Semester 2	Solutions for Assignment 1	2004
Semester 2	Solutions for Assignment 1	200

This assignment will be due on Friday 3 September, should be submitted at 638 Carslaw by 5PM, and is worth 10% of the assessment for this course.

1. Let n be the integer 3080608377608965627, and define $\pi : \mathbb{Z}^8 \to \mathbb{Z}/n\mathbb{Z}^*$ to be the homomorphism taking the canonical basis of \mathbb{Z}^8 to the generators

$$\{-1, 2, 3, 5, 7, 11, 13, 17\}.$$

Verify that the rows of the matrix

$\begin{bmatrix} 2 \end{bmatrix}$	0	0	0	0	0	0	0]
0	396	-214	-386	36	25	-144	426
1	-205	-34	-196	230	83	-662	19
1	-305	528	-358	-250	73	38	277
1	38	-45	-282	584	122	-24	-476
0	127	131	119	369	-633	152	-275
0	436	-54	-138	-442	330	-312	-350
1	82	757	102	372	111	-248	258

determine a map $\phi : \mathbb{Z}^8 \to \mathbb{Z}^8$ with image in the kernel of π .

- **a.** Determine the factorization of n, and the group structure of $\ker(\pi)/\phi(\mathbb{Z}^8)$.
- **b.** Compute the 2-torsion subgroup of $\mathbb{Z}/n\mathbb{Z}^*$.
- c. Use the above relation matrix to compute an exact sequence

$$1 \to \mathbb{Z}^8 \to \mathbb{Z}^8 \to \mathbb{Z}/n\mathbb{Z}^*[2] \to 1.$$

Solution

a. Reducing the above matrix modulo 2, we find the kernel (on the left) to be spanned by vectors $\{v_1, v_2, v_3, v_4\}$

 $v_1 = (1, 0, 0, 0, 0, 0, 0, 0)$ $v_2 = (0, 1, 0, 0, 1, 0, 0, 1)$ $v_3 = (0, 0, 1, 1, 0, 0, 0, 0)$ $v_4 = (0, 0, 0, 0, 0, 0, 1, 0)$

Since for any v in this kernel, vM = (0, 0, 0, 0, 0, 0, 0, 0, 0), if we lift the coordinates to the integers we can form the corresponding product vM as a linear

s3sample

combination of the rows of M with even coordinates. Dividing by two we obtain an element u of \mathbb{Z}^8 such that $\pi(2u) = \pi(u)^2 = 1$, i.e. u is a 2-torsion element. The elements u_i corresponding to the basis elements v_i are:

$$\begin{split} u_1 &= \frac{v_1 M}{2} = (1, 0, 0, 0, 0, 0, 0, 0), \\ u_2 &= \frac{v_2 M}{2} = (1, 258, 249, -283, 496, 129, -208, 104), \\ u_3 &= \frac{v_3 M}{2} = (1, -255, 247, -277, -10, 78, -312, 148), \\ u_4 &= \frac{v_4 M}{2} = (0, 218, -27, -69, -221, 165, -156, -175), \end{split}$$

and their images in $\mathbb{Z}/n\mathbb{Z}^*$ are:

$$\pi(u_1) = 3080608377608965626, \pi(u_2) = 802583131117620736, \pi(u_3) = 1, \pi(u_4) = 802583131117620736.$$

The first element is -1, but the second and fourth give us nontrivial 2-torsion elements, from which we can factor n:

GCD(802583131117620736 - 1, n) = 767205289GCD(802583131117620736 + 1, n) = 4015363843

In order to find the group structure $\ker(\pi)/\phi(\mathbb{Z}^8)$ we will computer the full matrix of relations. In retrospect we will see that this full computation is not needed.

