The University of Sydney
 Math3925 Public Key Cryptography

Let E be an elliptic curve of the form

$$
E: y^{2}=x^{3}+a x+b .
$$

1. The multiplication-by-n maps $[n]$ on an elliptic curve E with equation as above is defined by simple recursive formulas for the coordinates. The maps $[n]: E \rightarrow E$ take the form

$$
P=(x, y) \longmapsto n P=\left(\frac{\phi_{n}(x)}{\psi_{n}(x, y)^{2}}, \frac{\omega_{n}(x, y)}{\psi_{n}(x, y)^{3}}\right) .
$$

For polynomials $\phi_{n}(x), \psi_{n}(x, y)$, and $\omega_{n}(x, y)$. This means that the n-th multiple of a point on E is given by the evaluation of the polynomial expressions for the image coordiantes at the point coordinates.
The polynomials $\psi_{n}(x, y)$ are of crucial importance since they are zero precisely on the points of $E[n]=\operatorname{ker}([n])$. They can be defined by the recursions:

$$
\begin{aligned}
& \psi_{0}=0 \quad \psi_{1}=1 \quad \psi_{2}=2 y \\
& \psi_{3}=3 x^{4}+6 a x^{2}+12 b x-a^{2} \\
& \psi_{4}=\psi_{2} \cdot\left(2 x^{6}+10 a x^{4}+40 b x^{3}-10 a^{2} x^{2}-8 a b x-\left(2 a^{3}-16 b^{2}\right)\right) \\
& \psi_{2 m+1}=\psi_{m+2} \psi_{m}^{3}-\psi_{m-1} \psi_{m+1}^{3} \quad(m \geq 2), \\
& \psi_{2 m}=\psi_{m}\left(\psi_{m+2} \psi_{m-1}^{2}-\psi_{m-2} \psi_{m+1}^{2}\right) / \psi_{2} \quad(m>2) .
\end{aligned}
$$

Moreover the polynomials ϕ_{n} are determined by $\phi_{0}=1$ and

$$
\phi_{n}=x \psi_{n}^{2}-\psi_{n+1} \psi_{n-1}
$$

for all $n \geq 1$.
a. Use the relation $y^{2}=x^{3}+a x+b$ to show that $\psi_{n}(x, y)^{2}$ can be expressed as a polynomial in x.
b. Show that this multiplication by 2 determines the addition law in the case $P_{1}=P_{2}$ not covered by the addition formula, and compute $2 P_{1}$ and $2 P_{2}$. How can the group law be extended to the case $x_{1}=x_{2}$ but $y_{1} \neq y_{2}$?
c. Let E be the elliptic curve $y^{2}=x^{3}+x+3$ over \mathbb{F}_{61}, having 55 elements. Use the above recursion to construct the polynomial $\psi_{5}(x)$. Find two roots x_{1} and x_{2} of this polynomial and verify that they determine 5 -torsion points ($x_{1}, \pm y_{1}$) and ($x_{2}, \pm y_{2}$).
2. Let E / \mathbb{F}_{q} be an elliptic curve and $P \in E\left(\mathbb{F}_{q}\right)$ be a point of prime order n. The n-torsion group $E[n]$ is defined to be

$$
E[n]=\left\{Q \in E\left(\overline{\mathbb{F}}_{q}\right): n Q=O\right\} .
$$

Assume the structure theorem for the n-torsion group $E[n]$, which states that if $(n, p)=1$ then

$$
E[n] \cong \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}
$$

and if $n=p$ then $E[n] \cong \mathbb{Z} / n \mathbb{Z}$ or $E[n] \cong\{O\}$.
a. Show that there exists a finite extension $\mathbb{F}_{q^{r}}$, and a point $Q \in E\left(\mathbb{F}_{q^{r}}\right)$ such that $E[n]=\langle P, Q\rangle$.
b. For the elliptic curve E / \mathbb{F}_{61} of the previous exercise with 5 -torsion point $P=$ $\left(x_{1}, y_{1}\right) \in E\left(\mathbb{F}_{61}\right)$, find an extension $\mathbb{F}_{61^{r}}$ and a point $Q \in E\left(\mathbb{F}_{61^{r}}\right)$ generating the 5 -torsion subgroup.
3. In this exercise we investigate the conditions under which an elliptic curve can have a very large n-torsion subgroup $E[n]$ contained in the set of points $E\left(\mathbb{F}_{p^{2}}\right)$.
a. Recall that the Frobenius endomorphism π, defined by $\pi(x, y)=\left(x^{p}, y^{p}\right)$, is a homomorphism of $E\left(\overline{\mathbb{F}}_{p}\right)$ to itself. For each r show that

$$
E\left(\mathbb{F}_{p^{r}}\right)=\operatorname{ker}\left(\pi^{r}-1\right) .
$$

b. Make use of the fact that $\left|E\left(\mathbb{F}_{p^{r}}\right)\right|$ equals $p^{r}-t_{r}+1$ where $\pi^{2 r}-t_{r} \pi^{r}+p^{r}=0$. If $\left|E\left(\mathbb{F}_{p}\right)\right|=p-t+1$, then show that $\left|E\left(\mathbb{F}_{p^{2}}\right)\right|=p^{2}-\left(t^{2}-2 p\right)+1$.
c. Suppose that n is a prime greater than $4 \sqrt{p}$. Show that if n divides $\left|E\left(\mathbb{F}_{p}\right)\right|$ and n^{2} divides $\left|E\left(\mathbb{F}_{p^{2}}\right)\right|$ then $t=0$.
d. Show that if $t=0$ then $\left|E\left(\mathbb{F}_{p^{2}}\right)\right|=(p+1)^{2}$, and prove moreover that

$$
E\left(\mathbb{F}_{p^{2}}\right)=E[p+1] \cong \mathbb{Z} /(p+1) \mathbb{Z} \times \mathbb{Z} /(p+1) \mathbb{Z}
$$

Hint: Show that $\pi^{2}=p$ and recall that $\operatorname{ker}\left(\pi^{r}-1\right)=E\left(\mathbb{F}_{p^{r}}\right)$.
An elliptic curve over a field of characteristic p such that $t \equiv 0 \bmod p$ is called supersingular. The complement of these curves are ordinary elliptic curves.

