The University of Sydney Math3925 Public Key Cryptography

This assignment will be due on Friday 3 September, should be submitted at 638 Carslaw by 5PM, and is worth 10% of the assessment for this course.

1. Let n be the integer 3080608377608965627 , and define $\pi: \mathbb{Z}^{8} \rightarrow \mathbb{Z} / n \mathbb{Z}^{*}$ to be the homomorphism taking the canonical basis of \mathbb{Z}^{8} to the generators

$$
\{-1,2,3,5,7,11,13,17\} .
$$

Verify that the rows of the matrix

$$
\left[\begin{array}{rrrrrrrr}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 396 & -214 & -386 & 36 & 25 & -144 & 426 \\
1 & -205 & -34 & -196 & 230 & 83 & -662 & 19 \\
1 & -305 & 528 & -358 & -250 & 73 & 38 & 277 \\
1 & 38 & -45 & -282 & 584 & 122 & -24 & -476 \\
0 & 127 & 131 & 119 & 369 & -633 & 152 & -275 \\
0 & 436 & -54 & -138 & -442 & 330 & -312 & -350 \\
1 & 82 & 757 & 102 & 372 & 111 & -248 & 258
\end{array}\right] .
$$

determine a map $\phi: \mathbb{Z}^{8} \rightarrow \mathbb{Z}^{8}$ with image in the kernel of π.
a. Determine the factorization of n, and the group structure of $\operatorname{ker}(\pi) / \phi\left(\mathbb{Z}^{8}\right)$.
b. Compute the 2 -torsion subgroup of $\mathbb{Z} / n \mathbb{Z}^{*}$.
c. Use the above relation matrix to compute an exact sequence

$$
1 \rightarrow \mathbb{Z}^{8} \rightarrow \mathbb{Z}^{8} \rightarrow \mathbb{Z} / n \mathbb{Z}^{*}[2] \rightarrow 1
$$

Solution

a. Reducing the above matrix modulo 2 , we find the kernel (on the left) to be spanned by vectors $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$

$$
\begin{aligned}
& v_{1}=(1,0,0,0,0,0,0,0) \\
& v_{2}=(0,1,0,0,1,0,0,1) \\
& v_{3}=(0,0,1,1,0,0,0,0) \\
& v_{4}=(0,0,0,0,0,0,1,0)
\end{aligned}
$$

Since for any v in this kernel, $v M=(0,0,0,0,0,0,0,0,0)$, if we lift the coordinates to the integers we can form the corresponding product $v M$ as a linear
combination of the rows of M with even coordinates. Dividing by two we obtain an element u of \mathbb{Z}^{8} such that $\pi(2 u)=\pi(u)^{2}=1$, i.e. u is a 2 -torsion element. The elements u_{i} corresponding to the basis elements v_{i} are:

$$
\begin{aligned}
& u_{1}=\frac{v_{1} M}{2}=(1,0,0,0,0,0,0,0), \\
& u_{2}=\frac{v_{2} M}{2}=(1,258,249,-283,496,129,-208,104), \\
& u_{3}=\frac{v_{3} M}{2}=(1,-255,247,-277,-10,78,-312,148), \\
& u_{4}=\frac{v_{4} M}{2}=(0,218,-27,-69,-221,165,-156,-175),
\end{aligned}
$$

and their images in $\mathbb{Z} / n \mathbb{Z}^{*}$ are:

$$
\begin{aligned}
& \pi\left(u_{1}\right)=3080608377608965626 \\
& \pi\left(u_{2}\right)=802583131117620736 \\
& \pi\left(u_{3}\right)=1 \\
& \pi\left(u_{4}\right)=802583131117620736
\end{aligned}
$$

The first element is -1 , but the second and fourth give us nontrivial 2-torsion elements, from which we can factor n :

$$
\begin{aligned}
\operatorname{GCD}(802583131117620736-1, n) & =767205289 \\
\operatorname{GCD}(802583131117620736+1, n) & =4015363843
\end{aligned}
$$

In order to find the group structure $\operatorname{ker}(\pi) / \phi\left(\mathbb{Z}^{8}\right)$ we will computer the full matrix of relations. In retrospect we will see that this full computation is not needed.
In the previous part we found $\pi\left(u_{2}\right)=\pi\left(u_{4}\right)$ and $\pi\left(u_{3}\right)=1$, hence $u_{2}-u_{4}$ and u_{3} are new relations:

$$
\begin{aligned}
& (1,-255,247,-277,-10,78,-312,148) \\
& (1,40,276,-214,717,-36,-52,279)
\end{aligned}
$$

