Semester 2	Exercises and	Solutions for	r Week 11	2004
------------	---------------	---------------	-----------	------

Let E be an elliptic curve of the form

$$E: y^2 = x^3 + ax + b.$$

1. The multiplication-by-n maps [n] on an elliptic curve E with equation as above is defined by simple recursive formulas for the coordinates. The maps $[n] : E \to E$ take the form

$$P = (x, y) \longmapsto nP = \left(\frac{\phi_n(x)}{\psi_n(x, y)^2}, \frac{\omega_n(x, y)}{\psi_n(x, y)^3}\right).$$

For polynomials $\phi_n(x)$, $\psi_n(x, y)$, and $\omega_n(x, y)$. This means that the *n*-th multiple of a point on *E* is given by the evaluation of the polynomial expressions for the image coordiantes at the point coordinates.

The polynomials $\psi_n(x, y)$ are of crucial importance since they are zero precisely on the points of $E[n] = \ker([n])$. They can be defined by the recursions:

$$\begin{split} \psi_0 &= 0 \quad \psi_1 = 1 \quad \psi_2 = 2y \\ \psi_3 &= 3x^4 + 6ax^2 + 12bx - a^2 \\ \psi_4 &= \psi_2 \cdot (2x^6 + 10ax^4 + 40bx^3 - 10a^2x^2 - 8abx - (2a^3 - 16b^2)) \\ \psi_{2m+1} &= \psi_{m+2}\psi_m^3 - \psi_{m-1}\psi_{m+1}^3 \quad (m \ge 2), \\ \psi_{2m} &= \psi_m(\psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_{m+1}^2)/\psi_2 \quad (m > 2). \end{split}$$

Moreover the polynomials ϕ_n are determined by $\phi_0 = 1$ and

$$\phi_n = x\psi_n^2 - \psi_{n+1}\psi_{n-1}$$

for all $n \ge 1$.

- **a.** Use the relation $y^2 = x^3 + ax + b$ to show that $\psi_n(x, y)^2$ can be expressed as a polynomial in x.
- **b.** Show that this multiplication by 2 determines the addition law in the case $P_1 = P_2$ not covered by the addition formula, and compute $2P_1$. How can the group law be extended to the case $x_1 = x_2$ but $y_1 \neq y_2$?
- c. Let *E* be the elliptic curve $y^2 = x^3 + x + 3$ over \mathbb{F}_{61} , having 55 elements. Use the above recursion to construct the polynomial $\psi_5(x)$. Find two roots x_1 and x_2 of this polynomial and verify that they determine 5-torsion points $(x_1, \pm y_1)$ and $(x_2, \pm y_2)$.

Solution

- **a.** Using $\psi_2(x,y)^2 = 4(x^3 + ax + b)$, one verifies that for odd *n*, the polynomial $\psi_n(x,y)$ is a polynomial only in *x*, and for even *n* that $\psi_n(x,y)/\psi_2(x,y)$ is a polynomial in *x*. Applying the relation for $\psi_2(x,y)^2$ again gives the result.
- **b.** When $P_1 = P_2$ the addition law becomes multiplication by two; the only other case not covered by the previous rule is when $-P_1 = P_2$, which is the other case with $x_1 = x_2$, but in this case, the result is the identity O.

The duplication formula can be determined from the formulas for n = 2.

$$(x,y) \mapsto (x_2,y_2) = (\frac{\phi_2(x)}{\psi_2^2}, \frac{\omega_2(x)}{\psi_2^3})$$

First we take $\psi_2(x, y) = 2y$, noting that $\psi_2^2 = 4(x^3 + ax + b)$, and compute

$$\phi_2(x) = 4x(x^3 + ax + b) - (3x^4 + 6ax^2 + 12bx - a^2)$$

= $x^4 - 2ax^2 - 8bx + a^2$,

then solve the equation $y_2^2 = x_2^3 + ax_2 + b$ for $\omega_2(x)$:

$$w_2(x) = x^6 + 5ax^4 + 20bx^3 - 5a^2x^2 - 4abx - a^3 - 8b^2.$$

c. This elliptic curve, and the "division polynomial" $\psi_5(x)$ can be created in Magma with the lines:

We can then verify that the roots x = 32 and x = 38 are the x-coordinates of 5-torsion points:

```
> x1 := FiniteField(61)!32;
> x2 := FiniteField(61)!38;
> _, y1 := IsSquare(x1^3+x1+3);
> _, y2 := IsSquare(x2^3+x2+3);
> P1 := E![x1,y1];
> P2 := E![x2,y2];
> P1;
(32 : 31 : 1)
> 5*P1;
(0 : 1 : 0)
```

> P2; (38 : 47 : 1) > 5*P2; (0 : 1 : 0)

2. Let E/\mathbb{F}_q be an elliptic curve and $P \in E(\mathbb{F}_q)$ be a point of prime order n. The *n*-torsion group E[n] is defined to be

$$E[n] = \{ Q \in E(\overline{\mathbb{F}}_q) : nQ = O \}.$$

Assume the structure theorem for the *n*-torsion group E[n], which states that if (n, p) = 1 then

$$E[n] \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z},$$

and if n = p then $E[n] \cong \mathbb{Z}/n\mathbb{Z}$ or $E[n] \cong \{O\}$.

