The University of Sydney

Math3925 Public Key Cryptography
Semester 2
2004
Recall that the cyclotomic polynomials are defined in terms of the factorizations of $x^{N}-1$

$$
x^{N}-1=\prod_{m \mid N} \Phi_{m}(x) .
$$

For a particular m and q, you can construct the m-th cyclotomic polynomial in $\mathbb{F}_{q}[x]$ using the Magma commands:

```
P<x> := PolynomialRing(FiniteField(q));
```

Phi := P!CyclotomicPolynomial(m);

1. a. What is the factorization of $\Phi_{26}(x)$ in $\mathbb{F}_{3}[x]$? How many factors are there of each degree? What are the numbers of factors of each degree in the factorizations of $\Phi_{m}(x)$ for m dividing 26 dividing 80 ? Carry out a similar analysis for m dividing 63 and $\Phi_{m}(x)$ in $\mathbb{F}_{2}[x]$ and for m dividing 124 and $\Phi_{m}(x)$ in $\mathbb{F}_{5}[x]$.
b. Show that r divides $\varphi\left(p^{r}-1\right)$. Give an example of a p, r, and an m, such that m divides but is not equal to $p^{r}-1$, and such that r divides the degree of every factor of $\Phi_{m}(x)$ in $\mathbb{F}_{p}[x]$.
c. Let r be the order of p in $\mathbb{Z} / m \mathbb{Z}^{*}$. Show that r is the degree of every irreducible factor of $\Phi_{m}(x)$
2. Let \mathbb{F}_{q} be a finite field of q elements.
a. What is the number of elements in \mathbb{F}_{q}^{*} of each order dividing $q-1$? Do this count for $q=27, q=64, q=81$, and $q=125$.
b. Consider the finite fields $K=\mathbb{F}_{3}[x] /\left(x^{3}-x+1\right)$ and $L=\mathbb{F}_{3}[y] /\left(y^{3}-y^{2}+1\right)$. Define isomorphisms $K \rightarrow L$ and $L \rightarrow K$. What is the compositum of the two isomorphism you chose?
N.B. A finite field in Magma can be created using the default constructor, or as an explicit quotient of a polynomial ring:
```
p := 3;
F := FiniteField(p);
P<x> := PolynomialRing(F);
K<t> := FiniteField(p,3);
L<u> := quo< P | x^3 - x^2 + 1 >;
```

The defining polynomial in the former case, K, is arbitrarily set to be $x^{3}-x+1$, while we choose the defining polynomial to be $x^{3}-x^{2}+1$ in the latter. Note that in both cases the resulting rings are fields of size 27, hence isomorphic. Necessarily, these minimal polynomials of t and u must then divide $x^{27}-x$.

