1. A simple Pollard Rho factorization algorithm can be implemented in just a few lines in Magma:
function PollardRho(n, a)
x := Random([1..n]);
$\mathrm{x}:=\left(\mathrm{x}^{\wedge} 2+\mathrm{a}\right) \bmod \mathrm{n}$;
$y:=\left(x^{\wedge} 2+a\right) \bmod n$;
while $\mathrm{GCD}(\mathrm{x}-\mathrm{y}, \mathrm{n})$ eq 1 do
$\mathrm{x}:=\left(\mathrm{x}^{\wedge} 2+\mathrm{a}\right) \bmod \mathrm{n}$; $\mathrm{y}:=\left(\mathrm{y}^{\wedge} 2+\mathrm{a}\right) \bmod \mathrm{n}$; $\mathrm{y}:=\left(\mathrm{y}^{\wedge} 2+\mathrm{a}\right) \bmod \mathrm{n}$;
end while;
return $\mathrm{GCD}(\mathrm{x}-\mathrm{y}, \mathrm{n})$;
end function;
a. Use this algorithm to find a factorization of

$$
2^{29}-1,2^{59}-1,2^{2^{6}}+1, \text { and } 400731052007683
$$

b. What happens if the input argument n is prime?

Solution Note that a typical value to take for a is 1 , but varying the second argument can determine different factors, as can repeated iterations of the same function call.
a. Calling PollardRho with on $2^{29}-1=536870911$ tends to find the prime divisors 233, 1103 or 2089. The typical behaviour of the Pollard rho algorithm is to find the smallest prime divisor of a number. For $2^{59}-1=576460752303423487$, the Pollard rho algorithm finds exclusively the smaller prime divisor 179951, rather than the larger prime 3203431780337 . A similar result holds for $2^{2^{6}}+1=$ 18446744073709551617 - the algorithm finds the smaller prime 274177 rather than the larger 67280421310721 . The number 400731052007683 has two equally sized primes, so either factor may be found.
b. With prime input n the algorithm is expected to take the full time, proportional to \sqrt{n}, to return n, with no guarantee that n is not composite.
2. The Pollard rho algorithm is effective for solving discrete logarithms in subgroups of fields \mathbb{F}_{p}^{*} of moderate size. In the following code we make the assumption that the subgroup order is a prime n. The following code implements a Pollard rho discrete logarithm. You will need to first include the iteration function PollardIteration, presented below, in which the three disjoint sets S_{1}, S_{2} and S_{3} are those finite field elements with representatives x in intervals $1 \leq x \leq B_{1}, B_{1}<x \leq B_{2}$, and $B_{2}<x \leq p-1$ respectively.

```
procedure PollardIteration(~
    x := Integers()!t[1];
    if x le B1 then
        t[1] *:= b; t[3] +:= 1;
    elif x le B2 then
        t[1] ^:= 2; t[2] *:= 2; t[3] *:= 2;
    else
        t[1] *:= a; t[2] +:= 1;
    end if;
end procedure;
```

Assuming that the function PollardIteration the main body of the function, below, creates in a deterministic fashion a new triple ($x_{i+1}, n_{i+1}, m_{i+1}$) consisting of the sequence element x_{i+1} together with the exponents $\left(n_{i+1}, m_{i+1}\right)$ such that $x_{i+1}=a^{n_{i+1}} b^{m_{i+1}}$ from a similar sequence $\left(x_{i}, n_{i}, m_{i}\right)$.

```
function PollardRhoLog(a,b,p,n)
    error if not IsPrime(p), "Argument 3 must be prime";
    error if not IsPrime(n) or (p-1) mod n ne 0,
        "Argument 4 must be a prime divisor of", p-1;
    K := FiniteField(p);
    R := FiniteField(n);
    a := K!a; b := K!b;
    error if Order(a) ne n /* or Order(b) notin {1,n} */,
        "Arguments 1 and 2 must have order", n, "mod", p;
    t1 := <K!1,R!0,R!0>; t2 := t1;
    B1 := p div 3; B2 := (2*p) div 3;
    while true do
        PollardIteration(~ t1, a, b, B1, B2);
        PollardIteration(~ t2,a,b,B1,B2);
        PollardIteration(~}t2,a,b,B1,B2)
        if t1[1] eq t2[1] then break; end if;
    end while;
    r := t1[3]-t2[3];
    if r eq 0 then return -1; end if;
    return Integers()!(r^-1*(t2[2]-t1[2]));
end function;
```

