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Let E be an elliptic curve of the form

E : y2 = x3 + ax + b.

1. The multiplication-by-n maps [n] on an elliptic curve E with equation as above is
defined by simple recursive formulas for the coordinates. The maps [n] : E → E
take the form

P = (x, y) 7−→ nP = (
φn(x)

ψn(x, y)2
,
ωn(x, y)

ψn(x, y)3
).

For polynomials φn(x), ψn(x, y), and ωn(x, y). This means that the n-th multiple of
a point on E is given by the evaluation of the polynomial expressions for the image
coordiantes at the point coordinates.

The polynomials ψn(x, y) are of crucial importance since they are zero precisely on
the points of E[n] = ker([n]). They can be defined by the recursions:

ψ0 = 0 ψ1 = 1 ψ2 = 2y

ψ3 = 3x4 + 6ax2 + 12bx− a2

ψ4 = ψ2 · (2x6 + 10ax4 + 40bx3 − 10a2x2 − 8abx− (2a3 − 16b2))

ψ2m+1 = ψm+2ψ
3

m − ψm−1ψ
3

m+1 (m ≥ 2),

ψ2m = ψm(ψm+2ψ
2

m−1 − ψm−2ψ
2

m+1)/ψ2 (m > 2).

Moreover the polynomials φn are determined by φ0 = 1 and

φn = xψ2

n − ψn+1ψn−1

for all n ≥ 1.

a. Use the relation y2 = x3 + ax+ b to show that ψn(x, y)2 can be expressed as a
polynomial in x.

b. Show that this multiplication by 2 determines the addition law in the case
P1 = P2 not covered by the addition formula, and compute 2P1. How can the
group law be extended to the case x1 = x2 but y1 6= y2?

c. Let E be the elliptic curve y2 = x3 + x + 3 over F61, having 55 elements. Use
the above recursion to construct the polynomial ψ5(x). Find two roots x1 and
x2 of this polynomial and verify that they determine 5-torsion points (x1,±y1)
and (x2,±y2).

Solution



a. Using ψ2(x, y)
2 = 4(x3 + ax + b), one verifies that for odd n, the polynomial

ψn(x, y) is a polynomial only in x, and for even n that ψn(x, y)/ψ2(x, y) is a
polynomial in x. Applying the relation for ψ2(x, y)

2 again gives the result.

b. When P1 = P2 the addition law becomes multiplication by two; the only other
case not covered by the previous rule is when −P1 = P2, which is the other
case with x1 = x2, but in this case, the result is the identity O.

The duplication formula can be determined from the formulas for n = 2.

(x, y) 7→ (x2, y2) = (
φ2(x)

ψ2
2

,
ω2(x)

ψ3
2

)

First we take ψ2(x, y) = 2y, noting that ψ2
2 = 4(x3 + ax + b), and compute

φ2(x) = 4x(x3 + ax + b) − (3x4 + 6ax2 + 12bx− a2)

= x4 − 2ax2 − 8bx + a2,

then solve the equation y2
2 = x3

2 + ax2 + b for ω2(x):

w2(x) = x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− a3 − 8b2.

c. This elliptic curve, and the “division polynomial” ψ5(x) can be created in Magma

with the lines:

> E := EllipticCurve([ GF(61) | 1, 3 ]);

> psi := DivisionPolynomial(E,5);

The roots of this polynomial are then found by factoring ψ5(x):

> P<x> := Parent(psi); // define printing

> Factorization(psi);

[

<x + 23, 1>,

<x + 29, 1>,

<x^5 + 25*x^4 + 20*x^3 + 23*x^2 + 44*x + 54, 1>,

<x^5 + 45*x^4 + 26*x^3 + 19*x^2 + 20*x + 8, 1>

]

We can then verify that the roots x = 32 and x = 38 are the x-coordinates of
5-torsion points:

> x1 := FiniteField(61)!32;

> x2 := FiniteField(61)!38;

> _, y1 := IsSquare(x1^3+x1+3);

> _, y2 := IsSquare(x2^3+x2+3);

> P1 := E![x1,y1];

> P2 := E![x2,y2];

> P1;

(32 : 31 : 1)

> 5*P1;

(0 : 1 : 0)



> P2;

(38 : 47 : 1)

> 5*P2;

(0 : 1 : 0)

2. Let E/Fq be an elliptic curve and P ∈ E(Fq) be a point of prime order n. The
n-torsion group E[n] is defined to be

E[n] = {Q ∈ E(Fq) : nQ = O}.

