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Recall that the cyclotomic polynomials are defined in terms of the factorizations of xN −1

xN − 1 =
∏

m|N

Φm(x).

For a particular m and q, you can construct the m-th cyclotomic polynomial in Fq[x]
using the Magma commands:

P<x> := PolynomialRing(FiniteField(q));

Phi := P!CyclotomicPolynomial(m);

1. a. What is the factorization of Φ26(x) in F3[x]? How many factors are there of each
degree? What are the numbers of factors of each degree in the factorizations
of Φm(x) for m dividing 26 dividing 80? Carry out a similar analysis for m
dividing 63 and Φm(x) in F2[x] and for m dividing 124 and Φm(x) in F5[x].

b. Show that r divides ϕ(pr − 1). Give an example of a p, r, and an m, such that
m divides but is not equal to pr−1, and such that r divides the degree of every
factor of Φm(x) in Fp[x].

c. Let r be the order of p in Z/mZ
∗. Show that r is the degree of every irreducible

factor of Φm(x)

Solution

a. The factorization of Φ26(x) in F3[x] can be determined in Magma with the fol-
lowing commands.

> P<x> := PolynomialRing(FiniteField(3));

> Factorization(P!CyclotomicPolynomial(26));

[

<x^3 + 2*x + 1, 1>,

<x^3 + x^2 + 2*x + 1, 1>,

<x^3 + 2*x^2 + 1, 1>,

<x^3 + 2*x^2 + x + 1, 1>

]

By its definition, we have that Φ26(x) | x26 − 1, and since 26 = 27 − 1 the
polynomial x26 − 1 factors completely over F27, but the only factors over F3

are x + 1 and x + 2. Therefore we could have predicted the factorization into
degree 3 polynomials. Since the degree of this polynomial is ϕ(26) = 12 = 3 ·4,
there are 4 factors.

Similarly, the degrees r and number t of factors of other Φm(x) in Fp[x] are
determined by the minimal r such that m divides pr − 1. Complete data for p,



r, and m dividing 63, 26, 80, and 124 is given in the tables below.

m ϕ(m) p r t
63 36 2 6 6
9 6 2 6 1
7 6 2 3 2
3 2 2 2 1
1 1 2 1 1
m ϕ(m) p r t
26 36 3 3 4
13 6 3 3 4
2 6 3 1 2
1 1 3 1 1

m ϕ(m) p r t
80 32 3 4 8
40 16 3 4 4
20 8 3 4 2
16 8 3 4 2
10 4 3 4 1
8 4 3 2 2
5 4 3 4 1
4 2 3 2 1
2 1 3 1 1
1 1 3 1 1

p m ϕ(m) r t
5 124 60 3 20
5 62 30 3 10
5 31 30 3 10
5 4 2 2 1
5 2 1 1 1
5 1 1 1 1

b. The fact that r divides ϕ(pr−1) could be inferred from the fact that all factors
of Φpr−1(x) in Fp[x] have degree r. A purely algebraic proof of this fact is
derived from the expression pr ≡ 1 mod pr − 1, which says that p has order r
in Z/(p − 1)Z. Thus r divides the order, ϕ(pr − 1), of this group.

c. The powers of x in Fp[x]/(xm −1) form an abelian group isomorphic to Z/mZ.
Since p has order r in Z/mZ, the r-th power of the Frobenius endomorphism
π induces the identity on Fp[x]/(xm − 1) because πr(x) = xpr

= x. Using the
quotient homomorphism

Fp[x]/(xm − 1) → Fp[x]/(Φm(x)),

the r-th power of the Frobenius endomorphism must also be the identity on
the quotient Fp[x]/(Φm(x)). Since Φm(x) is squarefree, the latter quotient is
isomorphic to a product of fields, each of which must have degree over Fp

dividing r. On the other hand the degree of any quotient Fp[x]/(g(x)) is a
proper divisor s of r if and only if g(x)|xps−1 − 1. But then g(x) must be
a divisor of xk − 1, where k = GCD(m, ps − 1). By construction, g(x) then
divides Φk(x) not Φm(x) as assumed.

Note that in this exercise, the main idea is that the subgroup 〈x〉 of Fp[x]/(xm−1)∗ is
isomorphic to Z/mZ, that this group is mapped injectively into F

∗
pr = Fp[x]/(g(x))∗,

and that the elements of Z/mZ
∗ are in bijection with the elements of exact order

m in F
∗
pr , which in turn are precisely the roots of Φm(x) in Fpr .

2. Let Fq be a finite field of q elements.

a. What is the number of elements in F
∗
q of each order dividing q − 1? Do this

count for q = 27, q = 64, q = 81, and q = 125.

b. Consider the finite fields K = F3[x]/(x3 − x + 1) and L = F3[y]/(y3 − y2 + 1).
Define isomorphisms K → L and L → K. What is the compositum of the two
isomorphism you chose?

Solution



a. The number of each element in F
∗
q of each order m dividing q − 1 is ϕ(m), as

determined in the tables of the previous exercise.

b. There are four irreducible polynomials

x3 − x + 1 x3 + x2 − x + 1 x3 − x2 + 1 x3 − x2 + x + 1

dividing Φ26(x) in F3[x]. For each such g(x), there exists a field extension
F3[x]/(g(x)) of 27 elements, each isomorphic. For each k in Z/mZ

∗, the map
x 7→ xk determines a ring homomorphism of F3[x]/(Φ26(x)) to itself. If we
write this ring as a product of fields:

F3[x]

(Φ26(x))
∼=

F3[x]

(x3 − x + 1)
×

F3[x]

(x3 + x2 − x + 1)
×

F3[x]

(x3 − x2 + 1)
×

F3[x]

(x3 − x2 + x + 1)

one makes the following observations. The Frobenius homomorphism π(a) = a3

induces an automorphism of each factor, so that if x3 − x + 1 = 0 then

π(x3 − x + 1) = (x3)3 − (x3) + 1 = 0,

but for each other k in Z/mZ
∗, the homomorphism sending x 7→ xk must

permute the factors by taking a root of x3 − x + 1 to a root of one of the other
divisors of Φ26(x). In particular we can verify that the map x = y−1 = y25

and conversely y = x−1 = x25 determine isomorphisms between K and L.
Composite with any power of the Frobenius automorphism gives the two other
possible isomorphisms.

N.B. A finite field in Magma can be created using the default constructor, or as an explicit
quotient of a polynomial ring:

p := 3;

F := FiniteField(p);

P<x> := PolynomialRing(F);

K<t> := FiniteField(p,3);

L<u> := quo< P | x^3 - x^2 + 1 >;

The defining polynomial in the former case, K, is arbitrarily set to be x3 − x + 1, while
we choose the defining polynomial to be x3 − x2 + 1 in the latter. Note that in both
cases the resulting rings are fields of size 27, hence isomorphic. Necessarily, these minimal
polynomials of t and u must then divide x27 − x.


