Semester 2 Solutions for Assignment 3	2003
---------------------------------------	------

1. Let *E* be the elliptic curve E/\mathbb{F}_{1723}

$$y^2 = x^3 + 568x + 1350,$$

with $E(\mathbb{F}_{1723})$ of order $2^2 \cdot 443$, let P = (524, 1413) be a generator for the subgroup of prime order 443, and let Q = (1694, 125) be another point of order 443.

- **a.** Determine the abelian invariants of E, and find elements G_1 and G_2 which generate $E(\mathbb{F}_{1723})$ such that both $\log_{G_1}(P)$ and $\log_{G_2}(P)$ equal 2.
- **b.** Compute the discrete logarithm $\log_P(Q)$ using the baby-step, giant-step algorithm.
- c. Compute the discrete logarithm $\log_P(Q)$ using a Pollard ρ algorithm, giving the sequence $P_i = n_i P + m_i Q$ in a table with the exponent sequence (n_i, m_i) , and the function f such that $P_{i+1} = f(P_i)$ you used to generate your sequence.

Solution

- **a.** The group is either cyclic of order $4 \cdot 443$ or is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/886\mathbb{Z}$. For such G_1 and G_2 to exist, $886G_i = 443P = \mathcal{O}$, so the group exponent is 886, so the latter is correct. In order to find such elements we first note that $Q_0 = 222P$ satisfies $2 \cdot 222P = 444P = P$. Then, by choosing random points and raising them to the power 443, we determine two independent 2-torsion points Q_1 and Q_2 . Now $G_1 = Q_0 + Q_1$ and $G_2 = Q_0 + Q_2$ generate the 2-torsion subgroup, give $2G_1 = P$, and thus also generate the cyclic subgroup of order 443.
- **b.** We first form the baby steps $P, 2P, 3P, \ldots, 41P$, then the sequence of giant steps from $Q, Q + 42P, Q + 84P, \ldots$ In this case we find a match

$$Q + 8 \cdot 42P = 37P,$$

whence $Q = (37 - 8 \cdot 42)P = -299P$ so $\log_P(Q) = -299 \mod 443 = 144$.

c. The following Magma code implements a simple Pollard ρ algorithm, in this case we find a trivial match $3P + 323Q = 6P + 626Q = \mathcal{O}$, hence (again)

$$Q = -323^{-1}3P = -299P = 144P.$$

```
E := EllipticCurve([FiniteField(1723)|568,1350]);
P := E! [524,1413]; Q := E! [1694,125];
function PollardStep(Pi,ni,mi)
    xi := Integers()!Pi[1];
    if xi le 30 then
return Pi+P, ni+1, mi;
    elif xi le 60 then
return 2*Pi, 2*ni, 2*mi;
    else
return Pi+Q, ni, mi+1;
    end if;
end function;
P1i := P; n1i := 1; m1i := 0;
P2i, n2i, m2i := PollardStep(P1i,n1i,m1i);
repeat
    P1i, n1i, m1i := PollardStep(P1i,n1i,m1i);
    P2i, n2i, m2i := PollardStep(P2i,n2i,m2i);
    P2i, n2i, m2i := PollardStep(P2i,n2i,m2i);
until P1i eq P2i;
```

2. Let (E, P, Q, n, h) be an elliptic curve ElGamal public key, defined by

 $E: y^2 = x^3 + x + 46138835891$

over the field \mathbb{F}_p where p = 57093632599, with points

P = (30878623636, 18908393885)Q = (35764107892, 37899251204)

such that nP = O and $nh = |E(\mathbb{F}_p)|$, where n = 57093496807 and h = 1. Given an encrypted message (R, S), where

R = (39054828257, 56592547930)S = (52681797901, 1351188767)

find the secret message M.

N.B. An elliptic curve ElGamal public key specifies an elliptic curve E over \mathbb{F}_q , a generator P of a prime order cyclic subgroup of order n, a multiple Q = [x](P), and the order of the cokernel $E(\mathbb{F}_q)/\langle P \rangle$.

Solution We first solve the discrete logarithm x = 49250313024. Then

M := S - xR = (4181957872, 50461884172).

3. Let N = 73018750355491 be the product of two primes p and q. Find an elliptic curve E over $\mathbb{Z}/N\mathbb{Z}$, an integer m and the x-coordinate of a point P, such that mP = (x : y : z) where GCD(N, z) = p, and hence factor N. After factoring N, determine the group structure of $E(\mathbb{Z}/N\mathbb{Z})$.

Solution The elliptic curve $E: y^2 = x^3 + x + 1$ over $\mathbb{Z}/N\mathbb{Z}$ gives

$$E(\mathbb{Z}/N\mathbb{Z}) \cong E(\mathbb{Z}/p\mathbb{Z}) \times E(\mathbb{Z}/q\mathbb{Z}).$$

Beginning with P = (0, 1) = (0 : 1 : 1), raised to powers of primes up to 200, we find an point Q = (x : y : z) with GCD(z, N) = p. With this factorization, we find the group orders

 $|E(\mathbb{Z}/p\mathbb{Z})| = 2^6 \cdot 17 \cdot 23 \cdot 191$, and $|E(\mathbb{Z}/q\mathbb{Z})| = 2^3 \cdot 7 \cdot 272903$,

explaining why $Q = \mathcal{O} \in E(\mathbb{Z}/p\mathbb{Z})$ but $Q \neq \mathcal{O} \in E(\mathbb{Z}/q\mathbb{Z})$. To find the group structure of $E(\mathbb{Z}/N\mathbb{Z})$ we only need to know the groups structure of each quotient, which is determined by an analysis of the 2-torsion subgroup.