Semester 2	Exercises for Week 1	2004
------------	----------------------	------

Residue Class Rings. Let n and m be integers with no common factors. We say that n and m are *coprime*. The Chinese Remainder Theorem says that $\mathbb{Z}/n\mathbb{Z}$ and $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ are isomorphic.

Torsion Subgroups. Given an additive abelian group A, the *p*-torsion subgroup A[p] of A is the subgroup $\{x \in A \mid px = 0\}$. For a multiplicative abelian group G, the *p*-torsion subgroup G[p] is the subgroup $\{x \in G \mid x^p = 1\}$.

- **1.** Let n and m be coprime integers.
 - **a.** Prove that there exist integers r and s such that rn + sm = 1. An algorithm for producing r and s is called the extended greatest common divisor, or XGCD.
 - **b.** Show that the diagonal map

$$\mathbb{Z}/nm\mathbb{Z}\longrightarrow \mathbb{Z}/n\mathbb{Z}\times\mathbb{Z}/m\mathbb{Z}$$

given by $x \mapsto (x, x)$ is injective, and conclude that it is an isomorphism.

- c. Define the inverse to the diagonal map of the previous part using solutions r and s to the XGCD.
- **d.** The Magma syntax for creating the map $\mathbb{Z}/323\mathbb{Z} \to \mathbb{Z}/17\mathbb{Z} \times \mathbb{Z}/19\mathbb{Z}$ is

m := 17; n := 19; A<x> := AbelianGroup([m*n]); B<x1,x2> := AbelianGroup([m,n]); h := hom< A -> B | g :-> [v[1],v[1]] where v := Eltseq(g) >; h(x); // x1 + x2

Use the function XGCD to construct the inverse map.

N.B. The function Eltseq is short for ElementToSequence and is used to extract the defining coordinates for many types of Magma elements which are defined by underlying sequences.

2. Let n be an odd integer which is the product of two primes p and q.

- **a.** Show that $\mathbb{Z}/n\mathbb{Z}^*[2]$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- **b.** Given an element $g \in \mathbb{Z}/n\mathbb{Z}^*[2]$, not equal to ± 1 , show how to find a factorization of *n*. *Hint:* consider the image of *g* in $\mathbb{Z}/p\mathbb{Z}^* \times \mathbb{Z}/q\mathbb{Z}^*$.