2004

Let E be an elliptic curve of the form

$$E: y^2 = x^3 + ax + b.$$

Let O denote the point at infinity, which is defined to be the identity element for the group law on E. The addition law on E is defined by the rule that any three points of E meeting a line E sum to E. Given points E and E and E a line through these points meets at one additional point E such that E and E and E are the point E are the point E and E are the point E are the point E and E are the point E are the point E are the point E and E are the point E are the point E and E are the point E and E are the point E are the point

Let $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ be two points on E, such that $x_1 \neq x_2$. Then the sum $P_1 + P_2 = P_3 = (x_3, y_3)$ given by the formulas:

$$x_3 := \frac{(x_1 x_2 + a)(x_1 + x_2) - 2y_1 y_2 + 2b}{(x_1 - x_2)^2},$$

$$y_3 := \frac{((3x_1^2 + a)x_2 + x_1^3 + 3ax_1 + 4b)y_2 - ((3x_2^2 + a)x_1 + x_2^3 + 3ax_2 + 4b)y_1}{(x_1 - x_2)^3},$$

is determined by solving for the third point $-P_3$ meeting the line through P_1 and P_2 .

1. For an elliptic curve E with equation as above, explain why the definition $-P = (x_0, -y_0)$, where $P = (x_0, y_0)$, is consistent with the rule that three points on a line sum to O.

Solution The points P and -P (as defined above) pass through a vertical line $x = x_0$, which must also meet the projective point at infinity, hence sum to zero.

2. Let E be the elliptic curve $y^2 = x^3 + x + 2$ over \mathbb{F}_{13} , and let $P_1 = (1,2)$ and $P_2 = (2,5)$. Solve for the line L through P_1 and P_2 and use this to solve for the third point of $L \cap E$. Use this to show that $P_1 + P_2 = (6,9)$ and verify your result using the addition formula.

Solution The line L through (1,2) and (2,5) is y=3x-1. The intersection with E gives $(3x-1)^2=x^3+x+2$ having x=1, x=2, and x=6 as solutions. The latter corresponds to the third (new) point (6,4) on $L \cap E$. The reflection (6,-4)=(6,9) is the sum P_1+P_2 .

3. In order to use the group of points $E(\mathbb{F}_p)$ for cryptographic purposes, it is essential to be able to find those curves whose number of points, the group order, is prime or is divisible by a large prime.

a. Choose a prime p > 3, and use Magma to form random elliptic curves E and determine their number of points, e.g.:

```
F := FiniteField(101);
a := Random(F); b := Random(F);
E := EllipticCurve([a,b]);
#E;
```

Show that the number of points $|E(\mathbb{F}_p)|$ is always within $2\sqrt{p}$ of the value p+1.

b. For a fixed curve E/\mathbb{F}_p determine the number of points on $E(\mathbb{F}_{p^n})$ for $n = 1, 2, 3, \ldots$ Can you find any pattern to the number of points?

Solution

- a. The number of points is experimentally verified to fall in this range.
- **b.** Yes. (For the pattern, see lectures and tutorial 11.)