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Semester 1 Exercises and Solutions for Week 13 2004

Review Tutorial

Let A be the alphabet {A, B, C, D, E}. Given the message A BAD CAB A DEAD DAD, we
form the strip–encoded plaintext

M = ABADCABADEADDAD

by removing all characters not in the alphabet.

1. Encipher the message M using the substitution key K = BDEAC. Find the inverse
key and verify the correctness by deciphering your ciphertext.

Solution Recall that the key K = BDEAC specifies the map A 7→ B, B 7→ D, etc. This
results in the enciphering

M = ABADCABADEADDAD 7→ C = BDBAEBDBACBAABD.

2. Let A → Z/5Z be the bijection A 7→ 0, B 7→ 1, . . . , E 7→ 4. Encipher the message M
using the Vigenère key K = ADECB in ECB mode, then encipher the same message
using the same key and initialization vector BBBB, in CFB and OFB modes with the
block length n = 5 and r = 1. Rather than bit sum, use summation in Z/5Z for the
feedback. Verify the correctness of your results by then deciphering the ciphertext.

Solution We make the identification M = ABADCABADEADDAD = 010320103403303

over Z/5Z. In the same way, we write K = ADECB = 03421. The enciphering in
ECB mode is then 044030440001223 = AEEADAEEAAABCCD. The enciphering in CBC
mode begins with C0 = BBBBB = 11111, and since EK(Cj−1⊕Mj) = Cj−1⊕EK(Mj),
we just add in the previous ciphertext block to get

11111100141441410132 = BBBBBBAABEBEEBEBABDC.

The application of this function EK to form the state vectors Ij is particularly weak,
since only the first character of the key K and the first character of the initialization
vector. Since K = A ∗ ∗ ∗ ∗, this means Ij = B ∗ ∗ ∗ ∗, and so the ciphertext output
is

BBBBBBCBEDBCBEABEEBE.



3. Let K = [3, 5, 4, 1, 2] be a transposition key. Encipher the message M in ECB
mode and in CBC mode. Verify the correctness of your results by deciphering the
ciphertext.

Solution The key K = [3, 5, 4, 1, 2] specifies a transposition, under which M 7→
ACDABAEDABDDAAD in ECB mode. If we use the addition ⊕ of the previous question
for the feedback, then we get ciphertext

BBBBBACDABDADADCCAAC.

Check this work carefully for errors – no guarantees.

4. Which of the modes of operation leaves Vigenère ciphertext open to attack by the
Kasiski method? Which mode of operation was used for the block ciphers in the
course assignments, and why?

Next we focus on some of the mathmematical problems which arise in stream ci-
phers and public key cryptography. The problems given are of a size which can be
computed by hand, with minimal effort if the proper method is used.

Solution We made use of the ECB mode in order to preserve the structure of a
Vigenère ciphertext. This leaves this and other classical cryptosystems open to
classical attacks such as the Kasiski method.

Mathematics of LFSR’s.

5. Let S be the set {x6 + x + 1, x6 + x3 + 1, x6 + x5 + 1, x6 + x2 + 1} of polynomials in
F2[x].

a. Which of the polynomials are irreducible?

b. Which of the polynomials are primitive?

c. What are the periods of the linear feedback shift registers with the above
connections polynomials?

d. (∗) The polynomial g(x) = x6 + x5 + x4 + x3 + 1 is not irreducible. What
is its factorization, and what are the periods of output sequence of a linear
feedback shift register with g(x) as connection polynomial and initial states
010011, 010010, and 111111?

Solution 1. Let S be the set {x6 + x + 1, x6 + x3 + 1, x6 + x5 + 1, x6 + x2 + 1} of
polynomials in F2[x].

a. The polynomials x6 + x + 1, x6 + x3 + 1, and x6 + x5 + 1 are irreducible, but
x6 + x2 + 1 = (x3 + x + 1)2.

b. Of the three irreducible polynomials, we find that x6 + x3 + 1 generates LFSR
output of period 9, so is not primitive. The other two irreducible polynomials
generate output of period greater than 21 = 63/3, so must be primitive.



c. The periods are therefore 63, 9, 63, and (at most) 14. The period of 14 can be
determined for a specific value, but poor choices, like 1101001 can result in a
period of 7, since the connection polynomial is not irreducible.

d. The polynomial g(x) = x6+x5+x4+x3+1 factors as (x2+x+1)(x4+x+1). The
LFSR outputs for initial states 010011, 010010, and 111111 with connection
polynomial g(x) are:

01001110011000001001110011000001 . . .
01001010100001101001010100001101 . . .
11111100010111011111100010111011 . . .

These each have periods 15, which equals 24 − 1 (rather than 26 − 1, which
would be the case if g(x) where irreducible.)

Mathematics of RSA.

