The University of Sydney
 Math3925 Public Key Cryptography

Let E be an elliptic curve of the form

$$
E: y^{2}=x^{3}+a x+b
$$

1. The multiplication-by-n maps $[n]$ on an elliptic curve E with equation as above is defined by simple recursive formulas for the coordinates. The maps $[n]: E \rightarrow E$ take the form

$$
P=(x, y) \longmapsto n P=\left(\frac{\phi_{n}(x)}{\psi_{n}(x, y)^{2}}, \frac{\omega_{n}(x, y)}{\psi_{n}(x, y)^{3}}\right) .
$$

For polynomials $\phi_{n}(x), \psi_{n}(x, y)$, and $\omega_{n}(x, y)$. This means that the n-th multiple of a point on E is given by the evaluation of the polynomial expressions for the image coordiantes at the point coordinates.
The polynomials $\psi_{n}(x, y)$ are of crucial importance since they are zero precisely on the points of $E[n]=\operatorname{ker}([n])$. They can be defined by the recursions:

$$
\begin{aligned}
& \psi_{0}=0 \quad \psi_{1}=1 \quad \psi_{2}=2 y \\
& \psi_{3}=3 x^{4}+6 a x^{2}+12 b x-a^{2} \\
& \psi_{4}=\psi_{2} \cdot\left(2 x^{6}+10 a x^{4}+40 b x^{3}-10 a^{2} x^{2}-8 a b x-\left(2 a^{3}-16 b^{2}\right)\right) \\
& \psi_{2 m+1}=\psi_{m+2} \psi_{m}^{3}-\psi_{m-1} \psi_{m+1}^{3} \quad(m \geq 2), \\
& \psi_{2 m}=\psi_{m}\left(\psi_{m+2} \psi_{m-1}^{2}-\psi_{m-2} \psi_{m+1}^{2}\right) / \psi_{2} \quad(m>2) .
\end{aligned}
$$

Moreover the polynomials ϕ_{n} are determined by $\phi_{0}=1$ and

$$
\phi_{n}=x \psi_{n}^{2}-\psi_{n+1} \psi_{n-1}
$$

for all $n \geq 1$.
a. Use the relation $y^{2}=x^{3}+a x+b$ to show that $\psi_{n}(x, y)^{2}$ can be expressed as a polynomial in x.
b. Show that this multiplication by 2 determines the addition law in the case $P_{1}=P_{2}$ not covered by the addition formula, and compute $2 P_{1}$. How can the group law be extended to the case $x_{1}=x_{2}$ but $y_{1} \neq y_{2}$?
c. Let E be the elliptic curve $y^{2}=x^{3}+x+3$ over \mathbb{F}_{61}, having 55 elements. Use the above recursion to construct the polynomial $\psi_{5}(x)$. Find two roots x_{1} and x_{2} of this polynomial and verify that they determine 5 -torsion points ($x_{1}, \pm y_{1}$) and $\left(x_{2}, \pm y_{2}\right)$.

Solution

a. Using $\psi_{2}(x, y)^{2}=4\left(x^{3}+a x+b\right)$, one verifies that for odd n, the polynomial $\psi_{n}(x, y)$ is a polynomial only in x, and for even n that $\psi_{n}(x, y) / \psi_{2}(x, y)$ is a polynomial in x. Applying the relation for $\psi_{2}(x, y)^{2}$ again gives the result.
b. When $P_{1}=P_{2}$ the addition law becomes multiplication by two; the only other case not covered by the previous rule is when $-P_{1}=P_{2}$, which is the other case with $x_{1}=x_{2}$, but in this case, the result is the identity O.
The duplication formula can be determined from the formulas for $n=2$.

$$
(x, y) \mapsto\left(x_{2}, y_{2}\right)=\left(\frac{\phi_{2}(x)}{\psi_{2}^{2}}, \frac{\omega_{2}(x)}{\psi_{2}^{3}}\right)
$$