The Magma tuple $\langle\mathrm{K}!1, \mathrm{R}!0, \mathrm{R}!0>$ represents the element $(1,0,0)$ of $K \times R \times R$. The notation ${ }^{\mathrm{t}}$ is a pass-by-reference in which the argument can be modified in the course of the procedure. Note that the algorithm can fail, and if so, returns the value of -1 .
a. Use this algorithm to find discrete logarithms of 3,7 , and 17 with respect to the base 2 in $\mathbb{F}_{p}^{* 2}$, where $p=536871263$. Note that $n=(p-1) / 2$ is a prime. Verify the correctness of the results.
b. Note that each of the primes $2,3,7$, and 17 are squares modulo p. What is the significance of the output of the algorithm when the discrete logarithm of 5 and 11 are computed with respect to the base 2 ?
c. Find the discrete logarithm of 3 with respect to the base 2 in \mathbb{F}_{p}^{*}, where $p=$ 1234619627. Make use of the Pollig-Hellman reduction, noting that $p-1=$ $2 \cdot 37 \cdot 61 \cdot 479 \cdot 571$.

Solution

a. The discrete logarithms $\log _{2}(3), \log _{2}(7)$, and $\log _{2}(17)$ in \mathbb{F}_{p}^{*} are 37502135, 52760923 , and 159008731. This can be verified with $\operatorname{Modexp}(2, x, p)$ for each of these values of x, returning 3,7 , and 17 , respectively.
b. The apparent discrete logarithms returned are 32649573 and 264376301. However, since 5 and 11 are not elements of the cyclic subgroup $\langle 2\rangle$ of \mathbb{F}_{p}^{*}, rather 5^{2} and 11^{2} are, the Pollard ρ algorithm is instead finding a relation $2^{y} \equiv 5^{2} \bmod p$ and returning $x=2^{-1} y$ in $\mathbb{Z} / n \mathbb{Z}$. We check that $\operatorname{Modexp}(2,2 * 32649573, \mathrm{p})$ returns 25 and $\operatorname{Modexp}(2,2 * 264376301, \mathrm{p})$ returns 121. Also note that -1 is a nonsquare in \mathbb{F}_{p}^{*}, so that -5 and -11 are squares (consider why this is true). Therefore for each of these values x, the value $\operatorname{Modexp}(2, \mathbf{x}, \mathrm{p})$ must be $p-5$ and $p-11$.
c. The discrete logarithm $\log _{2}(3)$ in \mathbb{F}_{p} is well-defined as an element of $\mathbb{Z} /(p-$ $1) \mathbb{Z}$. If we raise both 2 and 3 to a power m dividing $p-1$ the value of the discrete logarithm remains the same, but only as an element of $\mathbb{Z} / r \mathbb{Z}$ where $r=(p-1) / m$. In Magma we compute these values as follows:

```
for r in [2,37,61,479,571] do
> m := (p-1) div r;
> PollardRhoLog(Modexp(2,m,p),Modexp(3,m,p),p,r);
> end for;
0
36
1 7
155
558
```

The complete solution in $\mathbb{Z} /(p-1) \mathbb{Z}$ can be recombined using the Chinese remainder theorem, then verified for correctness.

```
> CRT([0,36,17,155,558],[2,37,61,479,571]);
790430148
> Modex(2,790430148,p);
3
```

