The University of Sydney

Math3925 Public Key Cryptography

Semester 2
Exercises for Week 5

1. Consider the groups $\mathbb{Z} / 391 \mathbb{Z}^{*}, \mathbb{Z} / 437 \mathbb{Z}^{*}$, and $\mathbb{Z} / 1001 \mathbb{Z}^{*}$.
a. For each group, find the relations among 2,3 , and 5 .
b. Use the relations to express each group G as $G=G_{0} \oplus G_{1}$, where G_{0} is the 2-subgroup and G_{1} has odd order, and determine generators for each.
c. Find the exponent of G_{0}, i.e. the smallest m such that $G_{0}=G\left[2^{m}\right]$, then determine generators for each group in the chain of subgroups

$$
G\left[2^{m}\right] \supset G\left[2^{m-1}\right] \supset \cdots \supset G[2]
$$

d. For each group G, determine a set of generators and relations for $G /[2](G)$.
2. In this exercise you must prove the primality of several integers. First we state a couple of theorems.

Theorem 1 Suppose $n-1=\prod_{i=1}^{r} p_{i}^{n_{i}}$ and there exists an integer a such that

$$
a^{(n-1) / p_{i}} \not \equiv 1 \bmod n, \text { for all } 1 \leq i \leq r
$$

and $a^{n-1} \equiv 1 \bmod n$. Then n is prime.

Note that the integer a is an element of exact order $n-1$. The conditions of this theorem can be relaxed to allow separate a_{i} with respect to each prime divisor of $n-1$.

Theorem 2 Suppose $n-1=\prod_{i=1}^{r} p_{i}^{n_{i}}$ and there exist an integers a_{i} such that

$$
a_{i}^{(n-1) / p_{i}} \not \equiv 1 \bmod n \text { for all } 1 \leq i \leq r,
$$

and $a_{i}^{n-1} \equiv 1 \bmod n$ for all $1 \leq i \leq r$. Then n is prime.
Use the theorems to prove the primality of the integers $2^{16}+1,3^{59}-2^{59}$, and $7^{39}+24$. What is the obstruction to using this method in general for primality proving?

