The University of Sydney
 Math3925 Public Key Cryptography

Semester 2
Exercises and Solutions for Week 9
2004
Recall that the cyclotomic polynomials are defined in terms of the factorizations of $x^{N}-1$

$$
x^{N}-1=\prod_{m \mid N} \Phi_{m}(x) .
$$

For a particular m and q, you can construct the m-th cyclotomic polynomial in $\mathbb{F}_{q}[x]$ using the Magma commands:

```
P<x> := PolynomialRing(FiniteField(q));
Phi := P!CyclotomicPolynomial(m);
```

1. a. What is the factorization of $\Phi_{26}(x)$ in $\mathbb{F}_{3}[x]$? How many factors are there of each degree? What are the numbers of factors of each degree in the factorizations of $\Phi_{m}(x)$ for m dividing 26 dividing 80 ? Carry out a similar analysis for m dividing 63 and $\Phi_{m}(x)$ in $\mathbb{F}_{2}[x]$ and for m dividing 124 and $\Phi_{m}(x)$ in $\mathbb{F}_{5}[x]$.
b. Show that r divides $\varphi\left(p^{r}-1\right)$. Give an example of a p, r, and an m, such that m divides but is not equal to $p^{r}-1$, and such that r divides the degree of every factor of $\Phi_{m}(x)$ in $\mathbb{F}_{p}[x]$.
c. Let r be the order of p in $\mathbb{Z} / m \mathbb{Z}^{*}$. Show that r is the degree of every irreducible factor of $\Phi_{m}(x)$

Solution

a. The factorization of $\Phi_{26}(x)$ in $\mathbb{F}_{3}[x]$ can be determined in Magma with the following commands.

```
> P<x> := PolynomialRing(FiniteField(3));
> Factorization(P!CyclotomicPolynomial(26));
[
    <x^3 + 2*x + 1, 1>,
    <x^3 + x^2 + 2*x + 1, 1>,
    <x^3 + 2*x^2 + 1, 1>,
    <x^3 + 2*x^2 + x + 1, 1>
]
```

By its definition, we have that $\Phi_{26}(x) \mid x^{26}-1$, and since $26=27-1$ the polynomial $x^{26}-1$ factors completely over \mathbb{F}_{27}, but the only factors over \mathbb{F}_{3} are $x+1$ and $x+2$. Therefore we could have predicted the factorization into degree 3 polynomials. Since the degree of this polynomial is $\varphi(26)=12=3 \cdot 4$, there are 4 factors.

Similarly, the degrees r and number t of factors of other $\Phi_{m}(x)$ in $\mathbb{F}_{p}[x]$ are determined by the minimal r such that m divides $p^{r}-1$. Complete data for p,
r, and m dividing $63,26,80$, and 124 is given in the tables below.

m	$\varphi(m)$	p	r	t	m	$\varphi(m)$	p	r	t	p	m	$\varphi(m)$	r	t
63	36	2	6	6	80	32	3	4	8	5	124	60	3	20
9	6	2	6	1	40	16	3	4	4	5	62	30	3	10
7	6	2	3	2	20	8	3	4	2	5	31	30	3	10
3	2	2	2	1	16	8	3	4	2	5	4	2	2	1
1	1	2	1	1	10	4	3	4	1	5	2	1	1	1
m	$\varphi(m)$	p	r	t	8	4	3	2	2	5	1	1	1	1
26	36	3	3	4	5	4	3	4	1					
13	6	3	3	4	4	2	3	2	1					
2	6	3	1	2	2	1	3	1	1					
1	1	3	1	1	1	1	3	1	1					

b. The fact that r divides $\varphi\left(p^{r}-1\right)$ could be inferred from the fact that all factors of $\Phi_{p^{r}-1}(x)$ in $\mathbb{F}_{p}[x]$ have degree r. A purely algebraic proof of this fact is derived from the expression $p^{r} \equiv 1 \bmod p^{r}-1$, which says that p has order r in $\mathbb{Z} /(p-1) \mathbb{Z}$. Thus r divides the order, $\varphi\left(p^{r}-1\right)$, of this group.
c. The powers of x in $\mathbb{F}_{p}[x] /\left(x^{m}-1\right)$ form an abelian group isomorphic to $\mathbb{Z} / m \mathbb{Z}$. Since p has order r in $\mathbb{Z} / m \mathbb{Z}$, the r-th power of the Frobenius endomorphism π induces the identity on $\mathbb{F}_{p}[x] /\left(x^{m}-1\right)$ because $\pi^{r}(x)=x^{p^{r}}=x$. Using the quotient homomorphism

$$
\mathbb{F}_{p}[x] /\left(x^{m}-1\right) \rightarrow \mathbb{F}_{p}[x] /\left(\Phi_{m}(x)\right)
$$

the r-th power of the Frobenius endomorphism must also be the identity on the quotient $\mathbb{F}_{p}[x] /\left(\Phi_{m}(x)\right)$. Since $\Phi_{m}(x)$ is squarefree, the latter quotient is isomorphic to a product of fields, each of which must have degree over \mathbb{F}_{p} dividing r. On the other hand the degree of any quotient $\mathbb{F}_{p}[x] /(g(x))$ is a proper divisor s of r if and only if $g(x) \mid x^{p^{s}-1}-1$. But then $g(x)$ must be a divisor of $x^{k}-1$, where $k=\operatorname{GCD}\left(m, p^{s}-1\right)$. By construction, $g(x)$ then divides $\Phi_{k}(x)$ not $\Phi_{m}(x)$ as assumed.

