1. A simple Pollard Rho factorization algorithm can be implemented in just a few lines in Magma:
```
function PollardRho(n,a)
    x := Random([1..n]);
    x := (x^2+a) mod n;
    y := (x^2+a) mod n;
    while GCD(x-y,n) eq 1 do
        x := (x^2+a) mod n;
        y := (y^2+a) mod n;
        y := (y^2+a) mod n;
    end while;
    return GCD (x-y,n);
end function;
```

a. Use this algorithm to find a factorization of

$$
2^{29}-1,2^{59}-1,2^{2^{6}}+1, \text { and } 400731052007683
$$

b. What happens if the input argument n is prime?
2. The Pollard rho algorithm is effective for solving discrete logarithms in subgroups of fields \mathbb{F}_{p}^{*} of moderate size. In the following code we make the assumption that the subgroup order is a prime n. The following code implements a Pollard rho discrete logarithm. You will need to first include the iteration function PollardIteration, presented below, in which the three disjoint sets S_{1}, S_{2} and S_{3} are those finite field elements with representatives x in intervals $1 \leq x \leq B_{1}, B_{1}<x \leq B_{2}$, and $B_{2}<x \leq p-1$ respectively.

```
procedure PollardIteration(~
    x := Integers()!t[1];
    if x le B1 then
        t[1] *:= b; t[3] +:= 1;
    elif x le B2 then
        t[1] ^:= 2; t[2] *:= 2; t[3] *:= 2;
    else
        t[1] *:= a; t[2] +:= 1;
    end if;
end procedure;
```

Assuming that the function PollardIteration the main body of the function, below, creates in a deterministic fashion a new triple ($x_{i+1}, n_{i+1}, m_{i+1}$) consisting of the sequence element x_{i+1} together with the exponents (n_{i+1}, m_{i+1}) such that $x_{i+1}=a^{n_{i+1}} b^{m_{i+1}}$ from a similar sequence $\left(x_{i}, n_{i}, m_{i}\right)$.
function PollardRhoLog (a, b, p, n)
error if not IsPrime(p), "Argument 3 must be prime";
error if not IsPrime(n) or ($p-1$) mod n ne 0 , "Argument 4 must be a prime divisor of", $\mathrm{p}-1$;
K := FiniteField(p);
R := FiniteField(n);
a := K!a; b := K!b;
error if $\operatorname{Order}(\mathrm{a})$ ne $\mathrm{n} / *$ or $\operatorname{Order}(\mathrm{b}) \operatorname{notin}\{1, \mathrm{n}\} * /$,
"Arguments 1 and 2 must have order", n, "mod", p;
t1 := <K!1,R!0,R!0>; t2 := t1;
B1 := p div 3; B2 := (2*p) div 3;
while true do PollardIteration(${ }^{\sim}$ t1, $\mathrm{a}, \mathrm{b}, \mathrm{B} 1, \mathrm{~B} 2$); PollardIteration(${ }^{\sim}$ t2, $\mathrm{a}, \mathrm{b}, \mathrm{B} 1, \mathrm{~B} 2$); PollardIteration(${ }^{\sim}$ t2, $\mathrm{a}, \mathrm{b}, \mathrm{B} 1, \mathrm{~B} 2$); if t1[1] eq t2[1] then break; end if;
end while;
r := t1[3]-t2[3];
if r eq 0 then return -1 ; end if;
return Integers()! ($\left.r^{\wedge}-1 *(t 2[2]-t 1[2])\right)$;
end function;
The Magma tuple $\langle\mathrm{K}!1, \mathrm{R}!0, \mathrm{R}!0\rangle$ represents the element $(1,0,0)$ of $K \times R \times R$. The notation ${ }^{\sim} \mathrm{t}$ is a pass-by-reference in which the argument can be modified in the course of the procedure. Note that the algorithm can fail, and if so, returns the value of -1 .
a. Use this algorithm to find discrete logarithms of 3,7 , and 17 with respect to the base 2 in $\mathbb{F}_{p}^{* 2}$, where $p=536871263$. Note that $n=(p-1) / 2$ is a prime. Verify the correctness of the results.
b. Note that each of the primes $2,3,7$, and 17 are squares modulo p. What is the significance of the output of the algorithm when the discrete logarithm of 5 and 11 are computed with respect to the base 2 ?
c. Find the discrete logarithm of 3 with respect to the base 2 in \mathbb{F}_{p}^{*}, where $p=$ 1234619627. Make use of the Pollig-Hellman reduction, noting that $p-1=$ $2 \cdot 37 \cdot 61 \cdot 479 \cdot 571$.

