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Semester 2 Exercises and Solutions for Week 1 2004

Residue Class Rings. Let n and m be integers with no common factors. We say
that n and m are coprime. The Chinese Remainder Theorem says that Z/nmZ and
Z/nZ × Z/mZ are isomorphic.

Torsion Subgroups. Given an additive abelian group A, the p-torsion subgroup A[p] of
A is the subgroup {x ∈ A | px = 0}. For a multiplicative abelian group G, the p-torsion
subgroup G[p] is the subgroup {x ∈ G | xp = 1}.

1. Let n and m be coprime integers.

a. Prove that there exist integers r and s such that rn+sm = 1. An algorithm for
producing r and s is called the extended greatest common divisor, or XGCD.

b. Show that the diagonal map

Z/nmZ −→ Z/nZ × Z/mZ

given by x 7→ (x, x) is injective, and conclude that it is an isomorphism.

c. Define the inverse to the diagonal map of the previous part using solutions r
and s to the XGCD.

d. The Magma syntax for creating the map Z/323Z → Z/17Z × Z/19Z is

m := 17;

n := 19;

A<x> := AbelianGroup([m*n]);

B<x1,x2> := AbelianGroup([m,n]);

h := hom< A -> B | g :-> [v[1],v[1]] where v := Eltseq(g) >;

h(x); // x1 + x2

Use the function XGCD to construct the inverse map.

N.B. The function Eltseq is short for ElementToSequence and is used to extract
the defining coordinates for many types of Magma elements which are defined by
underlying sequences.

Solution

a. Consider the ideal nZ +mZ generated by n and m, which must be of the form
aZ for some positive integer a. Since n, m ∈ aZ both n and m must be divisible
by a. By assumption we must have a = 1. Since a is in nZ + mZ, we have
expressed 1 = nr + ms. A more algorithmic solution is obtained using the
Euclidean algorithm.

b. An element x of Z/nmZ is in the kernel of reduction to Z/nZ if and only if x
is divisible by n. Similarly it is in the kernel of reduction to Z/mZ if and only
if it is divisible by m. Since n and m are coprime, such an element must be
divisible by nm, hence is zero in Z/nmZ.



c. The inverse map is given by (x, y) 7→ x+nr(y−x), as is verified by reducing the
expression modulo n and m. By symmetry the expression (x, y) 7→ y+ms(x−y)
must also give the inverse map, and taking the difference we indeed find

(

x + nr(y − x)
)

−
(

y + ms(x − y)
)

= x(1 − nr − ms) + y(−1 + nr + ms) = 0.

d. The inverse map can be constructed with the Magma syntax:

one, r, s := XGCD(17,19);

h_inv := hom< B -> A |

x :-> [v[1]+17*r*(v[2]-v[1])] where v := Eltseq(x) >;

We can test that this function is indeed an inverse map on randomly selected
elements:

> h_inv(h(A![4]));

4*x

> h(h_inv(B![4,3]));

4*x1 + 3*x2

> h(h_inv(B![4,7]));

4*x1 + 7*x2

2. Let n be an odd integer which is the product of two primes p and q.

a. Show that Z/nZ
∗[2] is isomorphic to Z/2Z × Z/2Z.

b. Given an element g ∈ Z/nZ
∗[2], not equal to ±1, show how to find a factor-

ization of n. Hint: consider the image of g in Z/pZ
∗ × Z/qZ

∗.

Solution

a. The ring Z/nZ is isomorphic to Z/pZ×Z/qZ by the Chinese Remainder The-
orem. The group of units Z/nZ

∗ is therefore isomorphic to the product of
Z/pZ

∗ and Z/qZ
∗. The 2-torsion subgroup Z/nZ

∗[2] is then the product of the
2-torsion subgroups Z/pZ

∗[2] × Z/qZ
∗[2] = {(±1,±1)}.

Note that the elements {±1} in Z/nZ
∗[2] are the diagonally embedded elements

{(1, 1), (−1,−1)} in Z/pZ
∗×Z/qZ

∗, but the elements {(1,−1), (−1, 1)} are not
immediately recognizable in Z/nZ

∗, but can be identified as indicated in the
next part.

b. Suppose that g 7→ (−1, 1). We note that the isomorphism of rings Z/nZ ∼=
Z/pZ × Z/qZ preserves both addition and multiplication. The multiplication
law determines the multiplicative group isomorphisms of the previous part.

We use the fact that 1 7→ (1, 1), and then use addition to find g+1 7→ (−1, 1)+
(1, 1) = (0, 2). Therefore g + 1 is divisible by p in Z/nZ but not by q, and so
GCD(g + 1, n) = p. The other case, g 7→ (1,−1), is analogous and gives rise
instead to the factor q.


