
The University of Sydney
Math3024 Elementary Cryptography and Protocols

Semester 1 Exercises for Week 5 2004

Code Breaking

So far we have focused on Vigenère ciphers, and their reduction to monoalphabetic
substitutions. Here we show how to use Magma to complete the final step of breaking these
ciphers. Recall that the reduction to monoalphabetic substitution is done by the process
of decimation, by which we lose all 2-character frequency structure of the language. A
more sophisticated approach will be necessary for breaking more complex ciphers.

Correlation. We first introduce the concept of correlation of two functions. Let X =
x1, x2, . . . , xn and Y = y1, y2, . . . , yn be two finite sequences of real numbers, each of length
n. We define the correlation of the two sequences to be

Corr(X, Y) =

∑n
i=1(xi − µX)(yi − µY)

σ(X)σ(Y)

and where µX and µY are the respective means of the sequences X and Y :

µX =
1

n

n∑
i=1

xi, µY =
1

n

n∑
i=1

yi,

and the terms in the denomiators are:

σ(X) =
(n∑

i=1

(xi − µX)2
)1/2

, σ(Y) =
(n∑

i=1

(yi − µY)2
)1/2

,

called the standard deviations of X and Y .

The correlation of two sequences will be a real number between 1 and −1, which
measures the linear relation between two sequences. On the following page we give a Magma
function which computes the sequence of correlations of each of the cyclic translations of
two sequences.

1. Correlations of sequence translations. The following code from the course
cryptography package finds the correlations between the affine translations of two
sequences. Do you understand the syntax? Ask or refer to the online Magma hand-
book where necessary.

function TranslationCorrelations(S1,S2)

// The sequence of correlations of the sequence S1 with the

// cyclic translations of the sequence S2.

n := #S1;

error if n ne #S2, "Arguments must be of the same length.";

// Compute the mean value of each sequence:

mu1 := &+[S1[k] : k in [1..n]]/n;

mu2 := &+[S2[k] : k in [1..n]]/n;

// Compute the standard deviations of each sequence:

sig1 := Sqrt(&+[(S1[k]-mu1)^2 : k in [1..n]]);

sig2 := Sqrt(&+[(S2[k]-mu2)^2 : k in [1..n]]);

sig := sig1*sig2;

CorrSeq := [];

for j in [1..n] do

Corr := &+[(S1[i] - mu1) * (S2[ij] - mu2) / sig

where ij := ((i+j-1) mod n) + 1 : i in [1..n]];

Append(~CorrSeq,<j,Corr>);

end for;

return CorrSeq;

end function;

2. Breaking Vigenère ciphers. A Vigenère cipher is reduced to an translation cipher
by the process of decimation. How does the above function solve the problem of
finding the affine translation?

For completeness we give a function, using the previous one, which matches the
frequency distribution of a string with a given standard distribution. This uses
the function FrequencyDistribution, which is part of the course cryptography
package.

function TranslationMatches(S,F,r)

// INPUT:

// S : Test string.

// F : Sequence of standard frequencies for the language.

// r : A real number between 0 and 1.

// OUTPUT:

// Returns integers k such that affine translation

// of S by k has correlation at least r with the standard

// frequencies given by the real sequence F.

X := FrequencyDistribution(S);

CorrSeq := TranslationCorrelations(X,F);

return [x[1] : x in CorrSeq | x[2] gt r];

end function;

Use this function on the Vigenére ciphertext samples from the web page the break
the enciphering. Recall that you will have to use the functions Decimation and
CoincidenceIndex to first reduce a Vigenère cipher to a monoalphabetic one.

3. Breaking substitution ciphers. Suppose that rather than an affine translation,
you have reduced to an arbitrary simple substitution. We need to undo an arbitrary
permutation of the alphabet. For this purpose we define maps into Euclidean space:

a. A → A2 → R2 defined by

X 7→ XX 7→ (P (X), P (XX)).

b. A → A2 → R3 defined by

X 7→ XY 7→ (P (X), P (XY |Y), P (Y X|Y)

for some fixed character Y .

See the document digraph frequencies.pdf for standard vectors for the English
language.

4. Breaking transposition ciphers. In order to break transposition ciphers it is
necessary to find the period m, of the cipher, and then to identify positions i and
j within each block 1 + km ≤ i, j ≤ (k + 1)m which were adjacent prior to the
permutation of positions. Suppose we guess that m is the correct period. Then for
a ciphertext sample C = c1c2 . . . , and a choice of 1 ≤ i < j ≤ m, we can form the
digraph decimation sequence cicj, ci+mcj+m, ci+2mcj+2m,

Two statistical measures that we can use on ciphertext to determine if a digraph
sequence is typical of the English language are a digraph coincidence index

n∑
X∈A

n∑
Y ∈A

nXY (nXY − 1)

N(N − 1)

where N is the total number of character pairs, and nXY is the number of occurrences
of the pair XY , and the coincidence discriminant:

∑
X∈A

∑
Y ∈A

(nXY

N
−

∑
Z∈A

nXZ

N

∑
Z∈A

nZY

N
)2.

The first term is the frequency of XY , and the latter is the product over the fre-
quencies of X as a first character and Y as a second character. The coincidence
discriminant measures the discrepancy between the probability space of pairs XY
and the product probability space.

What behavior do you expect for the coincidence index and coincidence discriminant
of the above digraph decimation, if i and j were the positions of originally adjacent
characters? Test your hypotheses with decimations of “real” English text.

function CoincidenceDiscriminant(S)

// INPUT: A sequence of 2-character strings, produced

// as decimation of transposition ciphertext, or of

// adjacent characters in some sample plaintext.

// OUTPUT: A measure of the difference of probability

// of association of two characters, relative to their

// independent probabilities.

C2S := CodeToString;

AA := [C2S(64+i)*C2S(64+j) : i, j in [1..26]];

FD1 := FrequencyDistribution(&*[s[1] : s in S]);

FD2 := FrequencyDistribution(&*[s[2] : s in S]);

N := #S;

F2D := [RealField() | 0 : i in [1..26^2]];

for s in S do

F2D[Index(AA,s)] +:= 1/N;

end for;

return &+[(F2D[i+26*(j-1)]-FD1[i]*FD2[j])^2 : i,j in [1..26]];

end function;

Why can we assume that i < j in the digraph sequence? What is the obstacle to
extending these statistical measures from two to more characters?