Note that in this exercise, the main idea is that the subgroup $\langle x\rangle$ of $\mathbb{F}_{p}[x] /\left(x^{m}-1\right)^{*}$ is isomorphic to $\mathbb{Z} / m \mathbb{Z}$, that this group is mapped injectively into $\mathbb{F}_{p^{r}}^{*}=\mathbb{F}_{p}[x] /(g(x))^{*}$, and that the elements of $\mathbb{Z} / m \mathbb{Z}^{*}$ are in bijection with the elements of exact order m in $\mathbb{F}_{p^{r}}^{*}$, which in turn are precisely the roots of $\Phi_{m}(x)$ in $\mathbb{F}_{p^{r}}$.
2. Let \mathbb{F}_{q} be a finite field of q elements.
a. What is the number of elements in \mathbb{F}_{q}^{*} of each order dividing $q-1$? Do this count for $q=27, q=64, q=81$, and $q=125$.
b. Consider the finite fields $K=\mathbb{F}_{3}[x] /\left(x^{3}-x+1\right)$ and $L=\mathbb{F}_{3}[y] /\left(y^{3}-y^{2}+1\right)$. Define isomorphisms $K \rightarrow L$ and $L \rightarrow K$. What is the compositum of the two isomorphism you chose?

Solution

a. The number of each element in \mathbb{F}_{q}^{*} of each order m dividing $q-1$ is $\varphi(m)$, as determined in the tables of the previous exercise.
b. There are four irreducible polynomials

$$
x^{3}-x+1 \quad x^{3}+x^{2}-x+1 \quad x^{3}-x^{2}+1 \quad x^{3}-x^{2}+x+1
$$

dividing $\Phi_{26}(x)$ in $\mathbb{F}_{3}[x]$. For each such $g(x)$, there exists a field extension $\mathbb{F}_{3}[x] /(g(x))$ of 27 elements, each isomorphic. For each k in $\mathbb{Z} / m \mathbb{Z}^{*}$, the map $x \mapsto x^{k}$ determines a ring homomorphism of $\mathbb{F}_{3}[x] /\left(\Phi_{26}(x)\right)$ to itself. If we write this ring as a product of fields:

$$
\frac{\mathbb{F}_{3}[x]}{\left(\Phi_{26}(x)\right)} \cong \frac{\mathbb{F}_{3}[x]}{\left(x^{3}-x+1\right)} \times \frac{\mathbb{F}_{3}[x]}{\left(x^{3}+x^{2}-x+1\right)} \times \frac{\mathbb{F}_{3}[x]}{\left(x^{3}-x^{2}+1\right)} \times \frac{\mathbb{F}_{3}[x]}{\left(x^{3}-x^{2}+x+1\right)}
$$

one makes the following observations. The Frobenius homomorphism $\pi(a)=a^{3}$ induces an automorphism of each factor, so that if $x^{3}-x+1=0$ then

$$
\pi\left(x^{3}-x+1\right)=\left(x^{3}\right)^{3}-\left(x^{3}\right)+1=0
$$

but for each other k in $\mathbb{Z} / m \mathbb{Z}^{*}$, the homomorphism sending $x \mapsto x^{k}$ must permute the factors by taking a root of $x^{3}-x+1$ to a root of one of the other divisors of $\Phi_{26}(x)$. In particular we can verify that the map $x=y^{-1}=y^{25}$ and conversely $y=x^{-1}=x^{25}$ determine isomorphisms between K and L. Composite with any power of the Frobenius automorphism gives the two other possible isomorphisms.
N.B. A finite field in Magma can be created using the default constructor, or as an explicit quotient of a polynomial ring:

```
p := 3;
F := FiniteField(p);
P<x> := PolynomialRing(F);
K<t> := FiniteField(p,3);
L<u> := quo< P | x^3 - x^2 + 1 > ;
```

The defining polynomial in the former case, K, is arbitrarily set to be $x^{3}-x+1$, while we choose the defining polynomial to be $x^{3}-x^{2}+1$ in the latter. Note that in both cases the resulting rings are fields of size 27 , hence isomorphic. Necessarily, these minimal polynomials of t and u must then divide $x^{27}-x$.

