The University of Sydney Math3925 Public Key Cryptography

Semester 2

2004

In order to implement an index calculus algorithm, we need a smoothness algorithm:

```
function IsSmooth(m,prms)
   // Returns true if and only if m factors over the prime
   // sequence prms, and if so, returns the exponent vector.
   error if m eq 0, "Argument 1 must be nonzero.";
   v := Vector([ 0 : i in [1..#prms] ]);
   for k in [1..#prms] do
       p := prms[k];
       if p eq -1 then
           if m lt 0 then
               v[k] +:= 1; m *:= -1;
           end if;
       else
           while m mod p eq 0 do
               v[k] +:= 1; m div:= p;
           end while;
       end if;
   end for;
   if m ne 1 then return false, _; end if;
   return true, v;
end function;
```

A smoothness base of t elements can be generated with a simple function:

```
function SmoothnessBase(t)
    prms := [ -1 ];
    p := 2;
    for i in [2..t] do
        Append(~prms,p);
        p := NextPrime(p);
    end for;
    return prms;
end function;
```

With these two functions, we can search for relations in the multiplication group $\mathbb{Z}/n\mathbb{Z}^*$. A simple index calculus algorithm is realised in the following lines of code:

```
function ModularRelations(n,prms,b,t)
Z := Integers();
R := ResidueClassRing(n);
rels := [ RSpace(Z,#prms) | ];
for k in [1..t] do
    u := Vector([ Random([0..b]) : i in [1..#prms] ]);
    m := Z!&*[ R!prms[i]^u[i] : i in [1..#prms] ];
    bool, v := IsSmooth(m,prms);
    if bool then
        Append(~rels,u-v);
    end if;
end for;
return rels;
end function;
```

- 1. a. Use the above functions to determine a set of prime generators and the complete sets of relations among them in $\mathbb{Z}/n\mathbb{Z}^*$ for $n = 2^{29} 1$.
 - **b.** Use the relations to realise a factorization of n.
 - **c.** How does this method compare to a Pollard ρ factorization?

Solution

a. The function SmoothnessBase(40) sets up a factor base of size 40 (including -1). To eliminate numbers having a small prime factor, you can first do a GCD with each element of the factor base. ModularRelations is called to generate relations. The parameter t determines how many trials are carried out. Between 0 and t relations will be returned, and results from multiple trials can be concatenated. Putting the relations in echelon form reduces the relations to upper triangular form such that the $m \times m$

2	0	0	0	0	0	0	0
1	0	-15	3	1	7	6	1
1	3	6	9	2	-2	10	-11
1	-7	-8	-11	2	-2	14	-5
0	3	-14	-2	-12	-12	0	-4
1	17	0	-6	9	-7	11	3
0	9	-12	-8	16	16	-20	-12
1	12	5	-16	-10	20	3	-21

- **b.** In order to factor n, one needs to iterate this relation collecting phase, then to solve a complete set of relations to determine the 2-torsion subgroup, then use this to factor n.
- c. The running time for numbers of this size is much longer for this simple index calculus method than for a Pollard ρ . One expects a cross-over point, where the runtime coincides, to occur for integers of much larger size. Eventually, however, an optimal index calculus algorithm will outperform Pollard ρ .

2. a. Similarly find a set of generators and relations for the group $\mathbb{Z}/p\mathbb{Z}^*$ for the prime $p = 2^{31} - 1$.

b. Solve the discrete logarithm $\log_3(5)$ in this group using these relations.

Solution

a. For the set of generators $\{-1, 2, 3, 5, 7, 11, 13, 17\}$ we find a generator matrix

$\boxed{2}$	0	0	0	0	0	0	0]
1	-2	-2	0	1	14	-1	-7
0	8	1	11	-11	-1	2	0
1	8	4	-9	-5	5	12	6
1	-2	0	-8	-15	-2	-2	-10
0	15	-15	-6	-8	-7	6	0
1	6	14	-13	4	6	-10	-10
0	5	6	-6	5	-15	11	-18

b. If we permute the columns to move the columns corresponding to 3 (the third) and 5 (the fourth) to the last and next-to-last, respectively, and put the matrix in Echelon form, we find a lower right-hand submatrix:

$$\left[\begin{array}{rrr} 3 & 263334115 \\ 0 & 715827882 \end{array}\right]$$

This implies that $5^3 3^{263334115} = 3^{715827882} = 1$, and thus $5^3 = 3^{715827882-263334115} = 3^{452493767}$. However, note that 452493767 is not divisible by 3 (the exponent of 5 in this relation) but 3|p-1. So 5 is not in the subgroup generated by 3, and the discrete logarithm $\log_3(5)$ does not exist! This relation is as close as we can get -5^3 is the first power of 5 in $\langle 3 \rangle \subset \mathbb{Z}/p\mathbb{Z}^*$.