Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentesRévision précédente
Prochaine révision
Révision précédente
start [2025/09/30 14:42] – [Denys Pommeret] pommeretstart [2026/01/14 23:06] (Version actuelle) pommeret
Ligne 40: Ligne 40:
 ---- ----
  
-''Publications (assez) récentes :''  +''Publications les plus récentes :''  
-   * Stocksieker, S. Pommeret, D. Charpentier, A. (2025) ‘’Disentangled Deep Smoothed Bootstrap for Fair Imbalanced Regression’’. KES2025  +   * Garcia, T.  Oms, L. Milhaud, X. Doglioli, A. Messié, M. Lacour, C. Vandekerkhove, P. Grégori, G. Pommeret, D. (2026) "A statistical approach to unveil phytoplankton adaptation to ocean fronts". ASCMO. 
-   * Stocksieker, S. Pommeret, D. Charpentier, A. (2025) ‘’KurtHGR: A Neural Maximal Correlation for Tabular Datasets’’. KES2025  +   * Salhi, S. et al. (2025) ‘’ Clinical Evaluation of an Automated Pan-Organ Combined PD-L1 Scoring Using Artificial Intelligence on Immunostained Whole Slide Images’’. ESMO Real World Data and Digital Oncology. 
-   * Stocksieker, S., Pommeret, D. (2025) "“SHGR: A generalized Maximal Correlation Coefficient”. Neurips 2025  +   * Stocksieker, S. Pommeret, D. Charpentier, A. (2025) ‘’Disentangled Deep Smoothed Bootstrap for Fair Imbalanced Regression’’. KES2025 
-   * Thomas, F., Pommeret, D., Guinaudeau, E., Poulet, B., Salhi, Y., Chetritt, J. (2025) "Coping with inter-observer variability when assessing AI for scoring of HER2-stained whole slides". Journal Clinical of Oncology.  +   * Stocksieker, S. Pommeret, D. Charpentier, A. (2025) ‘’KurtHGR: A Neural Maximal Correlation for Tabular Datasets’’. KES2025 
-   * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Generalized Smoothed Bootstrap for Imbalanced Regression" CIKM 2024 +   * Stocksieker, S., Pommeret, D. (2025) "“SHGR: A generalized Maximal Correlation Coefficient”. Neurips 2025. 
-   * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Data Augmentation with Variational Autoencoder for Imbalanced Dataset" ICONIP 2024 +   * Thomas, F., Pommeret, D., Guinaudeau, E., Poulet, B., Salhi, Y., Chetritt, J. (2025) "Coping with inter-observer variability when assessing AI for scoring of HER2-stained whole slides". Journal Clinical of Oncology. 
-   * Milhaud, X., Pommeret, D., Salhi, Y., Vandekerkhove, P. (2024) "Contamination-source based K-sample clustering" Journal of Machine Learning Research+   * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Generalized Smoothed Bootstrap for Imbalanced Regression" CIKM 2024. 
 +   * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Data Augmentation with Variational Autoencoder for Imbalanced Dataset" ICONIP 2024. 
 +   * Milhaud, X., Pommeret, D., Salhi, Y., Vandekerkhove, P. (2024) "Contamination-source based K-sample clustering" Journal of Machine Learning Research.
    * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Generalized Oversampling for Learning from Imbalanced Dataset and Associated Theory: Application in Regression" Transactions on Machine Learning research.     * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Generalized Oversampling for Learning from Imbalanced Dataset and Associated Theory: Application in Regression" Transactions on Machine Learning research. 
    * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Boarding for ISS: Imbalanced Self-Supervised Discovery of a Scaled Autoencoder for Mixed Tabular Datasets" IEEE WCCI.     * Stocksieker, S., Pommeret, D., Charpentier, A. (2024) "Boarding for ISS: Imbalanced Self-Supervised Discovery of a Scaled Autoencoder for Mixed Tabular Datasets" IEEE WCCI. 
Ligne 108: Ligne 110:
   * Chaire d'Excellence ACTIONS (Actuaries for Change in Technologies and Insurees Opportunities for Next Steps) : https://chaireactions.com/   * Chaire d'Excellence ACTIONS (Actuaries for Change in Technologies and Insurees Opportunities for Next Steps) : https://chaireactions.com/
   * Projet ANR DREAMES https://lmm.univ-lemans.fr/fr/projets-et-chaires/anr-dreames.html   * Projet ANR DREAMES https://lmm.univ-lemans.fr/fr/projets-et-chaires/anr-dreames.html
-  ''Packages :'' +  *  Projet rODEo de l'IMPT "Ordre et désordre dans un océan turbulent" [[https://rodeo-ocean.mio.osupytheas.fr/?page_id=17]]
-  Kcop R Package https://cran.r-project.org/web/packages/Kcop/index.html +
-  Projet rODEo de l'IMPT "Ordre et désordre dans un océan turbulent" [[https://rodeo-ocean.mio.osupytheas.fr/?page_id=17]]+
   * Réseau Thématique Matrisk [[https://ama-matrisk-2024.sciencesconf.org/]]   * Réseau Thématique Matrisk [[https://ama-matrisk-2024.sciencesconf.org/]]
 +  * Projet Lauréat Fondation SCOR [[https://foundation.scor.com/funded-projects/triangle-free-reserving]]
 +  * Projet Smartprog lauréat France 2030 [[https://www.diadeep.com/blog-test/le-consortium-diadeep-aix-marseille-universite-et-ihp-group-laureat-du-programme-france-2030-avec-le-projet-smartprog-lia-francaise-au-service-de-la-prediction-du-cancer]] 
 +  ''Packages :''
 +  * Kcop R Package [[https://cran.r-project.org/web/packages/Kcop/index.html]]
 +  * admix R Package [[https://cran.r-project.org/web/packages/admix/refman/admix.html]]
 +