1. Let $n=p_{1}^{n_{1}} \cdots p_{t}^{n_{t}}$ be an odd composite number, and for each i write $p_{i}-1=2^{k_{i}} r_{i}$ with each r_{i} an odd number. Justify the probabilities

$$
P\left(x^{2^{j} r}=-1\right)=\frac{1}{m} \prod_{i=1}^{t} \frac{1}{2^{k_{i}-j}}
$$

where $x \in \mathbb{Z} / n \mathbb{Z}^{*}$ (chosen uniformly at random), $j<k_{i}$, and where m is the largest odd divisor of $\left|\left(\mathbb{Z} / n \mathbb{Z}^{*}\right)^{r}\right|$ for any odd number r.
2. Recall the Miller-Rabin primality test:

1. let $n-1=2^{s} r$ for r odd
2. choose a at random in $\mathbb{Z} / n \mathbb{Z}^{*}$ and set $u=a^{r}$
3. if $u= \pm 1$ then return probable prime
4. for i in $[1, \ldots, s-1]\{$
set $u=u^{2}$ if $u=-1$ then
return probable prime
if $u=+1$ then
return composite
\}
5. return composite
and explain why the sum

$$
P\left(x^{r}=1\right)+P\left(x^{r}=-1\right)+P\left(x^{2 r}=-1\right)+\cdots+P\left(x^{2^{s-1} r}=-1\right)
$$

gives the probability that the output is probable prime.
3. For each of the following integers $15=3 \cdot 5,21=3 \cdot 7,29,85=5 \cdot 17,105=3 \cdot 5 \cdot 7$, and $357=13 \cdot 29$, determine the probability that the Miller-Rabin primality test returns probable prime.
4. Explain what happens when $j \geq k_{i}$ for some i, and demonstrate this with one of the above integers.