Assume the structure theorem for the n-torsion group E[n], which states that if
(n, p) = 1 then

E[n] ∼= Z/nZ × Z/nZ,

and if n = p then E[n] ∼= Z/nZ or E[n] ∼= {O}.

a. Show that there exists a finite extension Fqr , and a point Q ∈ E(Fqr) such that
E[n] = 〈P,Q〉.

b. For the elliptic curve E/F61 of the previous exercise with 5-torsion point P =
(x1, y1) ∈ E(F61), find an extension F61r and a point Q ∈ E(F61r) generating
the 5-torsion subgroup.

Solution Let P = (x1, y1) and Q = (x2, y2) be elements of E[n] which generate it
as a group. Then each xi and yi, is an element of Fq. Recall that every element of
Fq is algebraic over Fq, so lies in a finite degree extension of Fq, and for each r there
is a unique subfield Fqr of of degree r inside of Fq. If we take r equal to the LCM of
each of the extension degrees [Fq(xi) : Fq], the the subfield of Fq of degree r contains
x1, x2, y1, and y2, hence P and Q are in E(Fqr). Since the coefficients any linear
combination nP +mQ is determined by rational functions over Fq in evaluated at
the xi and yi, it folllows that E[n] ⊆ E(Fqr).

3. In this exercise we investigate the conditions under which an elliptic curve can have
a very large n-torsion subgroup E[n] contained in the set of points E(Fp2).

a. Recall that the Frobenius endomorphism π, defined by π(x, y) = (xp, yp), is a
homomorphism of E(Fp) to itself. For each r show that

E(Fpr) = ker(πr − 1).

b. Make use of the fact that |E(Fpr)| equals pr − tr + 1 where π2r − trπ
r + pr = 0.

If |E(Fp)| = p− t+ 1, then show that |E(Fp2)| = p2 − (t2 − 2p) + 1.

c. Suppose that n is a prime greater than 4
√
p. Show that if n divides |E(Fp)|

and n2 divides |E(Fp2)| then t = 0.

d. Show that if t = 0 then |E(Fp2)| = (p+ 1)2, and prove moreover that

E(Fp2) = E[p+ 1] ∼= Z/(p+ 1)Z × Z/(p+ 1)Z.

Hint: Show that π2 = p and recall that ker(πr − 1) = E(Fpr).



An elliptic curve over a field of characteristic p such that t ≡ 0 mod p is called
supersingular. The complement of these curves are ordinary elliptic curves.

Solution

a. The r-th power πr Frobenius endomorphism takes (x, y) to (xpr

, ypr

). The fixed
points (x, y) are precisely those for which x and y satify

xpr − x = ypr − y = 0,

i.e. the elements of E(Fpr). Since π is an group endomorphism, to say πr(x, y) =
(x, y) is equivalent to the statement that

(πr − 1)(x, y) = πr(x, y) − (x, y) = O,

i.e. (x, y) is in ker(πr − 1).

b. It suffices to find the characteristic polynomial of π2, which is equal to the
characteristic polynomial of the square of the representing matrix, or

(

0 1
−p t

)2

=

(

−p t
−tp −p+ t2

)

·

This gives a characteristic polynomial X2 − t2X + p2, where the trace t2 is
−2p + t2.

c. If n divides p− t+1 and n2 divides p2− (t2−2p)+1, then n divides p+ t+1 =
(p2−(t2−2p)+1)/(p−t+1). Therefore n also divides (p+t+1)−(p−t+1) = 2t.
Since |t| ≤ 2

√
p, the lower bound on n implies that that t = 0.

d. If t = 0 then π2 = −p, hence ker(π2 − 1) = ker(−p− 1) = E[p+ 1].