First we take $\psi_{2}(x, y)=2 y$, noting that $\psi_{2}^{2}=4\left(x^{3}+a x+b\right)$, and compute

$$
\begin{aligned}
\phi_{2}(x) & =4 x\left(x^{3}+a x+b\right)-\left(3 x^{4}+6 a x^{2}+12 b x-a^{2}\right) \\
& =x^{4}-2 a x^{2}-8 b x+a^{2}
\end{aligned}
$$

then solve the equation $y_{2}^{2}=x_{2}^{3}+a x_{2}+b$ for $\omega_{2}(x)$:

$$
w_{2}(x)=x^{6}+5 a x^{4}+20 b x^{3}-5 a^{2} x^{2}-4 a b x-a^{3}-8 b^{2} .
$$

c. This elliptic curve, and the "division polynomial" $\psi_{5}(x)$ can be created in Magma with the lines:

```
> E := EllipticCurve([ GF(61) | 1, 3 ]);
> psi := DivisionPolynomial(E,5);
```

The roots of this polynomial are then found by factoring $\psi_{5}(x)$:

```
> P<x> := Parent(psi); // define printing
> Factorization(psi);
[
```

```
<x + 23, 1>,
```

<x + 23, 1>,
<x + 29, 1>,
<x + 29, 1>,
<x^5 + 25*x^4 + 20*x^3 + 23*x^2 + 44*x + 54, 1>,
<x^5 + 25*x^4 + 20*x^3 + 23*x^2 + 44*x + 54, 1>,
<x^5 + 45*x^4 + 26*x^3 + 19*x^2 + 20*x + 8, 1>
<x^5 + 45*x^4 + 26*x^3 + 19*x^2 + 20*x + 8, 1>
]

```

We can then verify that the roots \(x=32\) and \(x=38\) are the \(x\)-coordinates of 5 -torsion points:
```

> x1 := FiniteField(61)!32;
> x2 := FiniteField(61)!38;
> _, y1 := IsSquare(x1^3+x1+3);
> _, y2 := IsSquare(x2^3+x2+3);
> P1 := E![x1,y1];
> P2 := E![x2,y2];
> P1;
(32 : 31 : 1)
> 5*P1;
(0 : 1 : 0)

```
```

