
The University of Sydney
Math3024 Elementary Cryptography and Protocols

Semester 1 Exercises for Week 11 2004

RSA Cryptosystems

The RSA cryptosystem is based on the difficulty of factoring large integers into its
composite primes.

Based on Fermat’s little theorem, we know that am ≡ 1 mod p exactly when p − 1
divides m. Therefore we recover the identity au ≡ a mod p where u is of the form
1+(p−1)r. Now given any e such that e and p−1 have no common divisors, there exists
a d such that ed ≡ 1 mod p− 1. In other words, u = ed is of the form 1 + (p− 1)r. This
means that the map

a 7→ ae mod p

followed by
ae mod p 7→ (ae mod p)d mod p ≡ aed mod p = a mod p

are inverse maps. This only works for a prime p.

1. Use Magma to find a large prime p and to compute inverse exponentiation pairs e
and d. The following functions are of use:

RandomPrime, Random, GCD, XGCD, and InverseMod.

The RSA cryptosystem is based on the fact that for primes p and q and any integer e
with no common factors with p− 1 and q − 1, it is possible to find an d1 such that

ed1 ≡ 1 mod (p− 1),
ed2 ≡ 1 mod (q − 1).

Using the Chinese remainder theorem, it is possible to then find the unique d such that

d = d1 mod (p− 1) and d = d2 mod (q − 1)

in the range 1 ≤ d < (p− 1)(q − 1). This d has the property that

aed ≡ a mod n.

The send a message securely, the public key (e, n) is used. First we encoding the message
as an integer a mod n, then form the ciphertext ae mod n. The recipient recovers the
message using the secret exponent d.

2. Use your exponents e, d, verify the identities mod p:

(ae)d ≡ a mod n, (ad)e ≡ a mod n, and aed ≡ a mod n,

for various random values of a.

Note that after construction of d, the primes p and q are not needed, but that without
knowing the original factorization of n, Fermat’s little theorem does not apply, and finding
the inverse exponent for e is considered a hard problem.

We use the RSA cryptosystem in Magma as follows. First begin with encoding ASCII
text numerically:

> C := RSACryptosystem(128);

> Encoding(C,"The dog ate my lunch.");

0101010001101000011001010010000001100100011011110110011100100\

0000110000101110100011001010010000001101101011110010010000001\

1011000111010101101110011000110110100000101110

> Decoding($1);

The dog ate my lunch.

Note that the encoding / decoding operations here are true inverses.

Caution: Decoding ciphertext might render an xterm nonfunctional, since the result-
ing ASCII text might contain escape characters which reset the terminal display.

To encipher, first we must create a key pair:

> K, L := RandomKeys(C);

> K;

[49338921862830381807760291818994034053,

86398677368792768067556452456311743331]

This returns a pair of inverse keys K and L. We will consider K to be the public K and L

to be the private key.

N.B. The argument to RSACryptosystem specifies the number of bits in the RSA
modulus. With a value of 128, the modulus is of size 2128, or about 39 decimal digits.
Each of the primes is of size approximately 20 decimal digits. This particular example
can be easily broken by the factorization:

> time Factorization(86398677368792768067556452456311743331);

[<6046864213681032211, 1>, <14288178850339607921, 1>]

Time: 3.310

3. Use the above factorization to reproduce the private key L (generated but not
printed above) for this K.

4. Why is the choice for which key is the public key and which key is the private
key arbitrary? Practice encoding, decoding, enciphering, and deciphering with the RSA
cryptosystem. Why do the functions Enciphering and Deciphering return the same
values?

