1. Let G be an abelian group of order $p^{n} q^{m}$ for primes p and q. What are the possible dimensions of $G[p]$ and $G[q]$ as vector spaces?
Hint: Show that $G=G_{1} \times G_{2}$ where $G_{1}=\left[q^{m}\right](G)$ and $G_{2}=\left[p^{n}\right](G)$. Prove that $\left|G_{1}\right|=p^{n}$ and $\left|G_{2}\right|=q^{m}$, then consider the possible p-torsion and q-torsion subgroups in each of G_{1} and G_{2}.
2. Let $n=1547$ and let $g_{1}=2, g_{2}=3, g_{3}=5$, and $g_{4}=11$ in $\mathbb{Z} / n \mathbb{Z}^{*}$.
a. Verify the relations $g_{1} g_{3}=g_{2}^{5} g_{4}^{2}, g_{1}^{3} g_{2}=g_{3}^{3} g_{4}^{4}, g_{1}^{6} g_{4}^{2}=g_{2}^{2}$, and $g_{1}^{3} g_{2}^{5} g_{3}^{3}=g_{4}^{2}$.
b. Let $\phi: \mathbb{Z}^{4} \rightarrow \mathbb{Z} / n \mathbb{Z}^{*}$ be the homomorphism taking the standard basis to the generators $\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}$. What is the kernel of ϕ ?
c. What is the order and what is the exponent of the group $\mathbb{Z} / n \mathbb{Z}^{*}$?
d. Determine the dimension r of $\mathbb{Z} / n \mathbb{Z}^{*}[3]$ as a vector space over \mathbb{F}_{3}, and define an isomorphism from \mathbb{F}_{3}^{r} with $\mathbb{Z} / n \mathbb{Z}^{*}[3]$.
3. Let n be the Mersenne number $2^{29}-1=536870911$.
a. Prove that $\left|\mathbb{Z} / n \mathbb{Z}^{*}\right|$ is divisible by 29 .
b. What does the following Magma code do?
```
Z := Integers();
R := ResidueClassRing(N);
a := (R!3) ^29;
for r in [1..80] do
    printf "%3o: %o\n", r, GCD(Z!(a^r-1),N);
end for;
```

c. Now consider the set of 19 generators

$$
\{-1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61\}
$$

inside of the group \mathbb{Q}^{*}, and label them g_{1}, \ldots, g_{19}. These define a map

$$
\mathbb{Z}^{19} \longrightarrow \mathbb{Z} / n \mathbb{Z}^{*}
$$

by the map $\left(n_{1}, \ldots, n_{19}\right) \mapsto g_{1}^{n_{1}} \cdots g_{19}^{n_{19}}$, for which we find a matrix of 2 -torsion relations

$$
\left[\begin{array}{rrrrrrrrrrrrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -4 & 0 & -2 & 0 & 3 & 3 & 4 & 4 & 2 & 2 & 6 & 4 & 4 & 5 & 4 & 7 & 4 \\
3 \\
1 & 1-4 & 2 & 2 & 3 & 3 & 5 & 2 & 2 & 6 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
0 & -2 & -1 & -3 & 3 & 4 & 0 & 4 & 1 & 5 & 5 & 6 & 2 & 2 & 3 & 3 & 3 & 4
\end{array}\right]
$$

That is, for any row $\left(n_{1}, \ldots, n_{19}\right)$ we have

$$
\prod_{i=1}^{19} g_{i}^{2 n_{i}} \equiv 1 \bmod n
$$

Suppose that $n=p q$, with $\operatorname{GCD}(p, q)=1$, so that

$$
\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / q \mathbb{Z}
$$

We hope that a 2 -torsion element u satisfies

$$
u \equiv 1 \bmod p \text { but } u \not \equiv 1 \bmod q .
$$

If such is the case, then $p \mid \operatorname{GCD}(u-1, n) \neq n$ and we have found a nontrivial factorization. In particular, the second line of this relation matrix gives the equality:

$$
\left(2^{4} 5^{2}\right)^{2} \equiv\left(11^{3} 13^{3} 17^{4} 19^{4} 23^{2} 29^{2} 31^{6} 37^{4} 41^{4} 43^{5} 47^{4} 53^{7} 59^{4} 61^{3}\right)^{2} \bmod n
$$

from which we can derive the factorization

$$
\operatorname{GCD}\left(n, 2^{4} 5^{2}-11^{3} 13^{3} 17^{4} 19^{4} 23^{2} 29^{2} 31^{6} 37^{4} 41^{4} 43^{5} 47^{4} 53^{7} 59^{4} 61^{3}\right)=1103
$$

Compute the other factorizations determined by the 2-torsion relations.

