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Modular Arithmetic

Reduction modulo a polynomial g(x) or modulo an integer m plays a central role in the
mathematics of cryptography. Recall that for a monic polynomial g(x) of positive degree,
we define a(x) mod g(x) to the unique polynomial a0(x) with deg a0(x) < deg g(x) such
that

a(x) = a0(x) + a1(x)g(x).

For an integer m, we define a mod m to be the unique integer a0 with 0 ≤ a0 < m such
that a = a0 + a1m.

Fermat’s little theorem. If p is a prime, then the relation ap−1 ≡ 1 mod p holds for
any integer a not divisible by p.

Note. The Magma function mod is the binary operator, with the syntax:

> m := 101;

> 2^31 mod m;

34

The same result can be achieved with the Modexp, or modular exponentiation function:

> Modexp(2,31,m);

34

2. Let p be the prime 231− 1 = 2147483647. Use the Magma function Modexp to verify
Fermat’s little theorem for several values of a. Why would it be a bad idea to compute
ap−1 and then reduce modulo p?

Chinese remainder theorem. Let p and q be distinct primes, then for every integer
a and b there exists a unique integer c with 0 ≤ c < pq such that c ≡ a mod p and
c ≡ b mod q.

If a, b, and c are as above, then for any integral polynomial f(x), the integer f(c)
satisfies f(c) ≡ f(a) mod p and f(c) ≡ f(b) mod q. Therefore f(c) mod pq is the unique
solution to the Chinese remainder theorem.

3. Let p be as above and let q = (261 + 1)/3 = 768614336404564651. Compute ap−1

mod pq for various primes using Modexp. Then reduce the result modulo p. How do you
explain the result in terms of the Chinese remainder theorem and Fermat’s little theorem?

Analogues of Fermat’s little theorem also hold for polynomials.

Polynomial analogue of Fermat. If g(x) is an irreducible polynomial of degree n over
F2, then the relation a(x)2n−1 ≡ 1 mod g(x) holds for any polynomial a(x) not divisible
by g(x).



Chinese remainder theorem. Let g(x) and h(x) be monic polynomials with no common
factors. Given any polynomials a(x) and b(x), there exists a unique polynomial c(x) such
that c(x) ≡ a(x) mod g(x) and c(x) ≡ b(x) mod h(x).

We can create and work with polynomials over F2 as demonstrated by the following
Magma code.

> F2 := FiniteField(2);

> P2<x> := PolynomialRing(F2);

> f := x^17 + x^5 + 1;

> Factorization(f);

[

<x^17 + x^5 + 1, 1>

]

4. Let g(x) = x17 + x5 + 1, and use the function Modexp to verify the polynomial
analogue of Fermat’s little theorem for the polynomials x, x2 + x + 1, etc.

5. Let h(x) = x17 +x15 +x10 +x5 +1 and compute a(x)217−1 mod g(x)h(x) for various
a(x). What is the result reduced modulo g(x)? Why does the same not hold true for
a(x)217−1 mod g(x)h(x), reduced modulo h(x)?


