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Semester 2 Exercises and Solutions for Week 13 2004

Exam Revision Questions

1. a. Find an isomorphism between Z/3Z× Z/7Z and Z/21Z.

b. What are the abelian invariants of Z/14Z× Z/21Z?

Solution

a. We first define the map Z/21Z → Z/3Z × Z/7Z by 1 7→ (1, 1), then use the
Chinese Remainder Theorem to construct the inverse. A solution 3x + 7y = 1
to the extended GCD provides congruences 7y ≡ 1 mod 3 and 3x ≡ 1 mod 7.
Then the map (a, b) 7→ 7ya + 3xb satisfies

7ya + 3xb ≡ a mod 3,
7ya + 3xb ≡ b mod 7.

The particular solutions x = −2 and y = 1 let us write the inverse map as
(a, b) 7→ 7a− 6b.

b. The abelian invariants are [7, 42], i.e. the group is isomorphic to the group
Z/7Z× Z/42Z.

2. a. Express the 2-torsion subgroup of Z/NZ∗ in terms of the factorization of N .
Consider N odd, N ≡ 2 mod 4, N ≡ 4 mod 8 and N ≡ 0 mod 8.

b. Find the 2-torsion subgroup of Z/17·19Z∗.
Solution

a. The 2-torsion of Z/NZ∗ is isomorphic to the product of the 2-torsion in Z/pnZ∗,
for each prime power pn||N . For an odd prime p dividing N this contributes
one copy of {±1}. For p = 2, we have to consider the 2-torsion groups

Z/2Z∗[2] = {1},
Z/4Z∗[2] = {±1},
Z/8Z∗[2] = {±1,±5}

The latter group is isomorphic to Z/2Z× Z/2Z, and for any n ≥ 3 the group
Z/2nZ∗[2] is isomorphic. Explicitly the 2-torsion elements of this group are
{±1,±1 + 2n−1}.

b. The 2-torsion subgroup consists of those elements which reduce to ±1 modulo
17 and 19. As in question 1(a), we find solutions x = −10 and y = 9 to
17x + 19y = 1. Then the element 18 = 9 · 19 + 10 · 17 is 1 modulo 17 and −1
modulo 19 so the four 2-torsion elements are {±1,±18}.



3. Let G = Z/2Z× Z/8Z, let H be the subgroup generated by (1, 2). Prove that each
of the maps ϕ : G → Z/4Z given by (i) ϕ(x, y) = 2x + y, (ii) ϕ(x, y) = 2x + 3y,
and (iii) ϕ(x, y) = y are homomorphisms, and determine for which of the maps H
is the kernel of ϕ.

Solution That each map is a homomorphism is clear since they are all linear. Since
(1, 2) is in the kernel of each of the first two maps, and not in the third, we conclude
that H = ker(ϕ) for all but the last map.

4. a. Explain how relations n2−m2 ≡ 0 mod N determine factorizations of N . When
does this give rise to a trivial factorization?

b. How do relations n2 −m2 ≡ 0 mod N correspond to elements of the 2-torsion
subgroup of Z/NZ∗?

c. Prove that any function that produces random elements of Z/NZ∗[2] results
in a probabilistic factorization algorithm for N .

d. Demonstrate this principle for N = 851, obtaining a factorization.

Solution

a. A relation n2−m2 ≡ 0 mod N , for n and m coprime to N , yields a factorization
N = GCD(N, n −m) · GCD(N, n + m). The trivial factorization results n ≡
±m mod N .

b. To any such n and m, the element m−1n is a 2-torsion of Z/NZ∗.
c. Any 2-torsion element u different from ±1 yields a nontrivial factorization

N = GCD(N, u− 1) ·GCD(N, u + 1).

d. Note that 851 = 900 − 49 = 302 − 72. Thus GCD(30 − 7, 851) − 23 and
GCD(30+7, 851) = 37 are factors of 851; the associated 2-torsion elements are
±30 · 7−1.

