Information Theory

In this tutorial we consider the information theory of languages. In order to understand naturally occurring languages, we consider the models for finite languages \mathcal{L} consisting of strings of fixed finite length N together with a probability function P which models the natural language. In what follows, for two strings X and Y we denote their concatenation by XY.

- 1. Consider the language of 1-character strings over {A, B, C, D} with associated probabilities 1/3, 1/12, 1/4, and 1/3. What is its corresponding entropy?
- 2. Consider the language \mathcal{L}_2 of all strings of length 2 in {A, B, C, D} defined by the probability function of Exercise 1 and 2-character independence: P(XY) = P(X)P(Y). What is the entropy of this language?
- 3. Let \mathcal{M} be the strings of length 2 over {A, B, C, D} with the following frequency distribution:

P(AA) = 5/36	P(BA) = 0	$P(\mathtt{CA}) = 1/12$	$P(\mathtt{DA}) = 1/9$
$P(\mathtt{AB}) = 1/36$	P(BB) = 1/144	$P(\mathtt{CB}) = 1/48$	$P(\mathrm{DB}) = 1/36$
P(AC) = 7/72	P(BC) = 1/48	$P({\tt CC}) = 1/16$	$P(\mathrm{DC}) = 5/72$
$P({\rm AD})=5/72$	$P(\mathtt{BD}) = 1/18$	$P(\mathtt{CD}) = 1/12$	$P({\tt DD})=1/8$

Show that the 1-character frequencies in this language are the same as for the language in Exercise 2.

- **4.** Do you expect the entropy of the language of Exercise 3 to be greater or less than that of Exercise 2? What is the entropy of each language?
- 5. Consider the infinite language of all strings over the alphabet $\{A\}$, with probability function defined such that $P(A \dots A) = 1/2^n$, where n is the length of the string $A \dots A$. Show that the entropy of this language is 2.

Frequency Analysis

Consider those ciphertexts from the last tutorial which come from a Vigènere cipher. Use the javascript application for analyzing Vigenère ciphers:

```
http://magma.maths.usyd.edu.au/~kohel/
teaching/MATH3024/Javascript/vigenere.html
```

to determine the periods and keys for each of the ciphertext samples.