- **a.** Show that there exists a finite extension \mathbb{F}_{q^r} , and a point $Q \in E(\mathbb{F}_{q^r})$ such that $E[n] = \langle P, Q \rangle$.
- **b.** For the elliptic curve E/\mathbb{F}_{61} of the previous exercise with 5-torsion point $P = (x_1, y_1) \in E(\mathbb{F}_{61})$, find an extension \mathbb{F}_{61^r} and a point $Q \in E(\mathbb{F}_{61^r})$ generating the 5-torsion subgroup.

Solution Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be elements of E[n] which generate it as a group. Then each x_i and y_i , is an element of $\overline{\mathbb{F}}_q$. Recall that every element of $\overline{\mathbb{F}}_q$ is algebraic over \mathbb{F}_q , so lies in a finite degree extension of \mathbb{F}_q , and for each r there is a unique subfield \mathbb{F}_{q^r} of of degree r inside of $\overline{\mathbb{F}}_q$. If we take r equal to the LCM of each of the extension degrees $[\mathbb{F}_q(x_i) : \mathbb{F}_q]$, the the subfield of $\overline{\mathbb{F}}_q$ of degree r contains x_1, x_2, y_1 , and y_2 , hence P and Q are in $E(\mathbb{F}_{q^r})$. Since the coefficients any linear combination nP + mQ is determined by rational functions over \mathbb{F}_q in evaluated at the x_i and y_i , it follows that $E[n] \subseteq E(\mathbb{F}_{q^r})$.

- 3. In this exercise we investigate the conditions under which an elliptic curve can have a very large *n*-torsion subgroup E[n] contained in the set of points $E(\mathbb{F}_{p^2})$.
 - **a.** Recall that the Frobenius endomorphism π , defined by $\pi(x, y) = (x^p, y^p)$, is a homomorphism of $E(\overline{\mathbb{F}}_p)$ to itself. For each r show that

$$E(\mathbb{F}_{p^r}) = \ker(\pi^r - 1).$$

- **b.** Make use of the fact that $|E(\mathbb{F}_{p^r})|$ equals $p^r t_r + 1$ where $\pi^{2r} t_r \pi^r + p^r = 0$. If $|E(\mathbb{F}_p)| = p - t + 1$, then show that $|E(\mathbb{F}_{p^2})| = p^2 - (t^2 - 2p) + 1$.
- **c.** Suppose that *n* is a prime greater than $4\sqrt{p}$. Show that if *n* divides $|E(\mathbb{F}_p)|$ and n^2 divides $|E(\mathbb{F}_{p^2})|$ then t = 0.
- **d.** Show that if t = 0 then $|E(\mathbb{F}_{p^2})| = (p+1)^2$, and prove moreover that

$$E(\mathbb{F}_{p^2}) = E[p+1] \cong \mathbb{Z}/(p+1)\mathbb{Z} \times \mathbb{Z}/(p+1)\mathbb{Z}.$$

Hint: Show that $\pi^2 = p$ and recall that $\ker(\pi^r - 1) = E(\mathbb{F}_{p^r})$.

An elliptic curve over a field of characteristic p such that $t \equiv 0 \mod p$ is called *supersingular*. The complement of these curves are *ordinary* elliptic curves.

Solution

a. The *r*-th power π^r Frobenius endomorphism takes (x, y) to (x^{p^r}, y^{p^r}) . The fixed points (x, y) are precisely those for which x and y satisfy

$$x^{p^r} - x = y^{p^r} - y = 0,$$

i.e. the elements of $E(\mathbb{F}_{p^r})$. Since π is an group endomorphism, to say $\pi^r(x, y) = (x, y)$ is equivalent to the statement that

$$(\pi^r - 1)(x, y) = \pi^r(x, y) - (x, y) = O,$$

i.e. (x, y) is in ker $(\pi^r - 1)$.

b. It suffices to find the characteristic polynomial of π^2 , which is equal to the characteristic polynomial of the square of the representing matrix, or

$$\left(\begin{array}{cc} 0 & 1 \\ -p & t \end{array}\right)^2 = \left(\begin{array}{cc} -p & t \\ -tp & -p + t^2 \end{array}\right).$$

This gives a characteristic polynomial $X^2 - t_2 X + p^2$, where the trace t_2 is $-2p + t^2$.

- c. If n divides p-t+1 and n^2 divides $p^2 (t^2 2p) + 1$, then n divides $p+t+1 = (p^2 (t^2 2p) + 1)/(p-t+1)$. Therefore n also divides (p+t+1) (p-t+1) = 2t. Since $|t| \le 2\sqrt{p}$, the lower bound on n implies that that t = 0.
- **d.** If t = 0 then $\pi^2 = -p$, hence $\ker(\pi^2 1) = \ker(-p 1) = E[p + 1]$.