The University of Sydney Math3925 Public Key Cryptography

Semester 2	Exercises for Week 5	2004

- 1. Consider the groups $\mathbb{Z}/391\mathbb{Z}^*$, $\mathbb{Z}/437\mathbb{Z}^*$, and $\mathbb{Z}/1001\mathbb{Z}^*$.
 - a. For each group, find the relations among 2, 3, and 5.
 - **b.** Use the relations to express each group G as $G = G_0 \oplus G_1$, where G_0 is the 2-subgroup and G_1 has odd order, and determine generators for each.
 - c. Find the exponent of G_0 , i.e. the smallest m such that $G_0 = G[2^m]$, then determine generators for each group in the chain of subgroups

$$G[2^m] \supset G[2^{m-1}] \supset \cdots \supset G[2].$$

- **d.** For each group G, determine a set of generators and relations for G/[2](G).
- 2. In this exercise you must prove the primality of several integers. First we state a couple of theorems.

Theorem 1 Suppose $n - 1 = \prod_{i=1}^{r} p_i^{n_i}$ and there exists an integer a such that $a^{(n-1)/p_i} \not\equiv 1 \mod n$, for all $1 \le i \le r$,

and $a^{n-1} \equiv 1 \mod n$. Then n is prime.

Note that the integer a is an element of exact order n-1. The conditions of this theorem can be relaxed to allow separate a_i with respect to each prime divisor of n-1.

Theorem 2 Suppose $n-1 = \prod_{i=1}^{r} p_i^{n_i}$ and there exist an integers a_i such that

$$a_i^{(n-1)/p_i} \not\equiv 1 \mod n \text{ for all } 1 \leq i \leq r,$$

and $a_i^{n-1} \equiv 1 \mod n$ for all $1 \leq i \leq r$. Then n is prime.

Use the theorems to prove the primality of the integers $2^{16} + 1$, $3^{59} - 2^{59}$, and $7^{39} + 24$. What is the obstruction to using this method in general for primality proving?