5. Find the kernel of the homomorphism Z4 → Z/37Z∗ taking the standard basis
elements of Z4 to 2, 3, 5, and 7.

Solution We make use of the obvious relation −1 = 2232 for reducing relations in
which −1 occur. We observer the following elementary relations

1) 24 34 = 1 (4, 4, 0, 0)
2) 5 · 7 = 37− 2 = −2 = 23 32 (3, 2,−1,−1)
3) 2 · 3 · 7 = 37 + 5 = 5 (1, 1,−1, 1)
4) 2 · 3 · 5 = 37− 7 = −7 = 22 32 7 (1, 1,−1, 1)
5) 23 5 = 40 = 3 (3,−1, 1, 0)

The relations 3) and 4) determine the same element of the kernel, but the remaining
elements are independent and generate the kernel since the determinant of the basis
matrix is 36 = ϕ(37).



6. a. Describe an algorithm to compute the Jacobi symbol

(a

n

)
∈ {±1},

and give an interpretation of this value when n is prime.

b. Define Euler, Fermat, and strong pseudoprimes.

c. Show that an Euler pseudoprime base a is a Fermat pseudoprime base a.

d. Describe the Miller–Rabin primality test.

Solution First we recall the algorithm defining of the Jacobi symbol – a group
homomorphism from Z/nZ∗ to {±1}, then the definitions of Fermat, Euler, and
strong pseudoprime base a.

a. The Jacobi symbol is defined for n odd and GCD(a, n) = 1. For two odd
numbers a and n we define

(a

n

)
= (−1)e

(n

a

)

where e = (n− 1)(a− 1)/4, and

(−1

n

)
= (−1)(n−1)/4

(
2

n

)
= (−1)(n−1)/8

and for prime n, the value of the Jacobi symbol is 1 when a is a square and
−1 when a is a nonsquare. Since the Jacobi symbol is well-defined for any
representative a mod n, we may recursively solve for the Jacobi symbol in terms
of n mod a where we take a representative for n in the range −a/2 < n ≤ a/2.

b. A Fermat pseudoprime n base a is an odd composite number which satisfies
an−1 ≡ 1 mod n.

An Euler pseudoprime n base a is an odd composite which satisfies

a(n−1)/2 ≡
(a

n

)
mod n,

where the right hand side is the Jacobi symbol of a mod n.

A strong pseudoprime base a is one which satisfies the condition that for a
factorization n− 1 = 2tm with m odd, the sequence

a0 = am mod n, a1 = a2
0 mod n, a2 = a2

1 mod n, . . .

has a tail of 1’s, and if a0 6= 1, then −1 preceeds the first occurrence of 1.

c. The test checks, for t randomly selected a in Z/NZ∗, whether N is a strong
pseudoprime base a.

7. a. Describe the baby-step, giant-step algorithm, Pollard ρ algorithm, and index
calculus algorithm for determining the factorization of an integer N .



b. Explain the applications of these algorithms, or modified versions of these
algorithms, the discrete logarithm problem in F∗p.

Solution

a. Baby-step, giant-step: Given N be an integer and let g and h be in Z/NZ∗ such
that h is in the cyclic subgroup generated by g. For the baby-step, giant-step
algorithm, set s be the least integer greater than

√
N . Then form the indexed

set of 1, g, g2, . . . , gs−1. Each element gi should associated with its exponent i,
and allow for efficient hashed lookup. Now compute h, then hgs, hg2s, . . . until
finding a match hgsj = gi. Then the identity h = gi−sj holds, so logg(h) =
i− sj.

Pollard ρ and index calculus: refer to the tutorial solutions and your lecture
notes.

b. The goal of these algorithms in factorization is to find the group order n of
Z/NZ∗. This is obtained by a relation of the form xi = xj, from which n|(i−j).
In computing a discrete logarithm logx(y) the goal is to find a relation of the
form xiyk = xjyl. Then, using the group order p− 1, the discrete logarithm is
(i− j)(k − l)−1 mod (p− 1), provided the inverse of k − l exists.

8. Show that the knowledge of the order of Z/NZ∗ is probabilistically expected poly-
nomial time equivalent to the factorization of N .

Solution If ϕ(N) is given, we can partially factor it as 2tm, where m is odd. For
random a we consider the sequence

am, a2m, . . . , a2tm = 1.

