The University of Sydney Math3925 Public Key Cryptography

Semester 2	Solutions for Assignment 2	2004
Semester 2	Solutions for Assignment 2	20

This assignment will be due on Friday 24 September, should be submitted at 638 Carslaw by 5PM, and is worth 10% of the assessment for this course.

1. Let n be the integer 228618946967762521. Explain how 3-torsion elements in $\mathbb{Z}/n\mathbb{Z}^*$ can be used to factor n, and demonstrate this with x = 90208952368431523.

Solution A three torsion element x satisfies a relation $x^3 - 1 = 0$, which can be written in factored form as $(x - 1)(x^2 + x + 1) = 0$. Over a field such a relation implies that x - 1 = 0 or $x^2 + x + 1 = 0$, but in $\mathbb{Z}/n\mathbb{Z}$, where n = pq any of the possible combinations of relations modulo p and modulo q can occur:

$x-1 \bmod p$	$x^2 + x + 1 \mod p$	$x - 1 \mod q$	$x^2 + x + 1 \mod q$
0	*	0	*
*	0	0	*
0	*	*	0
*	0	*	0

Note that there exist either 2 or 0 solutions to $x^2 + x + 1 \mod p$, depending whether 3 divides p-1 or not. Provided one of p-1 and not q-1 is divisible by 3, there is a 2/3 chance that a random 3-torsion element x finds the factor q = GCD(x-1,n), and if both p-1 and q-1 are divisible by 3 then there is a 4/9 chance that GCD(x-1,n) finds p or q. In this case we find

$$GCD(x-1,n) = GCD(x-1,n) = 933376471.$$

Note that unlike 3 (or 5, 7, etc.), the prime 2 always divides p-1 and q-1, which is why we give emphasis to finding 2-torsion.

- **2. a.** Find the discrete logarithm x of 2 with respect to the base 3 in \mathbb{F}_p^* , where p = 1234621183. Use the Pollig-Hellman reduction, noting that $p 1 = 2 \cdot 3 \cdot 83 \cdot 383 \cdot 6473$, and give the values you determine for $x \mod 2, x \mod 3$, etc.
 - **b.** Now determine the discrete logarithm $\log_3(2)$ in \mathbb{F}_p^* , where p = 65537, expressing the result in base 2.

Solution

a. The discrete logarithm $\log_2(3)$ in \mathbb{F}_p is well-defined as an element of the additive group $\mathbb{Z}/(p-1)\mathbb{Z}$. It can be computed modulo each prime divisor r of p-1

by setting m = (p-1)/r (using the Magma operator div), and computing $x = \log_{2^m}(3^m) \mod r$.

x	r
0	2
0	3
56	83
215	383
5635	6473

Using the Chinese remainder theorem, we recover k = 389634924.

- **b.** Since $p-1=2^{16}$, we solve iteratively for the 16-bits of the discrete logarithm, $x = 11011000000000_2 = 55296$. Explicitly, we find that $3^{2^{15}} = -1$ so it generates \mathbb{F}_p^* , then $2^{2^{15}} = \cdots = 2^{2^5} = 1$, so the least significant 11 bits are all 0. Then $(2)^{2^4} = -1$, so the next bit is 1, $(3^{-2^{11}}2)^{2^3} = -1$, so again we have a bit 1, and $(3^{-2^{11}-2^{12}}2)^{2^2} = 1$, so the bit 0 follows, etc.
- **3.** Verify that the ring $\mathbb{Z}[\tau]/(13)$, where $\tau^3 \tau + 1 = 0$ is a field, that 61 divides the order of $\mathbb{Z}[\tau]/(13)^*$, and that $x = \tau + 6$ and $y = \tau + 10$ have exact order 61.
 - **a.** Partition \mathbb{F}_{13^3} into disjoint sets

$$S_{1} = \{a + b\tau + c\tau^{2} \in \mathbb{F}_{13^{3}} : 0 \le a \le 4\}, \\S_{2} = \{a + b\tau + c\tau^{2} \in \mathbb{F}_{13^{3}} : 5 \le a \le 8\}, \\S_{3} = \{a + b\tau + c\tau^{2} \in \mathbb{F}_{13^{3}} : 9 \le a\},$$

and use these to determine four cycles and tails in the Pollard ρ method beginning with an initial value of the form $x^n y^m$. Give both the elements $x^{n_i} y^{m_i}$ and the exponents (n_i, m_i) in the sequence. Use your cycles to determine the discrete logarithm $\log_x(y)$.

b. Find the complete set of relations between the elements

$$-1, \tau, 2, 3, \tau^2 + 1, \tau^2 + \tau + 1, -2\tau - 1, x, y$$

of \mathbb{F}_{13^3} , and demonstrate how to use these to determine $\log_x(y)$.

Solution Since $\tau^3 - \tau + 1 = 0$ has no solution τ in \mathbb{F}_{13} , it must be irreducible, hence $\mathbb{Z}[\tau]/(13)$ is a field. Since $13^3 - 1 = 36 \cdot 61$, there must be an element of order 61 in $\mathbb{Z}[\tau]/(13)^*$. The order of x and y can be verified computationally.

a. See Tutorial 6 for details of the Pollard ρ algorithm; a variety of sequences (x_i, n_i, m_i) are possible for the question. Note, however, that the length of the tails and the period can vary significantly, but most all result in the relation $xy^2 = 1$. From the order of the group we can write $y^2 = x^{61-1} = x^{60}$, so $y = x^{30}$. Therefore $\log_x(y) = 30$.

b. The full matrix of relations has a basis matrix of the form:

$\begin{bmatrix} 2 \end{bmatrix}$	0	0	0	0	0	0	0	0	
0	1	-1	0	1	0	0	-1	0	
0	0	0	0	0	0	0	1	2	
1	1	1	1	1	0	0	-1	0	
0	0	0	1	-1	-2	1	0	1	•
0	0	0	1	-2	1	1	-1	0	
1	1	1	-2	1	0	0	-1	0	
1	-2	-	1	0	1	1	0	1	
0	2	1	0	0	0	3	2	0	

Computing its echelon form, we find the basis matrix:

[1]	0	0	0	0	0	18	0	22
0	1	0	0	0	0	30	0	43
0	0	1	0	0	0	15	0	59
0	0	0	1	0	0	24	0	9
0	0	0	0	1	0	21	0	1
0	0	0	0	0	1	19	0	56
0	0	0	0	0	0	36	0	44
0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	0	0	61

This determines the same kernel group of relations, but now we can read off the relation $xy^2 = 1$ from the bottom right-hand corner. Using the relation $y^{61} = 1$, which we already knew but which appears at the lower right-hand entry, we compute $(xy^2)^{30}y = x^{30}y^{61} = y$, or $y = x^{30}$.