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Semester 2 Exercises and Solutions for Week 3 2004

The echelon form of a matrix M ∈ Mn(R) is an upper triangular matrix U such that
there exists an invertible matrix T with U = TM .

1. Let a homomorphism ϕ : Z19 → Z19 be given by the following matrix M (as the
right operator v 7→ vM):




2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1−1 1−1 1−1−1 1 0 1 0 1−1 0 0 1 1
0 1 0−1 0 0 0 1 0−1 2 0 0−1 0 1 2−1−1
0 1 2 0 0 0 0 1 0 0 1 1−2−1 1 1 0 1 1
1 1−2 1 1−1 0−1 0 0−1 1 1 1−1 0−1 1−1
0 1 1 1 2 0 0 0 0 1 0 0 0−1−2 0 0−1−2
0 1 1 0 0−2 2−1−1 0 0 0 0−1 0−2 0−1 0
0 1−1 0 2 0 0−1 1 1−2 0 1 1 1−1 0 1 0
1 0 0 1−1−1 0 0−1 1 3 1 1 0 0−1 0 0−1
0 1 0 0 2 1 0−1−2 0−2 0−1 0−1 1 1 1 0
1 1 0−1−2 0 0 1−1 0−1 1 2 1 1 2 0 0 0
1 1−2 0 0 1 0−2−1 1−1−1 0−1−1−1 0 2 0
0 2 0−2 0 0−2 0−1 0 1−1 1 1−1 1 1−2 0
1 2−1−1 1 1 0 1 0−1 2 0 2 1−2−1 1 0 1
1−1 0 2 0 0 0−3 1 0 1 2−1 0 0−2 0 0 1
1−2 1 1−1 1 0 0 2 0 3 1−1 0 1 0−1−1 0
0 1 2−1 0−1 0 1 1−1 3−1 1 0−1 0 1−2−1
0 3 1 0 2 0 0 1−1 1 0−1 3 0−1 1 0 0 0
0 0 0 3 1−1 3−2−1 1−1 0−1−1−1−1 0 1 0




Find the echelon form of this matrix, the determinant, and show that the cokernel
C = Z19/ϕ(Z19) is finite. Find the group structure of the cokernel, and of the
two-torsion subgroup C[2].

You can create the matrix M in Magma using the code at the end of the tutorial sheet.
The abelian groups A = Z19, B = ϕ(A), and C = A/B are created as follows.

r := 19;

A<[x]> := FreeAbelianGroup(r);

B<[y]>, phi := sub< A | [ A![ M[i,j] : j in [1..r]] : i in [1..r]]>;

C<[z]>, psi := quo< A | B >;

Solution The determinant of the matrix is −533826432, given by the Magma com-
mand Determinant. The command EchelonForm returns an upper triangular ma-
trix with diagonal entries:

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 58, 2088, 4408],



so the order of the cokernel C is 58 · 2088 · 4408 = 533826432.

From the echelonized row relations, we conclude that all generators can be expressed
in terms of the last three generators, and these satisfy relations among themselves
given by the lower right-hand block




58 1566 3596
0 2088 464
0 0 4408


 = 58 ·




1 27 62
0 36 8
0 0 76




Thus the three generators, say g1, g2, g3, each have order divisible by 58 and
(g1g

27
2 g62

3 )58 = e, and g58
2 and g58

3 satisfy the matrix row relations

[
36 8
0 76

]
= 4 ·

[
9 2
0 19

]

Thus we check that (g9
2g

2
3)

4·58 = (g9
2g

2
3)

232 = e and (g4
2g3)

4·9·19·58 = (g4
2g3)

39672 = e.
We verify that the set of elements {h1 = g1g

27
2 g62

3 , h2 = g9
2g

2
3, h3 = g4

2g3} is a new
basis of generators under the basis transformation matrix

U =




1 27 62
0 9 2
0 4 1




satisfying h58
1 = e, h232

2 = e, and h39672
3 = e, where 58|232|39672 and 58·232·39672 =

533826432. We conclude that the group structure is

Z/58Z× Z/232Z× Z/39672Z,

and the abelian invariants are 58, 232, 39672. Since each of these factors has even
order we find the 2-torsion subgroup to be isomorphic to Z/2Z3, embedded as

29Z/58Z× 116Z/232Z× 19836Z/39672Z

in the larger group (i.e. with generators h29
1 , h116

2 , and h19836
3 ).

2. How do the abelian invariants compare to the diagonal entries of the echelon form
of the matrix M? The echelon form U for the matrix M can be created in Magma

as follows.

U, T := EchelonForm(M);

What are the determinants of the matrices M , U , and T?

Solution The abelian invariants of a finite abelian group must have the form ni|ni+1,
whereas the diagonal entries of the echelon form of the matrix (see above) need not
be so normalized.

The determinant of the echelon form U for M must have the same determinant as
M , up to a unit, since T is invertible and det(TM) = det(T ) det(M) = det(U). In
this case the matrix T has determinant −1.



3. Verify that the matrix M in the previous exercise defines the kernel of the homo-
morphism

Z19 −→ Z/nZ∗

where n is the Mersenne number 229 − 1, and the i-th basis element of Z19 maps to
the i-th element of the sequence

−1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61.

Hint:

R := ResidueClassRing(2^29-1);

smbase := [-1] cat [ R | n : n in [1..61] | IsPrime(n) ];

[ &*[ smbase[j]^M[i,j] : j in [1..19] ] : i in [1..19] ];

Solution The output of the above Magma code is the sequence

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

consisting of the multiplicative identity 1 in Z/nZ∗, so the row vectors are in the
kernel of the map to the multiplicative group of Z/nZ.

