Semester 1	Exercises for Week 12	2004

Diffie-Hellman and Discrete Logarithms

An El Gamal cryptosystem is based on the difficulty of the Diffie-Hellman problem: Given a prime p, a primitive element a of $(\mathbb{Z}/p\mathbb{Z})^* = \{c \in Z/pZ : c \neq 0\}$, and elements $c_1 = a^x$ and $c_2 = a^y$, find the element a^{xy} in $(\mathbb{Z}/p\mathbb{Z})^*$.

1. Recall the discrete logarithm problem: Given a prime p, a primitive element a of $(\mathbb{Z}/p\mathbb{Z})^*$, and an element c of $(\mathbb{Z}/p\mathbb{Z})^*$, find an integer x such that $c = a^x$. Explain how a general solution to the discrete logarithm problem for p and a implies a solution to the Diffie–Hellman problem.

2. Fermat's little theorem tells us that $a^{p-1} = 1$ for all a in $(\mathbb{Z}/p\mathbb{Z})^*$. Recall that a primitive element a has the property that $\mathbb{Z}/(p-1)\mathbb{Z} \to (\mathbb{Z}/p\mathbb{Z})^*$ given by $x \mapsto a^x$ is a bijection.

a. Show that a is primitive if and only if $a^x = 1$ only when p - 1 divides x.

b. Let p be prime $2^{32} + 15$. Show that a = 3 is a primitive element of $(\mathbb{Z}/p\mathbb{Z})^*$. Use the Magma function Log to compute discrete logarithms of elements of FiniteField(p) with respect to a.

c. Let p be the prime $2^{32} + 61$. Show that the element a = 2 is a primitive element for $(\mathbb{Z}/p\mathbb{Z})^*$. Use the Magma function Log to compute discrete logarithms of elements of FiniteField(p) with respect to a.

3. Compare the times to compute discrete logarithms in the previous exercise. Now factor p-1 for each p. What difference do you note? Explain the timings in terms of the Chinese remainder theorem for $\mathbb{Z}/(p-1)\mathbb{Z}$.

4. Let p be the prime $2^{131} + 1883$ and verify the factorization

 $p-1 = 2 \cdot 3 \cdot 5 \cdot 37 \cdot 634466267339108669 \cdot 3865430919824322067.$

Let a = 109 and c = 1014452131230551128319928312434869768346 and set

$$n_5 = (p-1) \operatorname{div} 634466267339108669$$

$$n_6 = (p-1)$$
 div 3865430919824322067.

Then verify that $c^{n_5} = a^{129n_5}$ and $c^{n_6} = a^{127n_6}$. Find similar relations for

$$n_1 = (p-1) \operatorname{div} 2$$
 $n_3 = (p-1) \operatorname{div} 5$,
 $n_2 = (p-1) \operatorname{div} 3$ $n_4 = (p-1) \operatorname{div} 37$.

and use this information to find the discrete logarithm of c with respect to a.