The University of Sydney Math3925 Public Key Cryptography

1. Let E be the elliptic curve E / \mathbb{F}_{1723}

$$
y^{2}=x^{3}+568 x+1350
$$

with $E\left(\mathbb{F}_{1723}\right)$ of order $2^{2} \cdot 443$, let $P=(524,1413)$ be a generator for the subgroup of prime order 443 , and let $Q=(1694,125)$ be another point of order 443.
a. Determine the abelian invariants of E, and find elements G_{1} and G_{2} which generate $E\left(\mathbb{F}_{1723}\right)$ such that both $\log _{G_{1}}(P)$ and $\log _{G_{2}}(P)$ equal 2 .
b. Compute the discrete $\operatorname{logarithm} \log _{P}(Q)$ using the baby-step, giant-step algorithm.
c. Compute the discrete logarithm $\log _{P}(Q)$ using a Pollard ρ algorithm, giving the sequence $P_{i}=n_{i} P+m_{i} Q$ in a table with the exponent sequence $\left(n_{i}, m_{i}\right)$, and the function f such that $P_{i+1}=f\left(P_{i}\right)$ you used to generate your sequence.

Solution

a. The group is either cyclic of order $4 \cdot 443$ or is isomorphic to $\mathbb{Z} / 2 Z \times \mathbb{Z} / 886 \mathbb{Z}$. For such G_{1} and G_{2} to exist, $886 G_{i}=443 P=\mathcal{O}$, so the group exponent is 886, so the latter is correct. In order to find such elements we first note that $Q_{0}=222 P$ satisfies $2 \cdot 222 P=444 P=P$. Then, by choosing random points and raising them to the power 443, we determine two independent 2-torsion points Q_{1} and Q_{2}. Now $G_{1}=Q_{0}+Q_{1}$ and $G_{2}=Q_{0}+Q_{2}$ generate the 2-torsion subgroup, give $2 G_{1}=P$, and thus also generate the cyclic subgroup of order 443.
b. We first form the baby steps $P, 2 P, 3 P, \ldots, 41 P$, then the sequence of giant steps from $Q, Q+42 P, Q+84 P, \ldots$. In this case we find a match

$$
Q+8 \cdot 42 P=37 P
$$

whence $Q=(37-8 \cdot 42) P=-299 P$ so $\log _{P}(Q)=-299 \bmod 443=144$.
c. The following Magma code implements a simple Pollard ρ algorithm, in this case we find a trivial match $3 P+323 Q=6 P+626 Q=\mathcal{O}$, hence (again)

$$
Q=-323^{-1} 3 P=-299 P=144 P .
$$

```
E := EllipticCurve([FiniteField(1723)|568,1350]);
P := E![524,1413]; Q := E![1694,125];
function PollardStep(Pi,ni,mi)
        xi := Integers()!Pi[1];
    if xi le 30 then
return Pi+P, ni+1, mi;
    elif xi le 60 then
return 2*Pi, 2*ni, 2*mi;
    else
return Pi+Q, ni, mi+1;
    end if;
end function;
P1i := P; n1i := 1; m1i := 0;
P2i, n2i, m2i := PollardStep(P1i,n1i,m1i);
repeat
    P1i, n1i, m1i := PollardStep(P1i,n1i,m1i);
    P2i, n2i, m2i := PollardStep(P2i,n2i,m2i);
    P2i, n2i, m2i := PollardStep(P2i,n2i,m2i);
until P1i eq P2i;
```

2. Let (E, P, Q, n, h) be an elliptic curve ElGamal public key, defined by

$$
E: y^{2}=x^{3}+x+46138835891
$$

over the field \mathbb{F}_{p} where $p=57093632599$, with points

$$
\begin{aligned}
& P=(30878623636,18908393885) \\
& Q=(35764107892,37899251204)
\end{aligned}
$$

such that $n P=O$ and $n h=\left|E\left(\mathbb{F}_{p}\right)\right|$, where $n=57093496807$ and $h=1$. Given an encrypted message (R, S), where

$$
\begin{aligned}
& R=(39054828257,56592547930) \\
& S=(52681797901,1351188767)
\end{aligned}
$$

find the secret message M.
N.B. An elliptic curve ElGamal public key specifies an elliptic curve E over \mathbb{F}_{q}, a generator P of a prime order cyclic subgroup of order n, a multiple $Q=[x](P)$, and the order of the cokernel $E\left(\mathbb{F}_{q}\right) /\langle P\rangle$.
Solution We first solve the discrete logarithm $x=49250313024$. Then

$$
M:=S-x R=(4181957872,50461884172) .
$$

3. Let $N=73018750355491$ be the product of two primes p and q. Find an elliptic curve E over $\mathbb{Z} / N \mathbb{Z}$, an integer m and the x-coordinate of a point P, such that $m P=(x: y: z)$ where $\operatorname{GCD}(N, z)=p$, and hence factor N. After factoring N, determine the group structure of $E(\mathbb{Z} / N \mathbb{Z})$.
Solution The elliptic curve $E: y^{2}=x^{3}+x+1$ over $\mathbb{Z} / N \mathbb{Z}$ gives

$$
E(\mathbb{Z} / N \mathbb{Z}) \cong E(\mathbb{Z} / p \mathbb{Z}) \times E(\mathbb{Z} / q \mathbb{Z})
$$

Beginning with $P=(0,1)=(0: 1: 1)$, raised to powers of primes up to 200, we find an point $Q=(x: y: z)$ with $\operatorname{GCD}(z, N)=p$. With this factorization, we find the group orders

$$
|E(\mathbb{Z} / p \mathbb{Z})|=2^{6} \cdot 17 \cdot 23 \cdot 191, \text { and }|E(\mathbb{Z} / q \mathbb{Z})|=2^{3} \cdot 7 \cdot 272903,
$$

explaining why $Q=\mathcal{O} \in E(\mathbb{Z} / p \mathbb{Z})$ but $Q \neq \mathcal{O} \in E(\mathbb{Z} / q \mathbb{Z})$. To find the group structure of $E(\mathbb{Z} / N \mathbb{Z})$ we only need to know the groups structure of each quotient, which is determined by an analysis of the 2-torsion subgroup.

