The University of Sydney
Math3925 Public Key Cryptography

In order to implement an index calculus algorithm, we need a smoothness algorithm:

```
function IsSmooth(m,prms)
    // Returns true if and only if m factors over the prime
    // sequence prms, and if so, returns the exponent vector.
    error if m eq 0, "Argument 1 must be nonzero.";
    v := Vector([ 0 : i in [1..#prms] ]);
    for k in [1..#prms] do
        p := prms[k];
        if p eq -1 then
            if m lt 0 then
                v[k] +:= 1; m *:= -1;
            end if;
        else
            while m mod p eq 0 do
                v[k] +:= 1; m div:= p;
            end while;
        end if;
    end for;
    if m ne 1 then return false, _; end if;
    return true, v;
end function;
```

A smoothness base of t elements can be generated with a simple function:

```
function SmoothnessBase(t)
    prms := [ -1 ];
    p := 2;
    for i in [2..t] do
        Append(~
        p := NextPrime(p);
    end for;
    return prms;
end function;
```

With these two functions, we can search for relations in the multiplication group $\mathbb{Z} / n \mathbb{Z}^{*}$. A simple index calculus algorithm is realised in the following lines of code:

```
function ModularRelations(n,prms,b,t)
    Z := Integers();
    R := ResidueClassRing(n);
    rels := [ RSpace(Z,#prms) | ];
    for k in [1..t] do
        u := Vector([ Random([0..b]) : i in [1..#prms] ]);
        m := Z!&*[ R!prms[i]^u[i] : i in [1..#prms] ];
        bool, v := IsSmooth(m,prms);
        if bool then
            Append(~rels,u-v);
        end if;
    end for;
    return rels;
end function;
```

1. a. Use the above functions to determine a set of prime generators and the complete sets of relations among them in $\mathbb{Z} / n \mathbb{Z}^{*}$ for $n=2^{29}-1$.
b. Use the relations to realise a factorization of n.
c. How does this method compare to a Pollard ρ factorization?

Solution

a. The function SmoothnessBase (40) sets up a factor base of size 40 (including -1). To eliminate numbers having a small prime factor, you can first do a GCD with each element of the factor base. ModularRelations is called to generate relations. The parameter t determines how many trials are carried out. Between 0 and t relations will be returned, and results from multiple trials can be concatenated. Putting the relations in echelon form reduces the relations to upper triangular form such that the $m \times m$

$$
\left[\begin{array}{rrrrrrrr}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -15 & 3 & 1 & 7 & 6 & 1 \\
1 & 3 & 6 & 9 & 2 & -2 & 10 & -11 \\
1 & -7 & -8 & -11 & 2 & -2 & 14 & -5 \\
0 & 3 & -14 & -2 & -12 & -12 & 0 & -4 \\
1 & 17 & 0 & -6 & 9 & -7 & 11 & 3 \\
0 & 9 & -12 & -8 & 16 & 16 & -20 & -12 \\
1 & 12 & 5 & -16 & -10 & 20 & 3 & -21
\end{array}\right]
$$

b. In order to factor n, one needs to iterate this relation collecting phase, then to solve a complete set of relations to determine the 2-torsion subgroup, then use this to factor n.
c. The running time for numbers of this size is much longer for this simple index calculus method than for a Pollard ρ. One expects a cross-over point, where the runtime coincides, to occur for integers of much larger size. Eventually, however, an optimal index calculus algorithm will outperform Pollard ρ.
2. a. Similarly find a set of generators and relations for the group $\mathbb{Z} / p \mathbb{Z}^{*}$ for the prime $p=2^{31}-1$.
b. Solve the discrete $\operatorname{logarithm} \log _{3}(5)$ in this group using these relations.

Solution

a. For the set of generators $\{-1,2,3,5,7,11,13,17\}$ we find a generator matrix

$$
\left[\begin{array}{rrrrrrrr}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & -2 & 0 & 1 & 14 & -1 & -7 \\
0 & 8 & 1 & 11 & -11 & -1 & 2 & 0 \\
1 & 8 & 4 & -9 & -5 & 5 & 12 & 6 \\
1 & -2 & 0 & -8 & -15 & -2 & -2 & -10 \\
0 & 15 & -15 & -6 & -8 & -7 & 6 & 0 \\
1 & 6 & 14 & -13 & 4 & 6 & -10 & -10 \\
0 & 5 & 6 & -6 & 5 & -15 & 11 & -18
\end{array}\right]
$$

b. If we permute the columns to move the columns corresponding to 3 (the third) and 5 (the fourth) to the last and next-to-last, respectively, and put the matrix in Echelon form, we find a lower right-hand submatrix:

$$
\left[\begin{array}{ll}
3 & 263334115 \\
0 & 715827882
\end{array}\right]
$$

This implies that $5^{3} 3^{263334115}=3^{715827882}=1$, and thus $5^{3}=3^{715827882-263334115}=$ $3^{452493767}$. However, note that 452493767 is not divisible by 3 (the exponent of 5 in this relation) but $3 \mid p-1$. So 5 is not in the subgroup generated by 3 , and the discrete logarithm $\log _{3}(5)$ does not exist! This relation is as close as we can get -5^{3} is the first power of 5 in $\langle 3\rangle \subset \mathbb{Z} / p \mathbb{Z}^{*}$.

