THE UNIVERSITY OF SYDNEY
MATH3925 PuBLIC KEY CRYPTOGRAPHY

Semester 2 Exercises and Solutions for Week 11 2004

Let E be an elliptic curve of the form

E:y*=2"+ax+b

1. The multiplication-by-n maps [n] on an elliptic curve E with equation as above is
defined by simple recursive formulas for the coordinates. The maps [n] : £ — E

take the form
Pnlz)  walz,y) )
Un(2,y)? Yn(z, y)?
For polynomials ¢, (z), ¥, (x,y), and w,(z,y). This means that the n-th multiple of

a point on FE is given by the evaluation of the polynomial expressions for the image
coordiantes at the point coordinates.

P=(x,y)— nP = (

The polynomials 1, (x,y) are of crucial importance since they are zero precisely on
the points of E[n| = ker([n]). They can be defined by the recursions:

%ZO Z/11:1 1/12:234

s = 3zt + 6az? + 12bx — o*

Yy = g - (22° + 10az? + 40b2® — 10a%2? — 8abxr — (2a® — 16b°))
Vomi1r = Umi2Up = Ym1¥pn (M > 2),

Vam = U (UmioViy ) — Ymai 1) /2 (m > 2).

Moreover the polynomials ¢,, are determined by ¢g = 1 and

gbn = mbi - ,lvbn-l-l,lvz)n—l
for all n > 1.

a. Use the relation y? = z° + az + b to show that 1, (z,y)? can be expressed as a
polynomial in x.

b. Show that this multiplication by 2 determines the addition law in the case
P, = P, not covered by the addition formula, and compute 2P;. How can the
group law be extended to the case x1 = x5 but y; # ys?

c. Let E be the elliptic curve y* = 2 + z + 3 over Fg;, having 55 elements. Use
the above recursion to construct the polynomial ¥5(x). Find two roots x; and
x9 of this polynomial and verify that they determine 5-torsion points (z1, +y; )
and (xq, £ya).

Solution



a. Using vo(x,y)? = 4(2® + ax + b), one verifies that for odd n, the polynomial
¥, (z,y) is a polynomial only in z, and for even n that ¢, (x,y)/vs(z,y) is a
polynomial in z. Applying the relation for ¢, (x,y)? again gives the result.

b. When P, = P, the addition law becomes multiplication by two; the only other
case not covered by the previous rule is when —P; = P,, which is the other
case with 1 = x9, but in this case, the result is the identity O.

The duplication formula can be determined from the formulas for n = 2.

(2 _ (9a(z) wa(x)
(l‘,y) (2,?/2) ( ¢§ ) ¢S )

First we take ¢ (x,y) = 2y, noting that 3 = 4(2® + ax + b), and compute

$2(z) = 42 (2® + ax + b) — (32* + 6az® + 12bx — a?)

= 2* — 2a2* — 8bx + a?,
then solve the equation y5 = x3 + axq + b for w(x):
wy(z) = 25 + bax* + 20b2* — 5a*x? — 4abr — a® — 8b*.

c. This elliptic curve, and the “division polynomial” ¢5(x) can be created in Magma
with the lines:
> E := EllipticCurve([ GF(61) | 1, 3 1);
> psi := DivisionPolynomial(E,5);
The roots of this polynomial are then found by factoring ¥5(z):
> P<x> := Parent(psi); // define printing
> Factorization(psi);
[
<x + 23, 1>,
<x + 29, 1>,
<x7b + 25%x74 + 20%x73 + 23*x"2 + 44xx + 54, 1>,
<x"5 + 45%x74 + 26%xx"3 + 19%x72 + 20*%x + 8, 1>
]
We can then verify that the roots © = 32 and = = 38 are the x-coordinates of
5-torsion points:
> x1 := FiniteField(61)!32;
x2 := FiniteField(61)!38;
_, y1 := IsSquare(x1~3+x1+3);
_, y2 := IsSquare(x273+x2+3);
P1 := E![x1,y1];
P2 := E![x2,y2];
P1;
(32 : 31 : 1)
> 5*P1;
(0 :1:0)
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> P2;

(38 : 47 : 1)
> bxP2;
0 :1:0

2. Let E/F, be an elliptic curve and P € E(F,) be a point of prime order n. The
n-torsion group F[n] is defined to be

E[n] ={Q € E(F,) : nQ = O}.