Since am is a random element element of [m](Z/NZ)∗, a group of order 2t, it is
equal to 1 with probability 1/2t. If not equal to 1, then some element of the
sequence is a nontrivial 2-torsion element. With probability at most 1/(e−1), where
e = |Z/NZ∗[2]|, that 2-torsion element is−1. In the worse-case senario (t = 2, e = 4)
for any N , a random a determines a 2-torsion element u not equal to −1 with
probability at least 1/2. A nontrivial factorization ensues from GCD(u2 − 1, N) =
GCD(u − 1, N)GCD(u + 1, N). Repeated application of random choice of a gives
an expected polynomial time factorization.

9. How many subfields does Fp36 have?

Solution Nine: Fp, Fp2 , Fp3 , Fp4 , Fp6 , Fp9 , Fp12 , Fp18 , and Fp36 .

10. Describe several classes of groups used in cryptography which are ammenable to
index calculus attacks, and list the types of smoothness bases used for their con-
struction.

Solution Both the RSA protocol, using a group Z/NZ∗ and ElGamal protocols in
F∗q are subject to index calculus attacks. The possible factorization bases are small
primes in Z for Z/NZ∗ and unit groups of prime fields F∗p, small degree polynomials
in Fp[x] for unit groups of large extensions Fq of a small prime field Fp.



11. Suppose that |E(F11)| = 16. What is the minimal polynomial of the Frobenius
endomorphism π? What are the possible group structures for E(F11)? What are
the possible group structures for an arbitrary abelian group of order 16?

Solution Writing 16 = 11 + 4 + 1, we find that the minimal polynomial of the
Frobenius endomorphism is X2 + 4X + 11. The possible groups of rational points
on an elliptic curve of order 16 are

Z/4Z× Z/4Z, Z/2Z× Z/8Z, or Z/16Z.

Since the Weil pairing e4 must take a pair of generators for the 4-torsion to a 4-th
root of unity, we see that the first possibility is excluded over F11, since no 4-th root
of unity exists in F∗11. This leaves only two possibilities for E(F11). An arbitrary
abelian group of this order can be one of the above groups or

Z/2Z× Z/2Z× Z/2Z× Z/2Z, or Z/2Z× Z/2Z× Z/4Z.

12. Let E be the elliptic curve y2 = x3 + x + 3 over F17. Given the points P = (3, 13),
and Q = (7, 8) in E(F17), find P + Q.

Solution We solve for the line L : y = ax + b passing through the points P and Q.
The slope is a = (13 − 8)/(3 − 7) = 5/(−4) = 3 in F17, since 4 · (−4) = −16 = 1,
and then we find b = 4. The third point of intersection of L with E is R = (−1, 1).
We obtain this point by making the substitution

y2 = (3x + 4)2 = x3 + x + 3,

and solving the resulting equation x3 + 8x2 + 11x + 4 by dividing out x − 3 and
x − 7. The value of y is obtained by substituting back into L. This means that
P + Q + R = O, the group identity, so −R = (−1,−1) is the sum P + Q.

13. Let E be the supersingular elliptic curve y2 = x3 + 4x + 7 over F13, P = (7, 1) ∈
E(F13) a point of order 7, and Q = (5, 3) in 〈P 〉.

a. What are the group structures of E(F13) and E(F132)?

b. Let F132 = F13[x]/(x2 − x + 2) and set R = (0, 10x̄ + 8) ∈ E(F132)[7]. Given
that e7(P, R) = x̄ + 3 and e7(Q,R) = 4x̄ + 3, find logP (Q).

Solution

a. One can check that the point (6, 0) is a 2-torsion element, hence the group
order of E(F13 is divisible by 14. But this is the only possibility for a group
of size 13 − t + 1 with |t| ≤ 2

√
13. Therefore t = 0, E is supersingular,

E(F13) ∼= Z/14Z, and E(F132) ∼= (Z/14Z)2.

b. One checks that both logP (Q) = logx̄+3(4x̄ + 3) = 4.



14. Find the 2-torsion points on the elliptic curve E of the previous question. Which
points are in E(F13) and which points are in E(F132)?

Solution The 2-torsion points are the points of the form (x0, 0), since −(x0, 0) =
(x0, 0). We just need to find the roots x0 of the polynomial x3 + 4x + 7 over F13.
Since |E(F13)| = 14, there is only one 2-torsion point in E(F13), which corresponds
to the root x0 = 6. The other two nontrivial 2-torsion points come from the two
roots x0 of x2 + 6x + 1 in F132 .

15. Describe the ElGamal protocol as used on an elliptic curve. What data does a public
key contain? What data does the private key contain?