To show that M doesn’t generate a subgroup of the kernel of the map Z19 → Z/nZ∗,
we need to know the group order. Making use of the factorization of n (below), this
order is

(233− 1) · (1103− 1) · (2089− 1) = 533826432 = det(M).

It follows that M is surjective on the kernel of the map to Z/nZ∗.

4. Given the factorization n = 233·1103·2089, determine the group structure of Z/nZ∗
as an additive group of the form Z/m1Z×Z/m2Z× · · ·×Z/mrZ for m1|m2| · · · |mr

and as an additive group of the form Z/ps1
1 Z × Z/ps2

2 Z × · · · × Z/pst
t Z for primes

p1, p2, . . . , pt.

Solution The group Z/nZ∗ is isomorphic to Z/233Z∗×Z/1103Z∗×Z/2089Z∗, which
in turn, is isomorphic to the additive abelian group Z/232Z×Z/1102Z×Z/2088Z.
From the factorizations 232 = 2329, 1102 = 2 · 19 · 29 and 2088 = 23 · 32 · 29, we
obtain an isomorphism with

Z/23Z× Z/29Z× Z/2Z× Z/19Z× Z/29Z× Z/23Z× Z/32Z× Z/29Z.

Reordering the factors we find that Z/nZ∗ is isomorphic to

Z/2Z× Z/23Z× Z/23Z× Z/32Z× Z/19Z× Z/29Z× Z/29Z× Z/29Z.

In this prime-power decomposition we can recombine coprime factors to find an
isomorphic group

Z/2 · 29Z× Z/23 · 29Z× Z/23 · 32 · 19 · 29Z,

i.e. with m1 = 2 · 29 = 58, m2 = 23 · 29 = 232 and m3 = 23 · 32 · 19 · 29 = 39672.



5. How would you compute the two-torsion subgroup of Z/nZ∗ from the matrix M?
Compute the two-torsion elements, then using the factorization of n, determine the
image of each in the group

Z/233Z∗ × Z/1103Z∗ × Z/2089Z∗.
Solution The 2-torsion subgroup of Z/nZ∗ is the image of those elements v in A =
Z19 such that 2v ∈ B. The nontrivial elements can be computed by interpretting
M as a matrix over F2 and solving for its kernel.

Let M be this matrix over F2, and let ūM = 0 ∈ F19
2 . If ū is any element of Z19

which reduced to ū, then uM is an element of 2A ∩ B, and v = (1/2) ∗ uM is an
element of A such that 2v ∈ B. It follows that the map

ū 7→ 1

2
uM

defines an isomorphism ker(M) → A/B[2] = C[2], and the latter group is isomorphic
to Z/nZ∗[2]. Solving for this space, we find the basis matrix




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 3 2 1−2 3−2−1 2 4 1−1−2−2−2 0 0−1
2 4 0−1 0 0 1 0−3 0 2 1 1−1−1 0 2 1 0




for the rank three 2-torsion subgroup. The duplicate of this matrix is produced by
the three lines of Magma commands below.

M2 := MatrixAlgebra(FiniteField(2),19)!M;

N2 := BasisMatrix(Kernel(M2));

RMatrixSpace(Integers(),Nrows(N2),19)!N2*M;

On the other hand, given the factorization n = 233 · 1103 · 2089, the 2-torsion
elements of Z/nZ∗ are those which have image in {±1} in each of Z/233Z, Z/1103Z
and Z/2089Z. A representative element in Z/nZ can be found by the Chinese
remainder theorem algorithm.

For example the Magma command CRT([1,1,-1],[233,1103,2089]) finds the rep-
resentative 61936760 of (1, 1,−1), and the other 2-torsion elements

403504974, 465441733, 71429178, 133365937, 474934151

together with 1 and −1 = 536870910 are found similarly.

Relation matrix M :

M := Matrix([

[2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[1,1,1,-1,1,-1,1,-1,-1,1,0,1,0,1,-1,0,0,1,1],

[0,1,0,-1,0,0,0,1,0,-1,2,0,0,-1,0,1,2,-1,-1],



[0,1,2,0,0,0,0,1,0,0,1,1,-2,-1,1,1,0,1,1],

[1,1,-2,1,1,-1,0,-1,0,0,-1,1,1,1,-1,0,-1,1,-1],

[0,1,1,1,2,0,0,0,0,1,0,0,0,-1,-2,0,0,-1,-2],

[0,1,1,0,0,-2,2,-1,-1,0,0,0,0,-1,0,-2,0,-1,0],

[0,1,-1,0,2,0,0,-1,1,1,-2,0,1,1,1,-1,0,1,0],

[1,0,0,1,-1,-1,0,0,-1,1,3,1,1,0,0,-1,0,0,-1],

[0,1,0,0,2,1,0,-1,-2,0,-2,0,-1,0,-1,1,1,1,0],

[1,1,0,-1,-2,0,0,1,-1,0,-1,1,2,1,1,2,0,0,0],

[1,1,-2,0,0,1,0,-2,-1,1,-1,-1,0,-1,-1,-1,0,2,0],

[0,2,0,-2,0,0,-2,0,-1,0,1,-1,1,1,-1,1,1,-2,0],

[1,2,-1,-1,1,1,0,1,0,-1,2,0,2,1,-2,-1,1,0,1],

[1,-1,0,2,0,0,0,-3,1,0,1,2,-1,0,0,-2,0,0,1],

[1,-2,1,1,-1,1,0,0,2,0,3,1,-1,0,1,0,-1,-1,0],

[0,1,2,-1,0,-1,0,1,1,-1,3,-1,1,0,-1,0,1,-2,-1],

[0,3,1,0,2,0,0,1,-1,1,0,-1,3,0,-1,1,0,0,0],

[0,0,0,3,1,-1,3,-2,-1,1,-1,0,-1,-1,-1,-1,0,1,0]

]);