Appending this to the known relations and reducing to a basis (say by LLL reduction) we find a new basis matrix of relations:

$$
\left[\begin{array}{rrrrrrrr}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 50 & -281 & 81 & 240 & 5 & -350 & -129 \\
1 & -255 & 247 & -277 & -10 & 78 & -312 & 148 \\
0 & 42 & 481 & 316 & -345 & 147 & -196 & -21 \\
0 & 396 & -214 & -386 & 36 & 25 & -144 & 426 \\
0 & 228 & -112 & -330 & -322 & -494 & -252 & 20 \\
0 & 681 & 256 & -156 & 45 & 211 & 298 & -90 \\
1 & -257 & -74 & -345 & -143 & 236 & -284 & -607
\end{array}\right] .
$$

Repeating the calculation of the kernel modulo 2 of this new matrix, we find the same row vectors mapping to the 2-torsion subgroup, plus a new vector which maps to 1 :

$$
(0,114,-56,-165,-161,-247,-126,10) .
$$

Repeating this process we find another element of the kernel of π :

$$
(1,313,-206,-378,-70,225,108,108) .
$$

Repeating once more, we find that the kernel modulo 2 contains only those vectors which map under π to the 2-torsion.
Up to this point it has not been necessary to use the factorization of n. We know that the group order of $\mathbb{Z} / n \mathbb{Z}^{*}$ is $(p-1)(q-1)$ where $n=p q$. However, we find that the determinant of the basis of known kernel elements is five times larger. Thus we repeat the above procedure by finding a generator for the kernel of M modulo 5 , in order to find an element $v=5 u$ in $5 \mathbb{Z}^{8}$ which is in the kernel of π. Since five does not divide the group order, in fact this element

$$
u=(1,-20,134,-161,-364,53,-62,-13),
$$

itself must lie in $\operatorname{ker}(\pi)$. Adjoining this to our set of relations and row reducing yields the complete basis matrix for $\operatorname{ker}(\pi)$:

$$
N=\left[\begin{array}{rrrrrrrr}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 114 & -56 & -165 & -161 & -247 & -126 & 10 \\
1 & -204 & 65 & -273 & 87 & -22 & -124 & -147 \\
0 & 51 & -182 & 4 & 97 & -100 & 188 & -295 \\
1 & -20 & 134 & -161 & -364 & 53 & -62 & -13 \\
1 & -84 & -91 & 85 & 37 & 305 & -286 & -152 \\
0 & 305 & 16 & -178 & 239 & -3 & -214 & -24 \\
0 & 28 & -356 & -39 & 55 & 175 & 384 & 145
\end{array}\right]
$$

The group structure of $\operatorname{ker}(\pi) / \phi\left(\mathbb{Z}^{8}\right)$ can now be determined by expressing the rows of the original matrix M in terms of the rows of N which spanning $\operatorname{ker}(\pi)$. Explicitly, one computes $M N^{-} 1$. This gives a basis matrix for $\phi\left(\mathbb{Z}^{8}\right)$ as a subgroup of $\operatorname{ker}(\pi)$. From this basis we find

$$
\operatorname{ker}(\pi) / \phi\left(\mathbb{Z}^{8}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 40 \mathbb{Z}
$$

Simplification: Alternatively we can compute $\operatorname{det}(M)=80\left|\mathbb{Z} / n \mathbb{Z}^{*}\right|$ as soon as we know the factorization of n. From the fact that the dimension of the kernel of the reduction of M modulo 2 is 4 , the group structure follows. Specifically, the group $\mathbb{Z} / n \mathbb{Z}^{*}[2]$ has dimension 2 as a vector space, so a 2-dimensional subspace, (a group of order 4) must come from 2-torsion in the group $\operatorname{ker}(\pi) / \phi\left(\mathbb{Z}^{8}\right)$. Since we know the group has order 80, the only possible group structure with 2 -torsion of order 4 is $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 40 \mathbb{Z}$.