Solution Refer to your lecture notes for the description of the protocol. The public
key contains (E, P, Q, n, h) where E is an elliptic curve over a finite field Fq, P is
a point of order n, Q is an element of the group P generates, and h is the cofactor
order |E(Fq)/〈P 〉|. The private key is the discrete logarithm x = logP (Q).

16. Compare the groups used in the RSA protocol and the ElGamal protocol.

Solution The group used for RSA is a unit group Z/NZ∗ for N = p1p2, where p1

and p2 are odd primes. This means that it is not cyclic, since the quotient groups
Z/p1Z∗ and Z/p2Z∗ each have even group order. The group used for ElGamal is
the cyclic group F∗p of units in a finite field. Moreover by construction it must have
a large prime order subgroup, which is often required to be (p − 1)/2. In the case
of the RSA groups, the largest possible order of a prime subgroup is (p1 − 1)/2 or
(p2 − 1)/2, which are each on the order

√
N .

17. State the properties of the Weil pairing.

Solution The Weil pairing en : E[n]×E[n] → F∗q on an elliptic E over a finite field

Fq is a map into the n-th roots of unity of F∗q. If ζn is a generator for the n-th roots
of unity, then the Weil pairing satisfies the following four properties:

a. Bilinearity:
en(xP, yQ) = en(P,Q)xy for all P,Q ∈ E[n] and x, y ∈ Z;

b. Alternating:
en(Q,P ) = en(P, Q)−1 for all P, Q in E[n];

c. Nondegeneracy:
For every P ∈ E[n] there exists Q ∈ E[n] such that en(P,Q) = ζn.

d. Rationality:
The Weil pairing induces a map

en : E(Fqr)[n]× E(Fqr)[n] → F∗qr

for every finite extension Fqr of Fq.

18. Describe the MOV algorithm for reducing an elliptic curve discrete logarithm prob-
lem to a finite field discrete logarithm. Explain why this does not generally result
in an efficient algorithm.



Solution See Tutorial 12 for discussion of the Weil pairing and MOV reduction.
For general elliptic curves this method fails to be of practical use since the degree r
of the extension Fqr in which the image of the Weil pairing is defined (i.e. the field
of definition for the full n-torsion subgroup E[n]) is exponential in log(q).

19. Give the definition of a supersingular elliptic curve in terms of the trace of the
Frobenius endomorphism. Given a supersingular elliptic curve over Fp, for a prime
p > 3, prove that E(Fp2) = E[p + 1].

Solution Refer to the notes from class for the full proof. The basic idea is that
E(Fp2) = ker(π2−1), and, from the minimal polynomial of π, we see that π2 = −p−1
so E(Fp2) = E[p + 1].

20. Let E/Fp with |E(Fp)| = p− t + 1.

a. Determine the characteristic polynomial χr(x) of the r-th power πr of the
Frobenius endomorphism, for 1 ≤ r ≤ 4.

b. Prove that the exponent of E(Fpr) divides χr(1) for all r.

c. Using the stronger result that |E(Fpr)| = χr(1), find the order of E(Fpr) when
p = 7, t = 1, and 1 ≤ r ≤ 5.

Solution

a. Recall that the characteristic polynomial of πr is equal to the characteristic
polynomial of the r-th power of the matrix

F =

(
0 1
−p t

)
,

and has the form χr(x) = x2 − trx + pr, where tr is its trace. The first few
powers of this matrix are

F 2 =

( −p t
−tp t2 − p

)
and F 3 =

( −tp t2 − p
−t2p + p2 t3 − 2tp

)
,

of trace t2 = t2 − 2p and t3 = t3 − 3tp. Then F 4 = (F 2)2 has trace t4 =
t22 − 2p2 = t4 − 4t2p + 2p2.

b. We prove that the group exponent of E(Fpr) divides χr(1), by the observation
that

O = (π2r − trπ
r + pr)P = (1− tr + pr)P = χr(1)P

for every P in E(Fpr) since πr(P ) = P .

c. Substituting into the above formulas we get t2 = −13, t3 = −20, and t4 = 71.
Extending the calculations further for this value of t and p, we find t5 = 211.
We then find the numbers of points pr − tr + 1 to equal 7, 63, 364, 2331, and
16597.