Assume the structure theorem for the n-torsion group FE[n|, which states that if
(n,p) =1 then
En| =2 Z/nZ x Z/nZ,

and if n = p then E[n] = Z/nZ or E[n] = {O}.

a. Show that there exists a finite extension F -, and a point () € E(F,) such that
Eln] = (P, Q).

b. For the elliptic curve E/Fg of the previous exercise with 5-torsion point P =
(x1,11) € E(Fg), find an extension Fg;» and a point @ € E(Fgr) generating
the 5-torsion subgroup.

Solution Let P = (z1,y1) and @ = (x9,y2) be elements of E[n] which generate it
as a group. Then each x; and y;, is an element of F,. Recall that every element of
Fq is algebraic over [F,, so lies in a finite degree extension of I, and for each r there
is a unique subfield F, of of degree r inside of E]. If we take r equal to the LCM of
each of the extension degrees [F,(z;) : F,], the the subfield of F, of degree r contains
x1, T2, Y1, and yo, hence P and @ are in E(F,). Since the coefficients any linear
combination nP 4+ m() is determined by rational functions over F, in evaluated at
the x; and y;, it folllows that E[n] C E(F,).

3. In this exercise we investigate the conditions under which an elliptic curve can have
a very large n-torsion subgroup E[n| contained in the set of points E(F,z2).

a. Recall that the Frobenius endomorphism 7, defined by n(x,y) = (27, y?), is a

homomorphism of E(F,) to itself. For each r show that
E(F,) = ker(n" — 1).

b. Make use of the fact that |E(F,-)| equals p" —t, + 1 where 72" — t, 7" 4+ p" = 0.
If |[E(F,)| = p—t+1, then show that |E(F,2)| = p*> — (¢* — 2p) + 1.

c. Suppose that n is a prime greater than 4,/p. Show that if n divides |E(F))|
and n? divides |E(F,2)| then ¢ = 0.

d. Show that if ¢ = 0 then |E(F,2)| = (p + 1), and prove moreover that
EFye)=Ep+1]=Z/(p+1)ZxZ/(p+1)Z.

Hint: Show that 7% = p and recall that ker(7" — 1) = E(F,).



An elliptic curve over a field of characteristic p such that ¢ = 0 mod p is called
supersingular. The complement of these curves are ordinary elliptic curves.

Solution
a. The r-th power 7" Frobenius endomorphism takes (x,y) to (27", y*"). The fixed
points (x,y) are precisely those for which x and y satify

T

' —r=y" —y=0,

i.e. the elements of E(F,-). Since 7 is an group endomorphism, to say 7" (z,y) =
(x,y) is equivalent to the statement that

(ﬂ-r - 1)(2L‘,y) = ﬂ-r(l‘ay) - (ZL’,y) = O,

ie. (z,y)isin ker(n" — 1).

b. It suffices to find the characteristic polynomial of 72, which is equal to the
characteristic polynomial of the square of the representing matrix, or

0 1\’ ([ -p t
-p t ) \ —tp —p+t
This gives a characteristic polynomial X? — t,X + p?, where the trace t, is

—2p +t%.

c. If n divides p—t+1 and n? divides p* — (1> —2p) + 1, then n divides p+t+1 =
(p®—(t*—2p)+1)/(p—t+1). Therefore n also divides (p+t+1)—(p—t+1) = 2t.
Since [t| < 2,/p, the lower bound on n implies that that ¢ = 0.

d. If ¢t = 0 then 72 = —p, hence ker(n? — 1) = ker(—p — 1) = E[p + 1].



