The University of Sydney
Math3925 Public Key Cryptography

Semester 2
Assignment 2
2004

This assignment will be due on Friday 24 September, should be submitted at 638 Carslaw by 5PM, and is worth 10% of the assessment for this course.

1. Let n be the integer 228618946967762521 . Explain how 3 -torsion elements in $\mathbb{Z} / n \mathbb{Z}^{*}$ can be used to factor n, and demonstrate this with $x=90208952368431523$.
2. a. Find the discrete logarithm x of 2 with respect to the base 3 in \mathbb{F}_{p}^{*}, where $p=1234621183$. Use the Pollig-Hellman reduction, noting that $p-1=2 \cdot 3$. $83 \cdot 383 \cdot 6473$, and give the values you determine for $x \bmod 2, x \bmod 3$, etc.
b. Now determine the discrete logarithm $\log _{3}(2)$ in \mathbb{F}_{p}^{*}, where $p=65537$, expressing the result in base 2.
3. Verify that the ring $\mathbb{Z}[\tau] /(13)$, where $\tau^{3}-\tau+1=0$ is a field, that 61 divides the order of $\mathbb{Z}[\tau] /(13)^{*}$, and that $x=\tau+6$ and $y=\tau+10$ have exact order 61 .
a. Partition $\mathbb{F}_{13^{3}}$ into disjoint sets

$$
\begin{aligned}
& S_{1}=\left\{a+b \tau+c \tau^{2} \in \mathbb{F}_{13^{3}}: 0 \leq a \leq 4\right\}, \\
& S_{2}=\left\{a+b \tau+c \tau^{2} \in \mathbb{F}_{13^{3}}: 5 \leq a \leq 8\right\}, \\
& S_{3}=\left\{a+b \tau+c \tau^{2} \in \mathbb{F}_{13^{3}}: 9 \leq a\right\},
\end{aligned}
$$

and use these to determine four cycles and tails in the Pollard ρ method beginning with an initial value of the form $x^{n} y^{m}$. Give both the elements $x^{n_{i}} y^{m_{i}}$ and the exponents $\left(n_{i}, m_{i}\right)$ in the sequence. Use your cycles to determine the discrete logarithm $\log _{x}(y)$.
b. Find the complete set of relations between the elements

$$
-1, \tau, 2,3, \tau^{2}+1, \tau^{2}+\tau+1,-2 \tau-1, x, y
$$

of $\mathbb{F}_{13^{3}}$, and demonstrate how to use these to determine $\log _{x}(y)$.