In the previous part we found $\pi(u_2) = \pi(u_4)$ and $\pi(u_3) = 1$, hence $u_2 - u_4$ and u_3 are new relations:

$$(1, -255, 247, -277, -10, 78, -312, 148)$$

 $(1, 40, 276, -214, 717, -36, -52, 279)$

Appending this to the known relations and reducing to a basis (say by LLL reduction) we find a new basis matrix of relations:

$\begin{bmatrix} 2 \end{bmatrix}$	0	0	0	0	0	0	0]
0	50	-281	81	240	5	-350	-129
1	-255	247	-277	-10	78	-312	148
0	42	481	316	-345	147	-196	-21
0	396	-214	-386	36	25	-144	426
0	228	-112	-330	-322	-494	-252	20
0	681	256	-156	45	211	298	-90
1	-257	-74	-345	-143	236	-284	-607

s3sample

Repeating the calculation of the kernel modulo 2 of this new matrix, we find the same row vectors mapping to the 2-torsion subgroup, plus a new vector which maps to 1:

$$(0, 114, -56, -165, -161, -247, -126, 10).$$

Repeating this process we find another element of the kernel of π :

$$(1, 313, -206, -378, -70, 225, 108, 108).$$

Repeating once more, we find that the kernel modulo 2 contains only those vectors which map under π to the 2-torsion.

Up to this point it has not been necessary to use the factorization of n. We know that the group order of $\mathbb{Z}/n\mathbb{Z}^*$ is (p-1)(q-1) where n = pq. However, we find that the determinant of the basis of known kernel elements is five times larger. Thus we repeat the above procedure by finding a generator for the kernel of M modulo 5, in order to find an element v = 5u in $5\mathbb{Z}^8$ which is in the kernel of π . Since five does not divide the group order, in fact this element

$$u = (1, -20, 134, -161, -364, 53, -62, -13),$$

itself must lie in ker(π). Adjoining this to our set of relations and row reducing yields the complete basis matrix for ker(π):

	$\boxed{2}$	0	0	0	0	0	0	0
	0	114	-56	-165	-161	-247	-126	$\begin{bmatrix} 0\\10 \end{bmatrix}$
	1	-204	65	-273	87	-22	-124	-147
λ <i>τ</i>	0	51	-182	4	97	-100	188	$-295 \\ -13$
$I\mathbf{v} =$	1	-20	134	-161	-364	53	-62	-13
	1	-84	-91	85	37	305	-286	-152
	0	305	16	-178	239	-3	-214	-24
	0	28	-356	-39	55	175	384	145

The group structure of $\ker(\pi)/\phi(\mathbb{Z}^8)$ can now be determined by expressing the rows of the original matrix M in terms of the rows of N which spanning $\ker(\pi)$. Explicitly, one computes MN^{-1} . This gives a basis matrix for $\phi(\mathbb{Z}^8)$ as a subgroup of $\ker(\pi)$. From this basis we find

$$\ker(\pi)/\phi(\mathbb{Z}^8) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/40\mathbb{Z}.$$

Simplification: Alternatively we can compute $\det(M) = 80|\mathbb{Z}/n\mathbb{Z}^*|$ as soon as we know the factorization of n. From the fact that the dimension of the kernel of the reduction of M modulo 2 is 4, the group structure follows. Specifically, the group $\mathbb{Z}/n\mathbb{Z}^*[2]$ has dimension 2 as a vector space, so a 2-dimensional subspace, (a group of order 4) must come from 2-torsion in the group $\ker(\pi)/\phi(\mathbb{Z}^8)$. Since we know the group has order 80, the only possible group structure with 2-torsion of order 4 is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/40\mathbb{Z}$. Simplification #2: If n = pq where $p = 3 \mod 4$ and $q = 3 \mod 4$, then $\mathbb{Z}/n\mathbb{Z}^*$ has order 4r for some r. Then the composition $[r] \circ \pi = \pi \circ [r]$ of π with [r] would give the required surjection $\mathbb{Z}^8 \to \mathbb{Z}/n\mathbb{Z}^*[2]$. The map $\mathbb{Z}^8 \to \mathbb{Z}^8$ would be any map with image $\phi(\mathbb{Z}^8) + 2\mathbb{Z}^8$. In this case, however, $p = 1 \mod 4$ so this trick doesn't apply.

