The University of Sydney Math3925 Public Key Cryptography

This assignment will be due on Friday 24 September, should be submitted at 638 Carslaw by 5PM, and is worth 10% of the assessment for this course.

1. Let n be the integer 228618946967762521 . Explain how 3 -torsion elements in $\mathbb{Z} / n \mathbb{Z}^{*}$ can be used to factor n, and demonstrate this with $x=90208952368431523$.

Solution A three torsion element x satisfies a relation $x^{3}-1=0$, which can be written in factored form as $(x-1)\left(x^{2}+x+1\right)=0$. Over a field such a relation implies that $x-1=0$ or $x^{2}+x+1=0$, but in $\mathbb{Z} / n \mathbb{Z}$, where $n=p q$ any of the possible combinations of relations modulo p and modulo q can occur:

$$
\begin{array}{c|c||c|c|}
x-1 \bmod p & x^{2}+x+1 \bmod p & x-1 \bmod q & x^{2}+x+1 \bmod q \\
\hline 0 & * & 0 & * \\
* & 0 & 0 & * \\
0 & * & * & 0 \\
* & 0 & * & 0
\end{array}
$$

Note that there exist either 2 or 0 solutions to $x^{2}+x+1 \bmod p$, depending whether 3 divides $p-1$ or not. Provided one of $p-1$ and not $q-1$ is divisible by 3 , there is a $2 / 3$ chance that a random 3-torsion element x finds the factor $q=\operatorname{GCD}(x-1, n)$, and if both $p-1$ and $q-1$ are divisible by 3 then there is a $4 / 9$ chance that $\operatorname{GCD}(x-1, n$ finds p or q. In this case we find

$$
\operatorname{GCD}(x-1, n)=\operatorname{GCD}(x-1, n)=933376471
$$

Note that unlike 3 (or 5,7 , etc.), the prime 2 always divides $p-1$ and $q-1$, which is why we give emphasis to finding 2 -torsion.
2. a. Find the discrete logarithm x of 2 with respect to the base 3 in \mathbb{F}_{p}^{*}, where $p=1234621183$. Use the Pollig-Hellman reduction, noting that $p-1=2 \cdot 3$. $83 \cdot 383 \cdot 6473$, and give the values you determine for $x \bmod 2, x \bmod 3$, etc.
b. Now determine the discrete $\operatorname{logarithm} \log _{3}(2)$ in \mathbb{F}_{p}^{*}, where $p=65537$, expressing the result in base 2.

Solution

a. The discrete $\operatorname{logarithm} \log _{2}(3)$ in \mathbb{F}_{p} is well-defined as an element of the additive group $\mathbb{Z} /(p-1) \mathbb{Z}$. It can be computed modulo each prime divisor r of $p-1$
by setting $m=(p-1) / r$ (using the Magma operator div), and computing $x=\log _{2^{m}}\left(3^{m}\right) \bmod r$.

x	r
0	2
0	3
56	83
215	383
5635	6473

Using the Chinese remainder theorem, we recover $k=389634924$.
b. Since $p-1=2^{16}$, we solve iteratively for the 16 -bits of the discrete logarithm, $x=1101100000000000_{2}=55296$. Explicitly, we find that $3^{2^{15}}=-1$ so it generates \mathbb{F}_{p}^{*}, then $2^{2^{15}}=\cdots=2^{2^{5}}=1$, so the least significant 11 bits are all 0 . Then $(2)^{2^{4}}=-1$, so the next bit is $1,\left(3^{-2^{11}} 2\right)^{2^{3}}=-1$, so again we have a bit 1 , and $\left(3^{-2^{11}-2^{12}} 2\right)^{2^{2}}=1$, so the bit 0 follows, etc.
3. Verify that the ring $\mathbb{Z}[\tau] /(13)$, where $\tau^{3}-\tau+1=0$ is a field, that 61 divides the order of $\mathbb{Z}[\tau] /(13)^{*}$, and that $x=\tau+6$ and $y=\tau+10$ have exact order 61 .
a. Partition $\mathbb{F}_{13^{3}}$ into disjoint sets

$$
\begin{aligned}
& S_{1}=\left\{a+b \tau+c \tau^{2} \in \mathbb{F}_{11^{3}}: 0 \leq a \leq 4\right\}, \\
& S_{2}=\left\{a+b \tau+c \tau^{2} \in \mathbb{F}_{13^{3}}: 5 \leq a \leq 8\right\}, \\
& S_{3}=\left\{a+b \tau+c \tau^{2} \in \mathbb{F}_{13^{3}}: 9 \leq a\right\},
\end{aligned}
$$

and use these to determine four cycles and tails in the Pollard ρ method beginning with an initial value of the form $x^{n} y^{m}$. Give both the elements $x^{n_{i}} y^{m_{i}}$ and the exponents $\left(n_{i}, m_{i}\right)$ in the sequence. Use your cycles to determine the discrete logarithm $\log _{x}(y)$.
b. Find the complete set of relations between the elements

$$
-1, \tau, 2,3, \tau^{2}+1, \tau^{2}+\tau+1,-2 \tau-1, x, y
$$

of $\mathbb{F}_{13^{3}}$, and demonstrate how to use these to determine $\log _{x}(y)$.
Solution Since $\tau^{3}-\tau+1=0$ has no solution τ in \mathbb{F}_{13}, it must be irreducible, hence $\mathbb{Z}[\tau] /(13)$ is a field. Since $13^{3}-1=36 \cdot 61$, there must be an element of order 61 in $\mathbb{Z}[\tau] /(13)^{*}$. The order of x and y can be verified computationally.
a. See Tutorial 6 for details of the Pollard ρ algorithm; a variety of sequences $\left(x_{i}, n_{i}, m_{i}\right)$ are possible for the question. Note, however, that the length of the tails and the period can vary significantly, but most all result in the relation $x y^{2}=1$. From the order of the group we can write $y^{2}=x^{61-1}=x^{60}$, so $y=x^{30}$. Therefore $\log _{x}(y)=30$.
b. The full matrix of relations has a basis matrix of the form:

$$
\left[\begin{array}{rrrrrrrrr}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & -1 & -2 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & -2 & 1 & 1 & -1 & 0 \\
1 & 1 & 1 & -2 & 1 & 0 & 0 & -1 & 0 \\
1 & -2 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 2 & 1 & 0 & 0 & 0 & 3 & 2 & 0
\end{array}\right] .
$$

Computing its echelon form, we find the basis matrix:

$$
\left[\begin{array}{rrrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 18 & 0 & 22 \\
0 & 1 & 0 & 0 & 0 & 0 & 30 & 0 & 43 \\
0 & 0 & 1 & 0 & 0 & 0 & 15 & 0 & 59 \\
0 & 0 & 0 & 1 & 0 & 0 & 24 & 0 & 9 \\
0 & 0 & 0 & 0 & 1 & 0 & 21 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 19 & 0 & 56 \\
0 & 0 & 0 & 0 & 0 & 0 & 36 & 0 & 44 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 61
\end{array}\right]
$$

This determines the same kernel group of relations, but now we can read off the relation $x y^{2}=1$ from the bottom right-hand corner. Using the relation $y^{61}=1$, which we already knew but which appears at the lower right-hand entry, we compute $\left(x y^{2}\right)^{30} y=x^{30} y^{61}=y$, or $y=x^{30}$.

