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1. Consider the groups Z/391Z
∗, Z/437Z

∗, and Z/1001Z
∗.

a. For each group, find the relations among 2, 3, and 5.

b. Use the relations to express each group G as G = G0 ⊕ G1, where G0 is the
2-subgroup and G1 has odd order, and determine generators for each.

c. Find the exponent of G0, i.e. the smallest m such that G0 = G[2m], then
determine generators for each group in the chain of subgroups

G[2m] ⊃ G[2m−1] ⊃ · · · ⊃ G[2].

d. For each group G, determine a set of generators and relations for G/[2](G).

Solution

a. We first consider Z/391Z
∗. The identities 400 = 2452 = 32+391, 1+391 = 2372,

−7 + 391 = 273 (hence 72 ≡ 21432 mod 391), and 2 · 7 + 391 = 405 = 345, give
rise to the matrix of relations









4 −2 2 0
3 0 0 2

14 2 0 −2
1 −4 −1 1









,

and after eliminating 7,




4 −2 2
1 8 2
0 2 −10



 ·

Similar identities determine relation matrices for Z/437Z
∗ and Z/1001Z

∗,




2 −2 6
1 −7 0
9 −1 −2



 , and





6 0 6
4 −4 −8
2 10 2



 ·

b. The determinants of these matrices are 352 = 32 · 11, 396 = 4 · 99, 720 =
16 · 45. With respect to these factorizations 2t r, the 2-subgroups G0 and the
odd subgroup G1 are then [r](G) and [2t](G), respectively. Assuming the set
{2, 3, 5} generates G = Z/nZ

∗, a set of generators for G0 is {2r, 3r, 5r} and for
G1 is {22t

, 32t

, 52t}. Spefically, we have:

n G0 G1

391 〈93, 24, 45〉 〈35, 307, 239〉
437 〈208, 208, 229〉 〈16, 81, 188〉
1001 〈967, 573, 265〉 〈471, 718, 170〉



This answer is somewhat unsatisfactory, since the group structure is not self-
evident from these abstract set of supposed generators.

In order to determine the group structure of G0 (or G1), we consider the sub-
group of Z

3 generated by the the known relations (the kernel of the homomor-
phism π : Z

3 → G = Z/nZ
∗) augmented by r (or 2t) times the standard basis

elements. For G0 this gives:
















4 −2 2
1 8 2
0 2 −10

11 0 0
0 11 0
0 0 11

















,

















2 −2 6
1 −7 0
9 −1 −2

99 0 0
0 99 0
0 0 99

















,

















6 0 6
4 −4 −8
2 10 2

45 0 0
0 45 0
0 0 45

















·

Basis reduction gives us a matrix of row vectors surjecting onto G0:




1 0 9
0 1 6
0 0 11



 ,





1 0 86
0 1 83
0 0 99



 ,





1 2 7
0 3 9
0 0 15



 ·

These gives generator sets

{2 · 59, 3 · 59, 511} = {45, 346, 160},
{2 · 586, 3 · 583, 599} = {436, 229, 208},
{2 · 32 · 57, 33 · 59, 515} = {694, 34, 846}·

But we can also rewrite the matrices of kernel relations in terms of these
generators. For the first group this gives





1 0 3
0 2 14
0 0 16



 =





1 0 42
0 2 166
0 0 176









1 0 9
0 1 6
0 0 11





−1

·

where the middle matrix is the Hermite form of the relations matrix for Z/391Z
∗.

Settting g1 = 45, g2 = 346, and g3 = 160, we can check the identities

g1g
3
3 = g2

2g
14
3 = g16

3 = 1.

c. We treat only the first group. From the above relations among g1, g2, and g3,
we see that the exponent of the 2-subgroup of G = Z/391Z

∗ is 16. Thus G0 =
G[16] = 〈g1, g2, g3〉. Since g8

1 = g8
2 = g3 = 254, we find (g1g2)

8 = (g2g3)
8 = 1,

so G[8] = 〈g1g2, g2g3, g
2
3〉. Continuing in this way, we express the preimages of

G[8], G[4], and G[2] in Z
3 are spanned by the rows of the matrices:





1 1 15
0 1 17
0 0 22



 ,





1 2 32
0 1 39
0 0 44



 ,





1 2 32
0 1 83
0 0 88



 ·

The first row of the latter matrix is in the kernel of π : Z
3 → Z/391Z

∗, but the
second and third give nontrivial 2-torsion elements 137 and 254, respectively.
Note that the only group of order 32 and exponent 16 is Z/2Z × Z/16Z, and
that the 2-torsion subgroup is the group of order 4 generated by 137 and 254.



d. In each case, the group G is generated by {2, 3, 5}, and the relations for the
quotient G/[2](G) are a set of generators for the group [2](G) = [2](G0) + G1.