Simplification \#2: If $n=p q$ where $p=3 \bmod 4$ and $q=3 \bmod 4$, then $\mathbb{Z} / n \mathbb{Z}^{*}$ has order $4 r$ for some r. Then the composition $[r] \circ \pi=\pi \circ[r]$ of π with $[r]$ would give the required surjection $\mathbb{Z}^{8} \rightarrow \mathbb{Z} / n \mathbb{Z}^{*}[2]$. The map $\mathbb{Z}^{8} \rightarrow \mathbb{Z}^{8}$ would be any map with image $\phi\left(\mathbb{Z}^{8}\right)+2 \mathbb{Z}^{8}$. In this case, however, $p=1 \bmod 4$ so this trick doesn't apply.
b. Let $\psi: \mathbb{Z}^{8} \rightarrow \mathbb{Z}^{8}$ and $\rho: \mathbb{Z}^{8} \rightarrow \mathbb{Z} / n \mathbb{Z}^{*}[2]$ be the maps giving the exact sequence desired. Since we have computed the kernel of π, we define ϕ to be given by the matrix N above, so that the following sequence is exact:

$$
1 \rightarrow \mathbb{Z}^{8} \xrightarrow{\phi} \mathbb{Z}^{8} \xrightarrow{\pi} \mathbb{Z} / n \mathbb{Z}^{*} \rightarrow 1 .
$$

The homomorphism ρ will be the compositum of an isomorphism

$$
\iota: \mathbb{Z}^{8} \rightarrow \pi^{-1}\left(\mathbb{Z} / n \mathbb{Z}^{*}[2]\right)
$$

with the map π. The map ψ will have image equal to the kernel of ρ. In order to find ι we adjoin two elements

$$
(1,0,0,0,0,0,0,0),(1,258,249,-283,496,129,-208,104)
$$

generating the kernel. By basis reduction we find a set of eight vectors which determine the image of the generators for \mathbb{Z}^{8}.
Simplification: This entire calculation can again be bypassed, if we recognise that any map from $\rho: \mathbb{Z}^{8} \rightarrow \mathbb{Z} / n \mathbb{Z}^{*}[2]$ is determined by the images of its eight generators. Since $\mathbb{Z} / n \mathbb{Z}^{*}[2]$ is generated by -1 and 802583131117620736 , we send the first two generators of \mathbb{Z}^{8} to -1 and 802583131117620736 , respectively, and the remainder to 1 . Then the inclusion with basis matrix:

$$
\left[\begin{array}{llllllll}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

determines a map $\psi: \mathbb{Z}^{8} \rightarrow \mathbb{Z}^{8}$ with image equal to the kernel of ρ as required. The previous construction in terms of ϕ and π must differ from this direct construction only by a change of basis for \mathbb{Z}^{8}.
2. a. Prove that the integer
is composite.
b. Prove that the integer

$$
36033031871188819215295041944029897039
$$

is prime, and that 3 is a primitive element.

Solution

a. For this integer n, we find that $2^{n-1} \bmod n$ equals

$$
7513657430681440292268339702541712768 .
$$

b. For this integer p, we find that the factorization of $p-1$ is

$$
2 \cdot 3^{2} \cdot 43 \cdot 4049 \cdot 33311 \cdot 345163129460764466616589283
$$

We check that $3^{p-1} \bmod p$ equals 1 , so 3 has order dividing $p-1$. However for each $m=(p-1) / r$, where $r=2,3,43$, etc. runs through the prime divisors of $p-1$, we find the $3^{m} \bmod p$ is not one:

$$
\begin{aligned}
& 36033031871188819215295041944029897038 \\
& 26196303998461744328183977577030316695 \\
& 28877141472703870017743095112949724239 \\
& 16924899364389785081988486838678995925 \\
& 12185493681708568683787524620158562757 \\
& 35997470466162411157077430182287272757
\end{aligned}
$$

Thus the order of 3 is exactly $p-1$. Consequently p is prime and 3 is primitive. Note that to complete the proof, one needs the recurse on the proof that each of the prime divisors of $p-1$ is in fact prime. Primes up to some fixed bound (e.g. $10,100, \ldots, 10^{6}$, etc.) can be proven by prior sieving method. We omit this recursion on the divisors of $p-1$.
3. Given the integer $n=98424217707782056843$, find a set of generators for $\mathbb{Z} / n \mathbb{Z}^{*}$. Find the subgroup $H=\mathbb{Z} / n \mathbb{Z}^{*}[2]$ and a group G together with a homomorphism $\chi: \mathbb{Z} / n \mathbb{Z}^{*} \rightarrow G$ making an exact sequence

$$
1 \rightarrow H \longrightarrow \mathbb{Z} / n \mathbb{Z}^{*} \xrightarrow{[2]} \mathbb{Z} / n \mathbb{Z}^{*} \xrightarrow{\chi} G \rightarrow 1 .
$$

