The University of Sydney
 Math3925 Public Key Cryptography

Semester $2 \quad$ Exercises and Solutions for Week 1

Residue Class Rings. Let n and m be integers with no common factors. We say that n and m are coprime. The Chinese Remainder Theorem says that $\mathbb{Z} / n m \mathbb{Z}$ and $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}$ are isomorphic.
Torsion Subgroups. Given an additive abelian group A, the p-torsion subgroup $A[p]$ of A is the subgroup $\{x \in A \mid p x=0\}$. For a multiplicative abelian group G, the p-torsion subgroup $G[p]$ is the subgroup $\left\{x \in G \mid x^{p}=1\right\}$.

1. Let n and m be coprime integers.
a. Prove that there exist integers r and s such that $r n+s m=1$. An algorithm for producing r and s is called the extended greatest common divisor, or XGCD.
b. Show that the diagonal map

$$
\mathbb{Z} / n m \mathbb{Z} \longrightarrow \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}
$$

given by $x \mapsto(x, x)$ is injective, and conclude that it is an isomorphism.
c. Define the inverse to the diagonal map of the previous part using solutions r and s to the XGCD.
d. The Magma syntax for creating the map $\mathbb{Z} / 323 \mathbb{Z} \rightarrow \mathbb{Z} / 17 \mathbb{Z} \times \mathbb{Z} / 19 \mathbb{Z}$ is
m := 17;
n := 19;
A<x> := AbelianGroup([m*n]);
B<x1,x2> := AbelianGroup([m,n]);
$\mathrm{h}:=$ hom $\langle\mathrm{A} \rightarrow \mathrm{B}| \mathrm{g}:->[\mathrm{v}[1], \mathrm{v}[1]]$ where $\mathrm{v}:=$ Eltseq(g) >;
h(x); // x1 + x2
Use the function XGCD to construct the inverse map.
N.B. The function Eltseq is short for ElementToSequence and is used to extract the defining coordinates for many types of Magma elements which are defined by underlying sequences.

Solution

a. Consider the ideal $n \mathbb{Z}+m \mathbb{Z}$ generated by n and m, which must be of the form $a \mathbb{Z}$ for some positive integer a. Since $n, m \in a \mathbb{Z}$ both n and m must be divisible by a. By assumption we must have $a=1$. Since a is in $n \mathbb{Z}+m \mathbb{Z}$, we have expressed $1=n r+m s$. A more algorithmic solution is obtained using the Euclidean algorithm.
b. An element x of $\mathbb{Z} / n m \mathbb{Z}$ is in the kernel of reduction to $\mathbb{Z} / n \mathbb{Z}$ if and only if x is divisible by n. Similarly it is in the kernel of reduction to $\mathbb{Z} / m \mathbb{Z}$ if and only if it is divisible by m. Since n and m are coprime, such an element must be divisible by $n m$, hence is zero in $\mathbb{Z} / n m \mathbb{Z}$.
c. The inverse map is given by $(x, y) \mapsto x+n r(y-x)$, as is verified by reducing the expression modulo n and m. By symmetry the expression $(x, y) \mapsto y+m s(x-y)$ must also give the inverse map, and taking the difference we indeed find

$$
(x+n r(y-x))-(y+m s(x-y))=x(1-n r-m s)+y(-1+n r+m s)=0 .
$$

d. The inverse map can be constructed with the Magma syntax:

```
one, r, s := XGCD (17,19);
h_inv := hom< B -> A |
    x :-> [v[1]+17*r*(v[2]-v[1])] where v := Eltseq(x) >;
```

We can test that this function is indeed an inverse map on randomly selected elements:

```
> h_inv(h(A![4]));
4*x
> h(h_inv(B! [4,3]));
4*x1 + 3*x2
> h(h_inv(B! [4,7]));
4*x1 + 7*x2
```

2. Let n be an odd integer which is the product of two primes p and q.
a. Show that $\mathbb{Z} / n \mathbb{Z}^{*}[2]$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
b. Given an element $g \in \mathbb{Z} / n \mathbb{Z}^{*}[2]$, not equal to ± 1, show how to find a factorization of n. Hint: consider the image of g in $\mathbb{Z} / p \mathbb{Z}^{*} \times \mathbb{Z} / q \mathbb{Z}^{*}$.

Solution

a. The $\operatorname{ring} \mathbb{Z} / n \mathbb{Z}$ is isomorphic to $\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / q \mathbb{Z}$ by the Chinese Remainder Theorem. The group of units $\mathbb{Z} / n \mathbb{Z}^{*}$ is therefore isomorphic to the product of $\mathbb{Z} / p \mathbb{Z}^{*}$ and $\mathbb{Z} / q \mathbb{Z}^{*}$. The 2 -torsion subgroup $\mathbb{Z} / n \mathbb{Z}^{*}[2]$ is then the product of the 2 -torsion subgroups $\mathbb{Z} / p \mathbb{Z}^{*}[2] \times \mathbb{Z} / q \mathbb{Z}^{*}[2]=\{(\pm 1, \pm 1)\}$.

Note that the elements $\{ \pm 1\}$ in $\mathbb{Z} / n \mathbb{Z}^{*}[2]$ are the diagonally embedded elements $\{(1,1),(-1,-1)\}$ in $\mathbb{Z} / p \mathbb{Z}^{*} \times \mathbb{Z} / q \mathbb{Z}^{*}$, but the elements $\{(1,-1),(-1,1)\}$ are not immediately recognizable in $\mathbb{Z} / n \mathbb{Z}^{*}$, but can be identified as indicated in the next part.
b. Suppose that $g \mapsto(-1,1)$. We note that the isomorphism of rings $\mathbb{Z} / n \mathbb{Z} \cong$ $\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / q \mathbb{Z}$ preserves both addition and multiplication. The multiplication law determines the multiplicative group isomorphisms of the previous part.

We use the fact that $1 \mapsto(1,1)$, and then use addition to find $g+1 \mapsto(-1,1)+$ $(1,1)=(0,2)$. Therefore $g+1$ is divisible by p in $\mathbb{Z} / n \mathbb{Z}$ but not by q, and so $\operatorname{GCD}(g+1, n)=p$. The other case, $g \mapsto(1,-1)$, is analogous and gives rise instead to the factor q.