2. In this exercise you must prove the primality of several integers. First we state a
couple of theorems.

Theorem 1 Suppose n − 1 =
∏r

i=1 pni

i and there exists an integer a such that

a(n−1)/pi 6≡ 1 mod n, for all 1 ≤ i ≤ r,

and an−1 ≡ 1 mod n. Then n is prime.

Note that the integer a is an element of exact order n − 1. The conditions of this
theorem can be relaxed to allow separate ai with respect to each prime divisor of
n − 1.

Theorem 2 Suppose n − 1 =
∏r

i=1 pni

i and there exist an integers ai such that

a
(n−1)/pi

i 6≡ 1 mod n for all 1 ≤ i ≤ r,

and an−1
i ≡ 1 mod n for all 1 ≤ i ≤ r. Then n is prime.

Use the theorems to prove the primality of the integers 216+1, 359−259, and 739+24.
What is the obstruction to using this method in general for primality proving?

Solution For the first number n we find the factorization of n − 1 to be:

216 + 1 − 1 = 216 = 65536,

and so we only need to find one element which is not a square, and 3 is a nonsquare,
since its 215-th power is −1:

3215

mod 216 + 1 = 655236.

For the second prime number we find the factorization:

359 − 259 − 1 = 2 · 3 · 7 · 59 · 1151 · 58171 · 123930193 · 687216767
2 · 3 · 7 · p4 · p5 · p6 · p7 · p8

It turns out that 2 and 3 are 21-st powers, so fail to satisfy the conditions of the
first theorem. Similarly 5 is a square, so also fails. However 2 and 5 can be used in
the second theorem to prove the primality of n as is verified in the table below.

a 2 5

aϕ(n)/2 14130386091162273752461387578 1

aϕ(n)/3 1 14039524071766095844181052225

aϕ(n)/7 1 782661097299526754770837537

aϕ(n)/p4 11718328150460486086616882272 10636292038180945801879749999

aϕ(n)/p5 100403709819670481236181509 3216430705463480598022736901

aϕ(n)/p6 685060367368235467440565326 13450338895656173387977763600

aϕ(n)/p7 7762846453032502793085391834 3732507535185619691818435804

aϕ(n)/p8 14051755362251040487509134380 9167675531100609270057486746



Note that even though we are magically given the factorization of ϕ(n) = n− 1 by Magma,
it remains to prove that each of the larger primes p4, . . . , p8 is prime.

For the last prime number n, we find the factorization of n − 1 to be:

739 + 24 − 1 = 2 · 3 · 312 · 1129 · 10954261 · 12754748402046864529

We find that 2(n−1)/p mod n is 1 for p = 2 but for different from 1 for all other prime
divisors. On the other hand, a = 3 and a = 5 give a(n−1)/3 mod n = 1, and give something
different from 1 for all other p. We can therefore apply the second theorem.

Note that, as above, the completeness of the factorization must also be proved. This
requires proving the primality of all of the factors of n − 1. To take a specific example,
we give one chain p1, p2, . . . of primes pi with p1|n − 1 and pi+1|pi − 1, together with the
full the factorizations of pi − 1.

12754748402046864529 − 1 = 24 · 3 · 7 · 139 · 857 · 6269 · 50832179
50832179 − 1 = 2 · 25416089
25416089 − 1 = 23 · 17 · 186883
186883 − 1 = 2 · 3 · 31147
31147 − 1 = 2 · 3 · 29 · 179

In each such possible chain of prime divisors the primality of each pi must be proved.

Below a certain bound, say 10000, we may assume that the primality of p < 10000 is

determined by trial division up to
√

p < 100.


