The University of Sydney Math3925 Public Key Cryptography

Semester	2	
DOMODUCI	4	

Exercises and Solutions for Week 8

1. Let $n = p_1^{n_1} \cdots p_t^{n_t}$ be an odd composite number, and for each *i* write $p_i - 1 = 2^{k_i} r_i$ with each r_i an odd number. Justify the probabilities

$$P(x^{2^{j_r}} = -1) = \frac{1}{m} \prod_{i=1}^{t} \frac{1}{2^{k_i - j_i}}$$

where $x \in \mathbb{Z}/n\mathbb{Z}^*$ (chosen uniformly at random), $j < k_i$, and where *m* is the largest odd divisor of $|(\mathbb{Z}/n\mathbb{Z}^*)^r|$ for any odd number *r*.

Solution The value m is the odd part of the size of the subgroup $|(\mathbb{Z}/n\mathbb{Z}^*)^{2^j r}|$ of r-th multiples in $\mathbb{Z}/n\mathbb{Z}^*$, and the factor 2^{k_i-j} order of the even part in each component $\mathbb{Z}/p_i^{n_i}\mathbb{Z}^*$. When -1 is contained in the group, then the probability of $x^{2^j r}$ equalling -1 is the reciprocal of the order of $|(\mathbb{Z}/n\mathbb{Z}^*)^{2^j r}|$.

2. Recall the Miller–Rabin primality test:

```
1. let n-1=2<sup>s</sup>r for r odd
2. choose a at random in Z/nZ* and set u = a<sup>r</sup>
3. if u = ±1 then return probable prime
4. for i in [1,...,s-1] {
    set u = u<sup>2</sup>
    if u = -1 then
        return probable prime
    if u = +1 then
        return composite
    }
5. return composite
```

and explain why the sum

$$P(x^{r} = 1) + P(x^{r} = -1) + P(x^{2r} = -1) + \dots + P(x^{2^{s-1}r} = -1)$$

gives the probability that the output is *probable prime*.

Solution The sum is over a disjoint set of events defining the conditions under which *probable prime* is returned.

3. For each of the following integers 15 = 3.5, 21 = 3.7, 29, 85 = 5.17, 105 = 3.5.7, and 357 = 13.29, determine the probability that the Miller-Rabin primality test returns *probable prime*.

Solution Applying the formula at top, the values of r and k_1, \ldots, k_t give the probabilities P in the table below.

n	r	k_1,\ldots,k_t	P	
15	1	1, 2	1/4	= 1/8 + 1/8
21	3	1,1	1/6	= 1/12 + 1/12
29	1	2	1	= 1/4 + 1/4 + 1/2
85	1	2, 4	3/32	= 1/64 + 1/64 + 1/16
105	3	1, 2, 1	1/24	= 1/48 + 1/48
377	21	2,2	1/56	= 1/336 + 1/336 + 1/84

Note that r is computed as the odd part of $\varphi(n)/\text{GCD}(n-1,\varphi(n))$.

4. Explain what happens when $j \ge k_i$ for some *i*, and demonstrate this with one of the above integers.

Solution When $j \ge k_i$ for some *i*, the element -1 is not in $[2^j](\mathbb{Z}/p_i\mathbb{Z}^*)$, hence not in $[2^jm](\mathbb{Z}/p_i\mathbb{Z}^*)$. Consequently, -1 can not be in $[2^jm](\mathbb{Z}/n\mathbb{Z}^*)$. Take for example n = 15, for which the k_i 's are 1 and 2. While $[7](\mathbb{Z}/15\mathbb{Z}^*) = \mathbb{Z}/15\mathbb{Z}^*$, once we take squares, we see that $[2](\mathbb{Z}/15\mathbb{Z}^*)$ does not contain -1, since its image $[2](\mathbb{Z}/3\mathbb{Z}^*)$ does not contain -1 even though $[2](\mathbb{Z}/5\mathbb{Z}^*)$ does. We can verify that 1 and 4 are the only elements of $[2](\mathbb{Z}/15\mathbb{Z}^*)$, and these are precisely the two elements which are 1 mod 3 and $\pm 1 \mod 5$.