
The University of Sydney
Math3925 Public Key Cryptography

Semester 2 Exercises and Solutions for Week 4 2004

In order to implement an index calculus algorithm, we need a smoothness algorithm:

function IsSmooth(m,prms)

// Returns true if and only if m factors over the prime

// sequence prms, and if so, returns the exponent vector.

error if m eq 0, "Argument 1 must be nonzero.";

v := Vector([0 : i in [1..#prms]]);

for k in [1..#prms] do

p := prms[k];

if p eq -1 then

if m lt 0 then

v[k] +:= 1; m *:= -1;

end if;

else

while m mod p eq 0 do

v[k] +:= 1; m div:= p;

end while;

end if;

end for;

if m ne 1 then return false, _; end if;

return true, v;

end function;

A smoothness base of t elements can be generated with a simple function:

function SmoothnessBase(t)

prms := [-1];

p := 2;

for i in [2..t] do

Append(~prms,p);

p := NextPrime(p);

end for;

return prms;

end function;

With these two functions, we can search for relations in the multiplication group Z/nZ∗.
A simple index calculus algorithm is realised in the following lines of code:

function ModularRelations(n,prms,b,t)

Z := Integers();

R := ResidueClassRing(n);

rels := [RSpace(Z,#prms) |];

for k in [1..t] do

u := Vector([Random([0..b]) : i in [1..#prms]]);

m := Z!&*[R!prms[i]^u[i] : i in [1..#prms]];

bool, v := IsSmooth(m,prms);

if bool then

Append(~rels,u-v);

end if;

end for;

return rels;

end function;

1. a. Use the above functions to determine a set of prime generators and the complete
sets of relations among them in Z/nZ∗ for n = 229 − 1.

b. Use the relations to realise a factorization of n.

c. How does this method compare to a Pollard ρ factorization?

Solution

a. The function SmoothnessBase(40) sets up a factor base of size 40 (including
−1). To eliminate numbers having a small prime factor, you can first do a
GCD with each element of the factor base. ModularRelations is called to
generate relations. The parameter t determines how many trials are carried
out. Between 0 and t relations will be returned, and results from multiple
trials can be concatenated. Putting the relations in echelon form reduces the
relations to upper triangular form such that the m×m

2 0 0 0 0 0 0 0
1 0 −15 3 1 7 6 1
1 3 6 9 2 −2 10 −11
1 −7 −8 −11 2 −2 14 −5
0 3 −14 −2 −12 −12 0 −4
1 17 0 −6 9 −7 11 3
0 9 −12 −8 16 16 −20 −12
1 12 5 −16 −10 20 3 −21

b. In order to factor n, one needs to iterate this relation collecting phase, then to
solve a complete set of relations to determine the 2-torsion subgroup, then use
this to factor n.

c. The running time for numbers of this size is much longer for this simple index
calculus method than for a Pollard ρ. One expects a cross-over point, where
the runtime coincides, to occur for integers of much larger size. Eventually,
however, an optimal index calculus algorithm will outperform Pollard ρ.

2. a. Similarly find a set of generators and relations for the group Z/pZ∗ for the
prime p = 231 − 1.

b. Solve the discrete logarithm log3(5) in this group using these relations.

Solution

a. For the set of generators {−1, 2, 3, 5, 7, 11, 13, 17} we find a generator matrix

2 0 0 0 0 0 0 0
1 −2 −2 0 1 14 −1 −7
0 8 1 11 −11 −1 2 0
1 8 4 −9 −5 5 12 6
1 −2 0 −8 −15 −2 −2 −10
0 15 −15 −6 −8 −7 6 0
1 6 14 −13 4 6 −10 −10
0 5 6 −6 5 −15 11 −18

b. If we permute the columns to move the columns corresponding to 3 (the third)
and 5 (the fourth) to the last and next-to-last, respectively, and put the matrix
in Echelon form, we find a lower right-hand submatrix:

[
3 263334115
0 715827882

]

This implies that 533263334115 = 3715827882 = 1, and thus 53 = 3715827882−263334115 =
3452493767. However, note that 452493767 is not divisible by 3 (the exponent of
5 in this relation) but 3|p− 1. So 5 is not in the subgroup generated by 3, and
the discrete logarithm log3(5) does not exist! This relation is as close as we
can get – 53 is the first power of 5 in 〈3〉 ⊂ Z/pZ∗.

