logarithms xi = logai
(ci)

where ai = ani and ci = cni by using the function CRT to find the Chinese remainder
lifting.

> x := CRT([29,129,127],[2*3*5*37,p5,p6]);

> x;

1075217203476555175652504438224037579

> a^x eq c;

true


