Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentesRévision précédente
start [2025/09/30 14:42] – [Denys Pommeret] pommeretstart [2025/09/30 14:46] (Version actuelle) – [Denys Pommeret] pommeret
Ligne 41: Ligne 41:
  
 ''Publications (assez) récentes :''  ''Publications (assez) récentes :'' 
-   * Stocksieker, S. Pommeret, D. Charpentier, A. (2025) ‘’Disentangled Deep Smoothed Bootstrap for Fair Imbalanced Regression’’. KES2025  +   * Salhi, S. et al. (2025) ‘’ Clinical Evaluation of an Automated Pan-Organ Combined PD-L1 Scoring Using Artificial Intelligence on Immunostained Whole Slide Images’’. ESMO Real World Data and Digital Oncology. 
-   * Stocksieker, S. Pommeret, D. Charpentier, A. (2025) ‘’KurtHGR: A Neural Maximal Correlation for Tabular Datasets’’. KES2025  +   * Stocksieker, S. Pommeret, D. Charpentier, A. (2025) ‘’Disentangled Deep Smoothed Bootstrap for Fair Imbalanced Regression’’. KES2025 
-   * Stocksieker, S., Pommeret, D. (2025) "“SHGR: A generalized Maximal Correlation Coefficient”. Neurips 2025  +   * Stocksieker, S. Pommeret, D. Charpentier, A. (2025) ‘’KurtHGR: A Neural Maximal Correlation for Tabular Datasets’’. KES2025 
-   * Thomas, F., Pommeret, D., Guinaudeau, E., Poulet, B., Salhi, Y., Chetritt, J. (2025) "Coping with inter-observer variability when assessing AI for scoring of HER2-stained whole slides". Journal Clinical of Oncology.  +   * Stocksieker, S., Pommeret, D. (2025) "“SHGR: A generalized Maximal Correlation Coefficient”. Neurips 2025. 
-   * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Generalized Smoothed Bootstrap for Imbalanced Regression" CIKM 2024 +   * Thomas, F., Pommeret, D., Guinaudeau, E., Poulet, B., Salhi, Y., Chetritt, J. (2025) "Coping with inter-observer variability when assessing AI for scoring of HER2-stained whole slides". Journal Clinical of Oncology. 
-   * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Data Augmentation with Variational Autoencoder for Imbalanced Dataset" ICONIP 2024 +   * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Generalized Smoothed Bootstrap for Imbalanced Regression" CIKM 2024. 
-   * Milhaud, X., Pommeret, D., Salhi, Y., Vandekerkhove, P. (2024) "Contamination-source based K-sample clustering" Journal of Machine Learning Research+   * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Data Augmentation with Variational Autoencoder for Imbalanced Dataset" ICONIP 2024. 
 +   * Milhaud, X., Pommeret, D., Salhi, Y., Vandekerkhove, P. (2024) "Contamination-source based K-sample clustering" Journal of Machine Learning Research.
    * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Generalized Oversampling for Learning from Imbalanced Dataset and Associated Theory: Application in Regression" Transactions on Machine Learning research.     * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Generalized Oversampling for Learning from Imbalanced Dataset and Associated Theory: Application in Regression" Transactions on Machine Learning research. 
    * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Boarding for ISS: Imbalanced Self-Supervised Discovery of a Scaled Autoencoder for Mixed Tabular Datasets" IEEE WCCI.     * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Boarding for ISS: Imbalanced Self-Supervised Discovery of a Scaled Autoencoder for Mixed Tabular Datasets" IEEE WCCI.