Let E be an elliptic curve of the form

$$
E: y^{2}=x^{3}+a x+b
$$

Let O denote the point at infinity, which is defined to be the identity element for the group law on E. The addition law on E is defined by the rule that any three points of E meeting a line L sum to O. Given points P_{1} and P_{2}, a line through these points meets at one additional point Q_{3} such that $P_{1}+P_{2}+Q_{3}=O$. The sum of P_{1} and P_{2} is then the point $-Q_{3}$, the additive inverse of Q_{3}.

Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ be two points on E, such that $x_{1} \neq x_{2}$. Then the sum $P_{1}+P_{2}=P_{3}=\left(x_{3}, y_{3}\right)$ given by the formulas:

$$
\begin{aligned}
& x_{3}:=\frac{\left(x_{1} x_{2}+a\right)\left(x_{1}+x_{2}\right)-2 y_{1} y_{2}+2 b}{\left(x_{1}-x_{2}\right)^{2}} \\
& y_{3}:=\frac{\left(\left(3 x_{1}^{2}+a\right) x_{2}+x_{1}^{3}+3 a x_{1}+4 b\right) y_{2}-\left(\left(3 x_{2}^{2}+a\right) x_{1}+x_{2}^{3}+3 a x_{2}+4 b\right) y_{1}}{\left(x_{1}-x_{2}\right)^{3}}
\end{aligned}
$$

is determined by solving for the third point $-P_{3}$ meeting the line through P_{1} and P_{2}.

1. For an elliptic curve E with equation as above, explain why the definition $-P=$ $\left(x_{0},-y_{0}\right)$, where $P=\left(x_{0}, y_{0}\right)$, is consistent with the rule that three points on a line sum to O.
2. Let E be the elliptic curve $y^{2}=x^{3}+x+2$ over \mathbb{F}_{13}, and let $P_{1}=(1,2)$ and $P_{2}=(2,5)$. Solve for the line L through P_{1} and P_{2} and use this to solve for the third point of $L \cap E$. Use this to show that $P_{1}+P_{2}=(6,9)$ and verify your result using the addition formula.
3. In order to use the group of points $E\left(\mathbb{F}_{p}\right)$ for cryptographic purposes, it is essential to be able to find those curves whose number of points, the group order, is prime or is divisible by a large prime.
a. Choose a prime $p>3$, and use Magma to form random elliptic curves E and determine their number of points, e.g.:
```
F := FiniteField(101);
a := Random(F); b := Random(F);
E := EllipticCurve([a,b]);
#E;
```

Show that the number of points $\left|E\left(\mathbb{F}_{p}\right)\right|$ is always within $2 \sqrt{p}$ of the value $p+1$.
b. For a fixed curve E / \mathbb{F}_{p} determine the number of points on $E\left(\mathbb{F}_{p^{n}}\right)$ for $n=$ $1,2,3, \ldots$ Can you find any pattern to the number of points?