6. Let G = (Z/15Z)∗.

a. What are the elements of G?

b. Show that a = 2 is a primitive element for (Z/3Z)∗ and a = 3 is a primitive
element for (Z/5Z)∗.

c. Find an element a in Z which is primitive for both (Z/3Z)∗ and (Z/5Z)∗.

d. (∗) Why does it not make sense to speak of a primitive element for G?

e. (∗) How many elements a of G have the property of being primitive for both
(Z/3Z)∗ and (Z/5Z)∗?

Solution

a. The elements of (Z/15Z)∗ are

{1, 2, 4, 7, 8, 11, 13, 14},

the elements of Z/15Z coprime to 3 and 5.

b. Since {1, 2} = (Z/3Z)∗ and {1, 3, 9 = 4, 27 = 2} = (Z/5Z)∗, 2 and 3 are
primitive elements for these moduli.

c. The integer 8 is primitive in (Z/3Z)∗ and (Z/5Z)∗, since 8 is a CRT lift of the
pair (2, 3) in Z/3Z× Z/5Z, i.e. 8 ≡ 2 mod 3 and 8 ≡ 3 mod 5.

d. There is no primitive element for Z/15Z∗ since no single element generates all
of them. For instance the powers of 8 are:

1, 8, 64 = 4, 32 = 2, 16 = 1,

which generates a cycle of length only 4, whereas (Z/15Z)∗ has eight elements.

e. The elements of (Z/15Z)∗ which are primitive for both (Z/3Z)∗ and (Z/5Z)∗

are the two CRT images of the pairs (2, 3) and (2, 2).



Mathematics of Diffie–Hellman.

7. Let G1 = (Z/89Z)∗ and G2 = (Z/97Z)∗.

a. Show that 7 is a primitive element for G1 and for G2.

b. Solve the discrete logarithm problem log7(2) in G1 and in G2.

c. (∗) Which discrete logarithm is harder, and why?

Solution

a. To show that 7 is a primitive element for (Z/89Z)∗ and (Z/97Z)∗, we need to
show that

744 6≡ 1 mod 89 748 6≡ 1 mod 97
78 6≡ 1 mod 89 732 6≡ 1 mod 97

These values can be computed using products of successive squares of 7, e.g.
744 = 7478732, so 74 ≡ 87 mod 89, 78 ≡ (−2)2 ≡ 4 mod 89, 716 ≡ 16 mod 89.
Therefore 744 ≡ −1 mod 89, etc.

b. We find log7(2) = 48 in F89 and log7(2) = 94 in F97 using the baby-step,
giant-step method.

c. A discrete logarithm in (Z/97Z)∗ is theoretically easier to solve because 96 =
253, so we solve the discrete logarithms using this factorization.

N.B. Verify that you can solve log7(2) using log7m(2m) where m = 32, and m =
48, 24, 12, 6, 3, and at each of the latter steps you only need to determine one addi-
tional bit of information.

Mathematics of Shamir’s Secret Sharing Scheme.

Recall the Lagrange interpolation theorem:

Theorem 1 (Lagrange) Let k be a field and let f(x) be a polynomial over k of
degree less than t. Given t distinct elements x1, x2, . . . , xt of k, then f(x) equals

t∑
i=1

f(xi)
t∏

j=1
j 6=i

x− xj

xi − xj

8. Let F31 = Z/31Z be the finite field of 31 elements, and let

{(1, 1), (2, 16), (3, 25), (4, 28)}

be a set of pairs of the form (i, f(i)) for some polynomial f(x).

a. Find the value f(0) of the polynomial f(x) of degree 2 which interpolates the
first three points.

b. Find the polynomial f(x) of degree 2 which interpolates the first three points.

c. Show that the same polynomial passes through the fourth point.



d. Use the Lagrange interpolation theorem to conclude that f(x) is the unique
polynomial of degree less than 4 which passes through these four points.

Solution 4. Let F31 = Z/31Z be the finite field of 31 elements, and let

{(1, 1), (2, 16), (3, 25), (4, 28)}

be a set of pairs of the form (i, f(i)) for some polynomial f(x).

a. The value f(0) of the polynomial f(x) of degree 2 which interpolates the first
three points is given, using the first three shares, by

f(0) = 1 · (2)(3)

(2− 1)(3− 1)
+ 16 · (1)(3)

(1− 2)(3− 2)
+ 25 · (1)(2)

(1− 3)(2− 3)

= 1 · (3) + 16 · (−3) + 25 · (1) = 3 + 14 + 25 = 11.

Using the last three shares we find:

f(0) = 16 · (3)(4)

(3− 2)(4− 2)
+ 25 · (2)(4)

(2− 3)(4− 3)
+ 28 · (2)(3)

(2− 4)(3− 4)

= 16 · (6) + 25 · (−8) + 28 · (3) = 3 + 17 + 22 = 11.

N.B. Be careful to do any inversions modulo 31!!

b. Using the full formula, we get f(x) = 28x2 + 24x + 11.

c. Verify: f(4) = 28 · 42 + 24 · 4 + 11 = 14 + 3 + 11 = 28.

d. Since the polynomial f(x) agrees with the four points, this must be the unique
polynomial of degree less than four which does so.