b. Let $\psi : \mathbb{Z}^8 \to \mathbb{Z}^8$ and $\rho : \mathbb{Z}^8 \to \mathbb{Z}/n\mathbb{Z}^*[2]$ be the maps giving the exact sequence desired. Since we have computed the kernel of π , we define ϕ to be given by the matrix N above, so that the following sequence is exact:

$$1 \to \mathbb{Z}^8 \xrightarrow{\phi} \mathbb{Z}^8 \xrightarrow{\pi} \mathbb{Z}/n\mathbb{Z}^* \to 1.$$

The homomorphism ρ will be the compositum of an isomorphism

$$\iota: \mathbb{Z}^8 \to \pi^{-1}(\mathbb{Z}/n\mathbb{Z}^*[2])$$

with the map π . The map ψ will have image equal to the kernel of ρ . In order to find ι we adjoin two elements

(1, 0, 0, 0, 0, 0, 0, 0), (1, 258, 249, -283, 496, 129, -208, 104).

generating the kernel. By basis reduction we find a set of eight vectors which determine the image of the generators for \mathbb{Z}^8 .

Simplification: This entire calculation can again be bypassed, if we recognise that any map from $\rho : \mathbb{Z}^8 \to \mathbb{Z}/n\mathbb{Z}^*[2]$ is determined by the images of its eight generators. Since $\mathbb{Z}/n\mathbb{Z}^*[2]$ is generated by -1 and 802583131117620736, we send the first two generators of \mathbb{Z}^8 to -1 and 802583131117620736, respectively, and the remainder to 1. Then the inclusion with basis matrix:

ſ	2	0	0	0	0	0	0	0
	0	2	0	0	0	0	0	0
	0	0	1	0			0	0
	0	0	0	1	0	0	0	0
	0	0	0	0	1	0	0	0
	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	1

determines a map $\psi : \mathbb{Z}^8 \to \mathbb{Z}^8$ with image equal to the kernel of ρ as required. The previous construction in terms of ϕ and π must differ from this direct construction only by a change of basis for \mathbb{Z}^8 .

2. a. Prove that the integer

86398677368792768067556452456311743331

is composite.

b. Prove that the integer

36033031871188819215295041944029897039

is prime, and that 3 is a primitive element.

Solution

a. For this integer n, we find that $2^{n-1} \mod n$ equals

7513657430681440292268339702541712768.

b. For this integer p, we find that the factorization of p-1 is

 $2\cdot 3^2\cdot 43\cdot 4049\cdot 33311\cdot 345163129460764466616589283.$

We check that $3^{p-1} \mod p$ equals 1, so 3 has order dividing p-1. However for each m = (p-1)/r, where r = 2, 3, 43, etc. runs through the prime divisors of p-1, we find the $3^m \mod p$ is not one:

36033031871188819215295041944029897038 26196303998461744328183977577030316695 28877141472703870017743095112949724239 16924899364389785081988486838678995925 12185493681708568683787524620158562757 35997470466162411157077430182287272757

Thus the order of 3 is exactly p-1. Consequently p is prime and 3 is primitive. Note that to complete the proof, one needs the recurse on the proof that each of the prime divisors of p-1 is in fact prime. Primes up to some fixed bound (e.g. $10, 100, \ldots, 10^6$, etc.) can be proven by prior sieving method. We omit this recursion on the divisors of p-1.

3. Given the integer n = 98424217707782056843, find a set of generators for $\mathbb{Z}/n\mathbb{Z}^*$. Find the subgroup $H = \mathbb{Z}/n\mathbb{Z}^*[2]$ and a group G together with a homomorphism $\chi : \mathbb{Z}/n\mathbb{Z}^* \to G$ making an exact sequence

$$1 \to H \longrightarrow \mathbb{Z}/n\mathbb{Z}^* \xrightarrow{[2]} \mathbb{Z}/n\mathbb{Z}^* \xrightarrow{\chi} G \to 1.$$

