The University of Sydney
 Math3925 Public Key Cryptography

1. Let G be an abelian group of order $p^{n} q^{m}$ for primes p and q. What are the possible dimensions of $G[p]$ and $G[q]$ as vector spaces?

Hint: Show that $G=G_{1} \times G_{2}$ where $G_{1}=\left[q^{m}\right](G)$ and $G_{2}=\left[p^{n}\right](G)$. Prove that $\left|G_{1}\right|=p^{n}$ and $\left|G_{2}\right|=q^{m}$, then consider the possible p-torsion and q-torsion subgroups in each of G_{1} and G_{2}.
Solution Since G has order $p^{n} q^{m}$, it follows that

$$
\left[p^{n}\right]\left[q^{m}\right]=\left[q^{m}\right]\left[p^{n}\right]=\left[p^{n} q^{m}\right]=[0]
$$

on G. In particular $\left[p^{n}\right]\left(G_{1}\right)=\{e\}$ and $\left[q^{m}\right]\left(G_{2}\right)=\{e\}$, so G_{1} and G_{2} must therefore have orders p^{n} and q^{m}. These subgroups are called the p-subgroup and q-subgroup of G, respectively.
From the classification of finite abelian groups, the only possible group structures for G_{1} must therefore be

$$
G_{1}=\mathbb{Z} / p^{s_{1}} \mathbb{Z} \times \cdots \mathbb{Z} / p^{s_{t}} \mathbb{Z}
$$

were $s_{1} \leq \cdots \leq s_{t}$ and $n=s_{1}+\cdots+s_{t}$. Precisely the possibilities range from the cyclic group $\mathbb{Z} / p^{n} \mathbb{Z}$ at one extreme to the full p-torsion group

$$
\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \times \cdots \times \mathbb{Z} / p \mathbb{Z}=\mathbb{Z} / p \mathbb{Z}^{n}
$$

The possible p-torsion subgroups $G[p]=G_{1}[p]$ can therefore be isomorphic to $\mathbb{Z} / p \mathbb{Z}$ in the cyclic case to $\mathbb{Z} / p \mathbb{Z}^{n}$. So, as \mathbb{F}_{p}-vector spaces, every dimension from 1 to n is possible. The possible structures for $G[q]=G_{2}[q]$ are analogous.
2. Let $n=1547$ and let $g_{1}=2, g_{2}=3, g_{3}=5$, and $g_{4}=11$ in $\mathbb{Z} / n \mathbb{Z}^{*}$.
a. Verify the relations $g_{1} g_{3}=g_{2}^{5} g_{4}^{2}, g_{1}^{3} g_{2}=g_{3}^{3} g_{4}^{4}, g_{1}^{6} g_{4}^{2}=g_{2}^{2}$, and $g_{1}^{3} g_{2}^{5} g_{3}^{3}=g_{4}^{2}$.
b. Let $\phi: \mathbb{Z}^{4} \rightarrow \mathbb{Z} / n \mathbb{Z}^{*}$ be the homomorphism taking the standard basis to the generators $\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}$. What is the kernel of ϕ ?
c. What is the order and what is the exponent of the group $\mathbb{Z} / n \mathbb{Z}^{*}$?
d. Determine the dimension r of $\mathbb{Z} / n \mathbb{Z}^{*}[3]$ as a vector space over \mathbb{F}_{3}, and define an isomorphism from \mathbb{F}_{3}^{r} with $\mathbb{Z} / n \mathbb{Z}^{*}[3]$.

Solution

a. The identities are each easily verified - for instance the first, $2 \cdot 5=3^{5} \cdot 11^{2}$ modulo 1547 , follows from $3^{5} \cdot 11^{2}=2 \cdot 5+18 \cdot 1547$.
b. By rearranging the identities to relations of the form $g_{1}^{n_{1}} g_{2}^{n_{2}} g_{3}^{n_{3}} g_{4}^{n_{4}}=1$, we read off elements ($n_{1}, n_{2}, n_{3}, n_{4}$) of the kernel. This gives a matrix

$$
\left[\begin{array}{rrrr}
1 & -5 & 1 & -2 \\
3 & 1 & -3 & -4 \\
6 & -2 & 0 & 2 \\
3 & 5 & 3 & -2
\end{array}\right]
$$

whose rows are elements of the kernel. The determinant of this matrix is -1152 , which is, up to sign, the order of $\mathbb{Z} / 1547 \mathbb{Z}^{*} \cong \mathbb{Z} / 7 \mathbb{Z}^{*} \times \mathbb{Z} / 13 \mathbb{Z}^{*} \times \mathbb{Z} / 17 \mathbb{Z}^{*}$. We conclude that the relations give a complete set of generators for the kernel.
c. The group order is 1152 , as determined above, and the exponent is the least common multiple of each of the orders of the cyclic factors. These are 6,12 , and 16 , so the exponent is 48 .
d. Considering again the cyclic factors, there is a contribution to the 3-torsion subgroup from $\mathbb{Z} / 7 \mathbb{Z}^{*}$ and from $\mathbb{Z} / 13 \mathbb{Z}^{*}$. Thus the dimension of the 3 -torsion subgroup is 2 . Since 2 generates $\mathbb{Z} / 7 \mathbb{Z}^{*}[3]$ and 3 generates $\mathbb{Z} / 13 \mathbb{Z}^{*}[3]$, we solve the two sets of Chinese remainder congruences