> P2;
(38 : 47 : 1)
> 5*P2;
(0: 1 : 0)

```
2. Let \(E / \mathbb{F}_{q}\) be an elliptic curve and \(P \in E\left(\mathbb{F}_{q}\right)\) be a point of prime order \(n\). The \(n\)-torsion group \(E[n]\) is defined to be
\[
E[n]=\left\{Q \in E\left(\overline{\mathbb{F}}_{q}\right): n Q=O\right\} .
\]

Assume the structure theorem for the \(n\)-torsion group \(E[n]\), which states that if \((n, p)=1\) then
\[
E[n] \cong \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}
\]
and if \(n=p\) then \(E[n] \cong \mathbb{Z} / n \mathbb{Z}\) or \(E[n] \cong\{O\}\).
a. Show that there exists a finite extension \(\mathbb{F}_{q^{r}}\), and a point \(Q \in E\left(\mathbb{F}_{q^{r}}\right)\) such that \(E[n]=\langle P, Q\rangle\).
b. For the elliptic curve \(E / \mathbb{F}_{61}\) of the previous exercise with 5 -torsion point \(P=\) \(\left(x_{1}, y_{1}\right) \in E\left(\mathbb{F}_{61}\right)\), find an extension \(\mathbb{F}_{61^{r}}\) and a point \(Q \in E\left(\mathbb{F}_{61^{r}}\right)\) generating the 5 -torsion subgroup.

Solution Let \(P=\left(x_{1}, y_{1}\right)\) and \(Q=\left(x_{2}, y_{2}\right)\) be elements of \(E[n]\) which generate it as a group. Then each \(x_{i}\) and \(y_{i}\), is an element of \(\overline{\mathbb{F}}_{q}\). Recall that every element of \(\overline{\mathbb{F}}_{q}\) is algebraic over \(\mathbb{F}_{q}\), so lies in a finite degree extension of \(\mathbb{F}_{q}\), and for each \(r\) there is a unique subfield \(\mathbb{F}_{q^{r}}\) of of degree \(r\) inside of \(\overline{\mathbb{F}}_{q}\). If we take \(r\) equal to the LCM of each of the extension degrees \(\left[\mathbb{F}_{q}\left(x_{i}\right): \mathbb{F}_{q}\right]\), the the subfield of \(\overline{\mathbb{F}}_{q}\) of degree \(r\) contains \(x_{1}, x_{2}, y_{1}\), and \(y_{2}\), hence \(P\) and \(Q\) are in \(E\left(\mathbb{F}_{q^{r}}\right)\). Since the coefficients any linear combination \(n P+m Q\) is determined by rational functions over \(\mathbb{F}_{q}\) in evaluated at the \(x_{i}\) and \(y_{i}\), it folllows that \(E[n] \subseteq E\left(\mathbb{F}_{q^{r}}\right)\).
3. In this exercise we investigate the conditions under which an elliptic curve can have a very large \(n\)-torsion subgroup \(E[n]\) contained in the set of points \(E\left(\mathbb{F}_{p^{2}}\right)\).
a. Recall that the Frobenius endomorphism \(\pi\), defined by \(\pi(x, y)=\left(x^{p}, y^{p}\right)\), is a homomorphism of \(E\left(\overline{\mathbb{F}}_{p}\right)\) to itself. For each \(r\) show that
\[
E\left(\mathbb{F}_{p^{r}}\right)=\operatorname{ker}\left(\pi^{r}-1\right) .
\]
b. Make use of the fact that \(\left|E\left(\mathbb{F}_{p^{r}}\right)\right|\) equals \(p^{r}-t_{r}+1\) where \(\pi^{2 r}-t_{r} \pi^{r}+p^{r}=0\). If \(\left|E\left(\mathbb{F}_{p}\right)\right|=p-t+1\), then show that \(\left|E\left(\mathbb{F}_{p^{2}}\right)\right|=p^{2}-\left(t^{2}-2 p\right)+1\).
c. Suppose that \(n\) is a prime greater than \(4 \sqrt{p}\). Show that if \(n\) divides \(\left|E\left(\mathbb{F}_{p}\right)\right|\) and \(n^{2}\) divides \(\left|E\left(\mathbb{F}_{p^{2}}\right)\right|\) then \(t=0\).
d. Show that if \(t=0\) then \(\left|E\left(\mathbb{F}_{p^{2}}\right)\right|=(p+1)^{2}\), and prove moreover that
\[
E\left(\mathbb{F}_{p^{2}}\right)=E[p+1] \cong \mathbb{Z} /(p+1) \mathbb{Z} \times \mathbb{Z} /(p+1) \mathbb{Z}
\]

Hint: Show that \(\pi^{2}=p\) and recall that \(\operatorname{ker}\left(\pi^{r}-1\right)=E\left(\mathbb{F}_{p^{r}}\right)\).

An elliptic curve over a field of characteristic \(p\) such that \(t \equiv 0 \bmod p\) is called supersingular. The complement of these curves are ordinary elliptic curves.

\section*{Solution}
a. The \(r\)-th power \(\pi^{r}\) Frobenius endomorphism takes \((x, y)\) to \(\left(x^{p^{r}}, y^{p^{r}}\right)\). The fixed points \((x, y)\) are precisely those for which \(x\) and \(y\) satify
\[
x^{p^{r}}-x=y^{p^{r}}-y=0,
\]
i.e. the elements of \(E\left(\mathbb{F}_{p^{r}}\right)\). Since \(\pi\) is an group endomorphism, to say \(\pi^{r}(x, y)=\) \((x, y)\) is equivalent to the statement that
\[
\left(\pi^{r}-1\right)(x, y)=\pi^{r}(x, y)-(x, y)=O
\]
i.e. \((x, y)\) is in \(\operatorname{ker}\left(\pi^{r}-1\right)\).
b. It suffices to find the characteristic polynomial of \(\pi^{2}\), which is equal to the characteristic polynomial of the square of the representing matrix, or
\[
\left(\begin{array}{cc}
0 & 1 \\
-p & t
\end{array}\right)^{2}=\left(\begin{array}{cc}
-p & t \\
-t p & -p+t^{2}
\end{array}\right)
\]

This gives a characteristic polynomial \(X^{2}-t_{2} X+p^{2}\), where the trace \(t_{2}\) is \(-2 p+t^{2}\).
c. If \(n\) divides \(p-t+1\) and \(n^{2}\) divides \(p^{2}-\left(t^{2}-2 p\right)+1\), then \(n\) divides \(p+t+1=\) \(\left(p^{2}-\left(t^{2}-2 p\right)+1\right) /(p-t+1)\). Therefore \(n\) also divides \((p+t+1)-(p-t+1)=2 t\). Since \(|t| \leq 2 \sqrt{p}\), the lower bound on \(n\) implies that that \(t=0\).
d. If \(t=0\) then \(\pi^{2}=-p\), hence \(\operatorname{ker}\left(\pi^{2}-1\right)=\operatorname{ker}(-p-1)=E[p+1]\).```

