Semester 2	Exercises for Week 2	2004

1. Let G be an abelian group of order $p^n q^m$ for primes p and q. What are the possible dimensions of G[p] and G[q] as vector spaces?

Hint: Show that $G = G_1 \times G_2$ where $G_1 = [q^m](G)$ and $G_2 = [p^n](G)$. Prove that $|G_1| = p^n$ and $|G_2| = q^m$, then consider the possible *p*-torsion and *q*-torsion subgroups in each of G_1 and G_2 .

2. Let n = 1547 and let $g_1 = 2$, $g_2 = 3$, $g_3 = 5$, and $g_4 = 11$ in $\mathbb{Z}/n\mathbb{Z}^*$.

a. Verify the relations $g_1 g_3 = g_2^5 g_4^2$, $g_1^3 g_2 = g_3^3 g_4^4$, $g_1^6 g_4^2 = g_2^2$, and $g_1^3 g_2^5 g_3^3 = g_4^2$.

- **b.** Let $\phi : \mathbb{Z}^4 \to \mathbb{Z}/n\mathbb{Z}^*$ be the homomorphism taking the standard basis to the generators $\{g_1, g_2, g_3, g_4\}$. What is the kernel of ϕ ?
- c. What is the order and what is the exponent of the group $\mathbb{Z}/n\mathbb{Z}^*$?
- **d.** Determine the dimension r of $\mathbb{Z}/n\mathbb{Z}^*[3]$ as a vector space over \mathbb{F}_3 , and define an isomorphism from \mathbb{F}_3^r with $\mathbb{Z}/n\mathbb{Z}^*[3]$.
- **3.** Let *n* be the Mersenne number $2^{29} 1 = 536870911$.
 - **a.** Prove that $|\mathbb{Z}/n\mathbb{Z}^*|$ is divisible by 29.
 - **b.** What does the following Magma code do?

```
Z := Integers();
R := ResidueClassRing(N);
a := (R!3)^29;
for r in [1..80] do
        printf "%30: %o\n", r, GCD(Z!(a^r-1),N);
end for;
```

c. Now consider the set of 19 generators

 $\{-1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61\}$

inside of the group \mathbb{Q}^* , and label them g_1, \ldots, g_{19} . These define a map

$$\mathbb{Z}^{19} \longrightarrow \mathbb{Z}/n\mathbb{Z}^*,$$

by the map $(n_1, \ldots, n_{19}) \mapsto g_1^{n_1} \cdots g_{19}^{n_{19}}$, for which we find a matrix of 2-torsion relations

That is, for any row (n_1, \ldots, n_{19}) we have

$$\prod_{i=1}^{19} g_i^{2n_i} \equiv 1 \bmod n.$$

Suppose that n = pq, with GCD(p,q) = 1, so that

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}.$$

We hope that a 2-torsion element u satisfies

$$u \equiv 1 \mod p$$
 but $u \not\equiv 1 \mod q$.

If such is the case, then $p | \operatorname{GCD}(u-1, n) \neq n$ and we have found a nontrivial factorization. In particular, the second line of this relation matrix gives the equality:

$$(2^{4}5^{2})^{2} \equiv (11^{3}13^{3}17^{4}19^{4}23^{2}29^{2}31^{6}37^{4}41^{4}43^{5}47^{4}53^{7}59^{4}61^{3})^{2} \mod n$$

from which we can derive the factorization

$$\operatorname{GCD}(n, 2^45^2 - 11^313^317^419^423^229^231^637^441^443^547^453^759^461^3) = 1103.$$

Compute the other factorizations determined by the 2-torsion relations.