$$
\begin{array}{lll}
x=2 \bmod 7 & x=1 \bmod 13 & x=1 \bmod 17 \\
y=1 \bmod 7 & y=3 \bmod 13 & y=1 \bmod 17
\end{array}
$$

to find $x=443$ and $y=120$. The 3 -torsion subgroup of $\mathbb{Z} / 1547 \mathbb{Z}^{*}$ is therefore $\left\{x^{i} y^{j}: i, j \in \mathbb{F}_{3}\right\}$, so the map

$$
\varphi: \mathbb{F}_{3}^{2} \rightarrow \mathbb{Z} / 1547 \mathbb{Z}^{*}[3]
$$

given by $\varphi(i, j)=x^{i} y^{j}$ is an isomorphism.
3. Let n be the Mersenne number $2^{29}-1=536870911$.
a. Prove that $\left|\mathbb{Z} / n \mathbb{Z}^{*}\right|$ is divisible by 29 .
b. What does the following Magma code do?

```
Z := Integers();
R := ResidueClassRing(N);
a := (R!3)^29;
for r in [1..80] do
    printf "%30: %o\n", r, GCD(Z!(a^r-1),N);
end for;
```

c. Now consider the set of 19 generators

$$
\{-1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61\}
$$

inside of the group \mathbb{Q}^{*}, and label them g_{1}, \ldots, g_{19}. These define a map

$$
\mathbb{Z}^{19} \longrightarrow \mathbb{Z} / n \mathbb{Z}^{*}
$$

by the map $\left(n_{1}, \ldots, n_{19}\right) \mapsto g_{1}^{n_{1}} \cdots g_{19}^{n_{19}}$, for which we find a matrix of 2 -torsion relations

$$
\left[\begin{array}{ccrrrrrrrrrrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -4 & 0 & -2 & 0 & 3 & 3 & 4 & 4 & 2 & 2 & 6 & 4 & 4 & 5 & 4 & 7 & 4 \\
1 & 1-4 & 2 & 2 & 3 & 3 & 5 & 2 & 2 & 6 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
0 & -2 & -1 & -3 & 3 & 4 & 0 & 4 & 1 & 5 & 5 & 6 & 2 & 2 & 3 & 3 & 3 & 4
\end{array}\right]
$$

That is, for any row $\left(n_{1}, \ldots, n_{19}\right)$ we have

$$
\prod_{i=1}^{19} g_{i}^{2 n_{i}} \equiv 1 \bmod n
$$

Suppose that $n=p q$, with $\operatorname{GCD}(p, q)=1$, so that

$$
\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / q \mathbb{Z}
$$

We hope that a 2 -torsion element u satisfies

$$
u \equiv 1 \bmod p \text { but } u \not \equiv 1 \bmod q .
$$

If such is the case, then $p \mid \operatorname{GCD}(u-1, n) \neq n$ and we have found a nontrivial factorization. In particular, the second line of this relation matrix gives the equality:

$$
\left(2^{4} 5^{2}\right)^{2} \equiv\left(11^{3} 13^{3} 17^{4} 19^{4} 23^{2} 29^{2} 31^{6} 37^{4} 41^{4} 43^{5} 47^{4} 53^{7} 59^{4} 61^{3}\right)^{2} \bmod n
$$

from which we can derive the factorization

$$
\operatorname{GCD}\left(n, 2^{4} 5^{2}-11^{3} 13^{3} 17^{4} 19^{4} 23^{2} 29^{2} 31^{6} 37^{4} 41^{4} 43^{5} 47^{4} 53^{7} 59^{4} 61^{3}\right)=1103
$$

Compute the other factorizations determined by the 2 -torsion relations.

Solution

a. The form of n implies that the element 2 of $\mathbb{Z} / n \mathbb{Z}^{*}$ has order 29 , which must therefore divide the group order.
b. The statement printf specifies a formatted printing - three digits of r are printed, then a colon, then the result of the GCD is printed. The GCD will be divisible by p if and only if $a^{r}=3^{29 r} \equiv 1 \bmod p$. Since $2 \not \equiv 1 \bmod p$ for any prime p, we know that 29 must divide $p-1=\left|\mathbb{Z} / p \mathbb{Z}^{*}\right|$ for any prime divisor of n. The GCD picks out the largest divisor m of n for which 3 has order dividing $29 r$ in $\mathbb{Z} / m \mathbb{Z}^{*}$.
The first nontrivial divisor, 233, of n is found with the value $r=8$. Since $233-1=8 \cdot 29$, by Fermat's Little Theorem, the equality $3^{8 \cdot 29} \equiv 1 \bmod 233$ holds. The next nontrivial factor, 1103, is found for $r=19$.
c. The first line is the relation $-1^{2}=1$, which determines no factorization of n, but the the third and fourth lines determine factors 256999 and 2089.