Solution The factorization of n is $523 \cdot 1830013 \cdot 102836220757$. Since the 2-torsion subgroup H consists of elements which are ± 1 modulo each of these primes, and we can take as generators those with images $(-1,1,1),(1,-1,1)$, and $(1,1,-1)$ in

$$
\mathbb{Z} / 523 \mathbb{Z}^{*} \times \mathbb{Z} / 1830013 \mathbb{Z}^{*} \times \mathbb{Z} / 102836220757 \mathbb{Z}^{*},
$$

with respect this these three primes. Using the Chinese remainder theorem, we find their representatives in $\mathbb{Z} / n \mathbb{Z}^{*}$ are

$$
\begin{aligned}
(-1,1,1) & \mapsto 31616192303838213289, \\
(1,-1,1) & \mapsto 83451526506434449465, \\
(1,1,-1) & \mapsto 81780716605291450933 .
\end{aligned}
$$

Thus $H=\operatorname{ker}([2])$ is the 2-torsion subgroup of order 8 generated by these three elements. We now define $G=\{ \pm 1\}^{3}$ to be the multiplicative group of order 8 (which we can identify with a subgroup of $\left.\mathbb{Z} / 523 \mathbb{Z}^{*} \times \mathbb{Z} / 1830013 \mathbb{Z}^{*} \times \mathbb{Z} / 102836220757 \mathbb{Z}^{*}\right)$. The homomorphism from $\mathbb{Z} / n \mathbb{Z}^{*}$ is defined to each components is

$$
\begin{aligned}
& x \mapsto x^{261} \bmod 523 \\
& x \mapsto x^{915006} \bmod 1830013 \\
& x \mapsto x^{5141810378} \bmod 102836220757 .
\end{aligned}
$$

Since the maps

$$
1 \rightarrow\langle 1,-1\rangle \xrightarrow{[2]} \mathbb{Z} / p \mathbb{Z}^{*} \rightarrow \mathbb{Z} / p \mathbb{Z}^{*} \xrightarrow{\chi_{p}}\langle 1,-1\rangle \rightarrow 1
$$

defined by $\chi_{p}(x)=x^{(p-1) / 2}$ is exact, we conclude also that the the map χ is surjective and has kernel equal to the image of [2], hence the sequence of homomorphisms is exact.
4. a. Given an RSA public key (n, e), explain how the knowledge of the RSA private key (n, d) is probabilistically polynomial time equivalent to the factorization of n by describing an algorithm to factor n.
b. Let n be the RSA modulus

255323218588166109592798189959884326293097327027305030817530 747345240251392473791503642932659593815276200068924379830529 ,
with public key $(n, e)=(n, 17)$ and private key (n, d) with d equal to

$$
24030420573003869138145711996224407180526807249628708782826
$$

2885567034957139042736053989307424852494087454007644144753201.

Find a factorization of n.

Solution

a. By construction, $a^{e d}=a$ for every a in $\mathbb{Z} / n \mathbb{Z}$. In particular this means that $e d=1 \bmod m$, where m is the exponent of the group $\mathbb{Z} / n \mathbb{Z}^{*}$ (note that m divides the order $\varphi(n)$ of $\mathbb{Z} / n \mathbb{Z}^{*}$ but $e d=1 \bmod \varphi(n)$ is not strictly necessary). In particular we may apply the following algorithm:

1. let $e d-1=2^{s} r$ for r odd
2. choose a at random in $\mathbb{Z} / n \mathbb{Z}^{*}$ and set $u_{1}=a^{r}$
3. if $u_{1}= \pm 1$ then return to 2 .
4. for i in $[1, \ldots, s]$ \{
set $u_{2}=u_{1}^{2}$
if $u_{2}=-1$ then
return to 2 .
if $u_{2}=+1$ then
return $\operatorname{GCD}\left(u_{1}-1, n\right)$
\}

Since $a^{\text {ed }-1}=1$, in the course of the algorithm either $u_{2}=1$ or $u_{2}=-1$ occurs. If n is not prime (as is the case in the RSA protocol), then we expect to find a 2-torsion element $u_{1}\left(u_{2}=1\right)$ with probability at least $1 / 2$.
b. We find $e d-1=2^{6} r$ for an odd r, but with $a=2$ we find that $2^{r} \bmod n$ equals -1 which gives no information. However $u_{1}=3^{r} \bmod n$ is a nontrivial 2-torsion element, and $\operatorname{GCD}\left(u_{1}-1, n\right)$ picks out the factor:

$$
208837501874423119625643364067739053302302858700895305581467
$$

while the other factor is $\operatorname{GCD}\left(u_{1}+1, n\right)$:
1222592763735009121258802915225781634738005421484907170448787
Note that 2 and 3 play the role of "random" elements.