Solution The factorization of n is $523 \cdot 1830013 \cdot 102836220757$. Since the 2-torsion subgroup H consists of elements which are ± 1 modulo each of these primes, and we can take as generators those with images (-1, 1, 1), (1, -1, 1), and (1, 1, -1) in

$$\mathbb{Z}/523\mathbb{Z}^* \times \mathbb{Z}/1830013\mathbb{Z}^* \times \mathbb{Z}/102836220757\mathbb{Z}^*,$$

with respect this these three primes. Using the Chinese remainder theorem, we find their representatives in $\mathbb{Z}/n\mathbb{Z}^*$ are

 $\begin{array}{c} (-1,1,1) \mapsto 31616192303838213289, \\ (1,-1,1) \mapsto 83451526506434449465, \\ (1,1,-1) \mapsto 81780716605291450933. \end{array}$

s3sample

Thus H = ker([2]) is the 2-torsion subgroup of order 8 generated by these three elements. We now define $G = \{\pm 1\}^3$ to be the multiplicative group of order 8 (which we can identify with a subgroup of $\mathbb{Z}/523\mathbb{Z}^* \times \mathbb{Z}/1830013\mathbb{Z}^* \times \mathbb{Z}/102836220757\mathbb{Z}^*$). The homomorphism from $\mathbb{Z}/n\mathbb{Z}^*$ is defined to each components is

$$\begin{array}{l} x \mapsto x^{261} \mod 523 \\ x \mapsto x^{915006} \mod 1830013 \\ x \mapsto x^{51418110378} \mod 102836220757. \end{array}$$

Since the maps

$$1 \to \langle 1, -1 \rangle \xrightarrow{[2]} \mathbb{Z}/p\mathbb{Z}^* \to \mathbb{Z}/p\mathbb{Z}^* \xrightarrow{\chi_p} \langle 1, -1 \rangle \to 1$$

defined by $\chi_p(x) = x^{(p-1)/2}$ is exact, we conclude also that the map χ is surjective and has kernel equal to the image of [2], hence the sequence of homomorphisms is exact.

- 4. a. Given an RSA public key (n, e), explain how the knowledge of the RSA private key (n, d) is probabilistically polynomial time equivalent to the factorization of n by describing an algorithm to factor n.
 - **b.** Let n be the RSA modulus

 $255323218588166109592798189959884326293097327027305030817530\\747345240251392473791503642932659593815276200068924379830529,$

with public key (n, e) = (n, 17) and private key (n, d) with d equal to

 $24030420573003869138145711996224407180526807249628708782826\\2885567034957139042736053989307424852494087454007644144753201.$

Find a factorization of n.

Solution

a. By construction, $a^{ed} = a$ for every a in $\mathbb{Z}/n\mathbb{Z}$. In particular this means that $ed = 1 \mod m$, where m is the exponent of the group $\mathbb{Z}/n\mathbb{Z}^*$ (note that m divides the order $\varphi(n)$ of $\mathbb{Z}/n\mathbb{Z}^*$ but $ed = 1 \mod \varphi(n)$ is not strictly necessary). In particular we may apply the following algorithm:

```
1. let ed - 1 = 2^s r for r odd

2. choose a at random in \mathbb{Z}/n\mathbb{Z}^* and set u_1 = a^r

3. if u_1 = \pm 1 then return to 2.

4. for i in [1, \dots, s] {

set u_2 = u_1^2

if u_2 = -1 then

return to 2.

if u_2 = +1 then

return GCD(u_1 - 1, n)

}
```

Since $a^{ed-1} = 1$, in the course of the algorithm either $u_2 = 1$ or $u_2 = -1$ occurs. If *n* is not prime (as is the case in the RSA protocol), then we expect to find a 2-torsion element u_1 ($u_2 = 1$) with probability at least 1/2.

b. We find $ed - 1 = 2^6 r$ for an odd r, but with a = 2 we find that $2^r \mod n$ equals -1 which gives no information. However $u_1 = 3^r \mod n$ is a nontrivial 2-torsion element, and $\text{GCD}(u_1 - 1, n)$ picks out the factor:

208837501874423119625643364067739053302302858700895305581467

while the other factor is $GCD(u_1 + 1, n)$:

1222592763735009121258802915225781634738005421484907170448787

Note that 2 and 3 play the role of "random" elements.