The University of Sydney Math3925 Public Key Cryptography

Semester 2

Exercises for Week 13

2004

Exam Revision Questions

- **1.** a. Find an isomorphism between $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$ and $\mathbb{Z}/21\mathbb{Z}$.
 - **b.** What are the abelian invariants of $\mathbb{Z}/14\mathbb{Z} \times \mathbb{Z}/21\mathbb{Z}$?
- **2.** a. Express the 2-torsion subgroup of $\mathbb{Z}/N\mathbb{Z}^*$ in terms of the factorization of N. Consider N odd, $N \equiv 2 \mod 4$, $N \equiv 4 \mod 8$ and $N \equiv 0 \mod 8$.
 - **b.** Find the 2-torsion subgroup of $\mathbb{Z}/17 \cdot 19\mathbb{Z}^*$.
- **3.** Let $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$, let H be the subgroup generated by (1, 2). Prove that each of the maps $\varphi : G \to \mathbb{Z}/4\mathbb{Z}$ given by (i) $\varphi(x, y) = 2x + y$, (ii) $\varphi(x, y) = 2x + 3y$, and (iii) $\varphi(x, y) = y$ are homomorphisms, and determine for which of the maps H is the kernel of φ .
- 4. a. Explain how relations $n^2 m^2 \equiv 0 \mod N$ determine factorizations of N. When does this give rise to a trivial factorization?
 - **b.** How do relations $n^2 m^2 \equiv 0 \mod N$ correspond to elements of the 2-torsion subgroup of $\mathbb{Z}/N\mathbb{Z}^*$?
 - c. Prove that any function that produces random elements of $\mathbb{Z}/N\mathbb{Z}^*[2]$ results in a probabilistic factorization algorithm for N.
 - **d.** Demonstrate this principle for N = 851, obtaining a factorization.
- 5. Find the kernel of the homomorphism $\mathbb{Z}^4 \to \mathbb{Z}/37\mathbb{Z}^*$ taking the standard basis elements of \mathbb{Z}^4 to 2, 3, 5, and 7.
- 6. a. Describe an algorithm to compute the Jacobi symbol

$$\left(\frac{a}{n}\right) \in \{\pm 1\},\,$$

and give an interpretation of this value when n is prime.

- **b.** Define Euler, Fermat, and strong pseudoprimes.
- c. Show that an Euler pseudoprime base a is a Fermat pseudoprime base a.
- **d.** Describe the Miller–Rabin primality test.
- 7. a. Describe the baby-step, giant-step algorithm, Pollard ρ algorithm, and index calculus algorithm for determining the factorization of an integer N.
 - **b.** Explain the applications of these algorithms, or modified versions of these algorithms, the discrete logarithm problem in \mathbb{F}_p^* .

- 8. Show that the knowledge of the order of $\mathbb{Z}/N\mathbb{Z}^*$ is probabilistically expected polynomial time equivalent to the factorization of N.
- **9.** How many subfields does $\mathbb{F}_{p^{36}}$ have?
- 10. Describe several classes of groups used in cryptography which are ammenable to index calculus attacks, and list the types of smoothness bases used for their construction.
- 11. Suppose that $|E(\mathbb{F}_{11})| = 16$. What is the minimal polynomial of the Frobenius endomorphism π ? What are the possible group structures for $E(\mathbb{F}_{11})$? What are the possible group structures for an arbitrary abelian group of order 16?
- 12. Let E be the elliptic curve $y^2 = x^3 + x + 3$ over \mathbb{F}_{17} . Given the points P = (3, 13), and Q = (7, 8) in $E(\mathbb{F}_{17})$, find P + Q.
- **13.** Let *E* be the supersingular elliptic curve $y^2 = x^3 + 4x + 7$ over \mathbb{F}_{13} , $P = (7, 1) \in E(\mathbb{F}_{13})$ a point of order 7, and Q = (5, 3) in $\langle P \rangle$.
 - **a.** What are the group structures of $E(\mathbb{F}_{13})$ and $E(\mathbb{F}_{13^2})$?
 - **b.** Let $\mathbb{F}_{13^2} = \mathbb{F}_{13}[x]/(x^2 x + 2)$ and set $R = (0, 10\bar{x} + 8) \in E(\mathbb{F}_{13^2})[7]$. Given that $e_7(P, R) = \bar{x} + 3$ and $e_7(Q, R) = 4\bar{x} + 3$, find $\log_P(Q)$.
- 14. Find the 2-torsion points on the elliptic curve E of the previous question. Which points are in $E(\mathbb{F}_{13})$ and which points are in $E(\mathbb{F}_{13^2})$?
- **15.** Describe the ElGamal protocol as used on an elliptic curve. What data does a public key contain? What data does the private key contain?
- 16. Compare the groups used in the RSA protocol and the ElGamal protocol.
- 17. State the properties of the Weil pairing.
- 18. Describe the MOV algorithm for reducing an elliptic curve discrete logarithm problem to a finite field discrete logarithm. Explain why this does not generally result in an efficient algorithm.
- 19. Give the definition of a supersingular elliptic curve in terms of the trace of the Frobenius endomorphism. Given a supersingular elliptic curve over \mathbb{F}_p , for a prime p > 3, prove that $E(\mathbb{F}_{p^2}) = E[p+1]$.
- **20.** Let E/\mathbb{F}_p with $|E(\mathbb{F}_p)| = p t + 1$.
 - **a.** Determine the characteristic polynomial $\chi_r(x)$ of the *r*-th power π^r of the Frobenius endomorphism, for $1 \leq r \leq 4$.
 - **b.** Prove that the exponent of $E(\mathbb{F}_{p^r})$ divides $\chi_r(1)$ for all r.
 - **c.** Using the stronger result that $|E(\mathbb{F}_{p^r})| = \chi_r(1)$, find the order of $E(\mathbb{F}_{p^r})$ when p = 7, t = 1, and $1 \le r \le 5$.