
The University of Sydney

Math3925 Public Key Cryptography

Semester 2 Exercises for Week 6 2004

1. A simple Pollard Rho factorization algorithm can be implemented in just a few lines
in Magma:

function PollardRho(n,a)

x := Random([1..n]);

x := (x^2+a) mod n;

y := (x^2+a) mod n;

while GCD(x-y,n) eq 1 do

x := (x^2+a) mod n;

y := (y^2+a) mod n;

y := (y^2+a) mod n;

end while;

return GCD(x-y,n);

end function;

a. Use this algorithm to find a factorization of

229
− 1, 259

− 1, 226

+ 1, and 400731052007683.

b. What happens if the input argument n is prime?

2. The Pollard rho algorithm is effective for solving discrete logarithms in subgroups
of fields F

∗

p of moderate size. In the following code we make the assumption that the
subgroup order is a prime n. The following code implements a Pollard rho discrete
logarithm. You will need to first include the iteration function PollardIteration,
presented below, in which the three disjoint sets S1, S2 and S3 are those finite
field elements with representatives x in intervals 1 ≤ x ≤ B1, B1 < x ≤ B2, and
B2 < x ≤ p − 1 respectively.

procedure PollardIteration(~t,a,b,B1,B2);

x := Integers()!t[1];

if x le B1 then

t[1] *:= b; t[3] +:= 1;

elif x le B2 then

t[1] ^:= 2; t[2] *:= 2; t[3] *:= 2;

else

t[1] *:= a; t[2] +:= 1;

end if;

end procedure;



Assuming that the function PollardIteration the main body of the function,
below, creates in a deterministic fashion a new triple (xi+1, ni+1,mi+1) consisting
of the sequence element xi+1 together with the exponents (ni+1,mi+1) such that
xi+1 = ani+1bmi+1 from a similar sequence (xi, ni,mi).

function PollardRhoLog(a,b,p,n)

error if not IsPrime(p), "Argument 3 must be prime";

error if not IsPrime(n) or (p-1) mod n ne 0,

"Argument 4 must be a prime divisor of", p-1;

K := FiniteField(p);

R := FiniteField(n);

a := K!a; b := K!b;

error if Order(a) ne n /* or Order(b) notin {1,n} */,

"Arguments 1 and 2 must have order", n, "mod", p;

t1 := <K!1,R!0,R!0>; t2 := t1;

B1 := p div 3; B2 := (2*p) div 3;

while true do

PollardIteration(~t1,a,b,B1,B2);

PollardIteration(~t2,a,b,B1,B2);

PollardIteration(~t2,a,b,B1,B2);

if t1[1] eq t2[1] then break; end if;

end while;

r := t1[3]-t2[3];

if r eq 0 then return -1; end if;

return Integers()!(r^-1*(t2[2]-t1[2]));

end function;

The Magma tuple <K!1,R!0,R!0> represents the element (1, 0, 0) of K ×R×R. The
notation ~t is a pass-by-reference in which the argument can be modified in the
course of the procedure. Note that the algorithm can fail, and if so, returns the
value of −1.

a. Use this algorithm to find discrete logarithms of 3, 7, and 17 with respect to
the base 2 in F

∗

p
2, where p = 536871263. Note that n = (p − 1)/2 is a prime.

Verify the correctness of the results.

b. Note that each of the primes 2, 3, 7, and 17 are squares modulo p. What is
the significance of the output of the algorithm when the discrete logarithm of
5 and 11 are computed with respect to the base 2?

c. Find the discrete logarithm of 3 with respect to the base 2 in F
∗

p, where p =
1234619627. Make use of the Pollig-Hellman reduction, noting that p − 1 =
2 · 37 · 61 · 479 · 571.


