
The University of Sydney

Math3925 Public Key Cryptography

Semester 2 Exercises and Solutions for Week 6 2004

1. A simple Pollard Rho factorization algorithm can be implemented in just a few lines
in Magma:

function PollardRho(n,a)

x := Random([1..n]);

x := (x^2+a) mod n;

y := (x^2+a) mod n;

while GCD(x-y,n) eq 1 do

x := (x^2+a) mod n;

y := (y^2+a) mod n;

y := (y^2+a) mod n;

end while;

return GCD(x-y,n);

end function;

a. Use this algorithm to find a factorization of

229 − 1, 259 − 1, 226

+ 1, and 400731052007683.

b. What happens if the input argument n is prime?

Solution Note that a typical value to take for a is 1, but varying the second argu-
ment can determine different factors, as can repeated iterations of the same function
call.

a. Calling PollardRho with on 229 − 1 = 536870911 tends to find the prime divi-
sors 233, 1103 or 2089. The typical behaviour of the Pollard rho algorithm is to
find the smallest prime divisor of a number. For 259−1 = 576460752303423487,
the Pollard rho algorithm finds exclusively the smaller prime divisor 179951,
rather than the larger prime 3203431780337. A similar result holds for 226

+1 =
18446744073709551617 – the algorithm finds the smaller prime 274177 rather
than the larger 67280421310721. The number 400731052007683 has two equally
sized primes, so either factor may be found.

b. With prime input n the algorithm is expected to take the full time, proportional
to

√
n, to return n, with no guarantee that n is not composite.

2. The Pollard rho algorithm is effective for solving discrete logarithms in subgroups
of fields F

∗

p of moderate size. In the following code we make the assumption that the
subgroup order is a prime n. The following code implements a Pollard rho discrete
logarithm. You will need to first include the iteration function PollardIteration,
presented below, in which the three disjoint sets S1, S2 and S3 are those finite
field elements with representatives x in intervals 1 ≤ x ≤ B1, B1 < x ≤ B2, and
B2 < x ≤ p − 1 respectively.



procedure PollardIteration(~t,a,b,B1,B2);

x := Integers()!t[1];

if x le B1 then

t[1] *:= b; t[3] +:= 1;

elif x le B2 then

t[1] ^:= 2; t[2] *:= 2; t[3] *:= 2;

else

t[1] *:= a; t[2] +:= 1;

end if;

end procedure;

Assuming that the function PollardIteration the main body of the function,
below, creates in a deterministic fashion a new triple (xi+1, ni+1, mi+1) consisting
of the sequence element xi+1 together with the exponents (ni+1, mi+1) such that
xi+1 = ani+1bmi+1 from a similar sequence (xi, ni, mi).

function PollardRhoLog(a,b,p,n)

error if not IsPrime(p), "Argument 3 must be prime";

error if not IsPrime(n) or (p-1) mod n ne 0,

"Argument 4 must be a prime divisor of", p-1;

K := FiniteField(p);

R := FiniteField(n);

a := K!a; b := K!b;

error if Order(a) ne n /* or Order(b) notin {1,n} */,

"Arguments 1 and 2 must have order", n, "mod", p;

t1 := <K!1,R!0,R!0>; t2 := t1;

B1 := p div 3; B2 := (2*p) div 3;

while true do

PollardIteration(~t1,a,b,B1,B2);

PollardIteration(~t2,a,b,B1,B2);

PollardIteration(~t2,a,b,B1,B2);

if t1[1] eq t2[1] then break; end if;

end while;

r := t1[3]-t2[3];

if r eq 0 then return -1; end if;

return Integers()!(r^-1*(t2[2]-t1[2]));

end function;

The Magma tuple <K!1,R!0,R!0> represents the element (1, 0, 0) of K ×R×R. The
notation ~t is a pass-by-reference in which the argument can be modified in the
course of the procedure. Note that the algorithm can fail, and if so, returns the
value of −1.

a. Use this algorithm to find discrete logarithms of 3, 7, and 17 with respect to
the base 2 in F

∗

p
2, where p = 536871263. Note that n = (p − 1)/2 is a prime.

Verify the correctness of the results.



b. Note that each of the primes 2, 3, 7, and 17 are squares modulo p. What is
the significance of the output of the algorithm when the discrete logarithm of
5 and 11 are computed with respect to the base 2?

c. Find the discrete logarithm of 3 with respect to the base 2 in F
∗

p, where p =
1234619627. Make use of the Pollig-Hellman reduction, noting that p − 1 =
2 · 37 · 61 · 479 · 571.

Solution

a. The discrete logarithms log2(3), log2(7), and log2(17) in F
∗

p are 37502135,
52760923, and 159008731. This can be verified with Modexp(2,x,p) for each
of these values of x, returning 3, 7, and 17, respectively.

b. The apparent discrete logarithms returned are 32649573 and 264376301. How-
ever, since 5 and 11 are not elements of the cyclic subgroup 〈2〉 of F

∗

p, rather 52

and 112 are, the Pollard ρ algorithm is instead finding a relation 2y ≡ 52 mod p
and returning x = 2−1y in Z/nZ. We check that Modexp(2,2*32649573,p)

returns 25 and Modexp(2,2*264376301,p) returns 121. Also note that −1 is
a nonsquare in F

∗

p, so that −5 and −11 are squares (consider why this is true).
Therefore for each of these values x, the value Modexp(2,x,p) must be p − 5
and p − 11.

c. The discrete logarithm log2(3) in Fp is well-defined as an element of Z/(p −
1)Z. If we raise both 2 and 3 to a power m dividing p − 1 the value of the
discrete logarithm remains the same, but only as an element of Z/rZ where
r = (p − 1)/m. In Magma we compute these values as follows:

> for r in [2,37,61,479,571] do

> m := (p-1) div r;

> PollardRhoLog(Modexp(2,m,p),Modexp(3,m,p),p,r);

> end for;

0

36

17

155

558

The complete solution in Z/(p − 1)Z can be recombined using the Chinese
remainder theorem, then verified for correctness.

> CRT([0,36,17,155,558],[2,37,61,479,571]);

790430148

> Modex(2,790430148,p);

3


