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Abstract. We introduce a notion of n-quasi-categories as �brant objects of a model
category structure on presheaves on Joyal's n-cell category Θn. Our de�nition comes
from an idea of Cisinski and Joyal. However, we show that this idea has to be slightly
modi�ed to get a reasonable notion. We construct two Quillen equivalences between
the model category of n-quasi-categories and the model category of Rezk Θn-spaces,
showing that n-quasi-categories are a model for (∞, n)-categories. For n = 1, we
recover the two Quillen equivalences de�ned by Joyal and Tierney between quasi-
categories and complete Segal spaces.

Introduction

Quasi-categories provide a simplicial model for a certain type of weak ∞-categories.
They were initially introduced as �simplicial sets satisfying the restricted Kan condition�
by Boardman and Vogt in [19], and their theory has been developed extensively by Joyal
in [28], [30] and [31], and Lurie in [35] and [36], among others.

Weak ∞-categories are a generalization of the strict ∞-categories that can be de�ned
algebraically as consisting of sets of k-arrows in all dimensions, with compositions and
identities at all levels, satisfying some standard axioms. In a weak ∞-category, these
axioms are only asked to be satis�ed �up to coherence�, that is, up to higher arrows
themselves satisfying some identities up to higher arrows, and so on. For instance, weak
∞-categories of dimension 2 can be de�ned as Bénabou's bicategories [10], and in this
case, the coherences are given by an �associator� and two �unitors� that have to satisfy
Mac Lane's pentagon and triangle axioms.

Quasi-categories only model (∞, 1)-categories, that is, weak ∞-categories in which
the k-arrows, for k > 1, are invertible up to higher arrows. These (∞, 1)-categories play
an important role in homotopy theory as one can associate an (∞, 1)-category to any
abstract homotopy theory. For instance, from the homotopy theory of spaces, we get
an (∞, 1)-category where objects are spaces, 1-arrows are maps of spaces, 2-arrows are
homotopies, 3-arrows are homotopies of homotopies, and so on. Notice that k-arrows,
for k ≥ 1, are indeed invertible in this ∞-category since homotopies are invertible up to
higher homotopies. More generally, an (∞, n)-category is a weak ∞-category in which
all k-arrows are weakly invertible for k > n.

2000 Mathematics Subject Classi�cation. 18D05, 18D20, 18E35, 18G30, 18G55, 55U10, 55U35,
55U40.

Key words and phrases. (∞, n)-categories, quasi-categories, n-quasi-categories, Segal spaces,
Θn-spaces, A-localizers.

1



2 DIMITRI ARA

A priori, to make sense of this de�nition, one �rst has to make precise the notion of a
weak∞-category. This was done by Grothendieck in [24] (actually, Grothendieck de�ned
a notion of ∞-groupoid but Maltsiniotis noticed in [38] and [39] that his de�nition can
be adapted). Variations on this de�nition are studied by the author in [1], [3] and [4] (see
also [40]). There are now plenty of competing de�nitions (see for instance [33] and [34]
for some of them).

A second approach, which is the one this paper is about, is to de�ne directly (∞, n)-cat-
egories, without references to weak ∞-categories, by means of homotopical algebra.
There are numerous such models for (∞, 1)-categories. The four most popular are prob-
ably those explained in Bergner's survey [15], namely, quasi-categories, complete Segal
spaces, Segal categories and categories enriched in Kan complexes. These four models
are equivalent in the following sense: Joyal ([31]), Rezk ([42]), Hirschowitz and Simp-
son ([26]) and Bergner ([13]) constructed Quillen model category structures for which
the �brant objects are precisely these four classes of objects, and these model category
structures were shown to be Quillen equivalent by Bergner ([14]), Joyal ([29]) and Joyal
and Tierney ([32]). Another model, relative categories, was introduced and compared to
the other models by Barwick and Kan in [6].

Several of these models for (∞, 1)-categories have been generalized to models for
(∞, n)-categories. Hirschowitz and Simpson introduced a notion of higher Segal cat-
egories in [26]. This notion is the main topic of the book [45] of Simpson. In [43]
and [44], Rezk introduced a notion of higher Segal spaces. We will call these objects
Rezk Θn-spaces in this paper. Another model based on Rezk Θn-spaces has been intro-
duced by Bergner and Rezk in [17]. A second generalization of complete Segal spaces
called n-fold Segal spaces has been introduced by Barwick (see Section 12 of [8]). The
model of relative categories has been generalized by Barwick and Kan in [7]. Several of
these models are explained in Bergner's survey [16].

In this paper, we introduce a notion of n-quasi-categories for n ≥ 1. Our notion is
based on an idea of Cisinski and Joyal. In Section 45 of [30], Joyal writes that he and
Cisinski conjecture that the Θn-localizer generated by some kind of higher Segal maps
gives rise to a model for (∞, n)-categories. Let us brie�y explain the terminology. If A is
a small category, an (accessible) A-localizer is a class of morphisms of presheaves on A
which is the class of weak equivalences of a combinatorial model category structure on
presheaves on A whose co�brations are the monomorphisms. This notion is here applied
to Θn, the n-truncation of Joyal's cell category introduced in [27]. In this paper, we
show that the idea of Cisinski and Joyal has to be slightly modi�ed. More precisely, we
exhibit equivalent n-categories which are not weakly equivalent in the sense of Cisinski
and Joyal.

We suggest a modi�cation consisting of adding new generators. These generators are
essentially the same as the ones given by Rezk to de�ne his Θn-spaces. We obtain this
way a model category structure on presheaves on Θn and we de�ne n-quasi-categories as
the �brant objects of this model category. For n = 1, by a Theorem of Joyal, we recover
the usual notion of quasi-categories.

We then show that the model category of Rezk Θn-spaces is in some sense canonically
associated to our model category of n-quasi-categories. More precisely, we show that
the localizer of Rezk Θn-spaces is the simplicial completion in the sense of Cisinski of
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the localizer of n-quasi-categories. We deduce from this fact, using Cisinski's theory
of simplicial completion, the existence of two Quillen equivalences between the model
category of n-quasi-categories and the model category of Rezk Θn-spaces. In particular,
the homotopy categories of n-quasi-categories and of Rezk Θn-spaces are equivalent.
For n = 1, we recover the two Quillen equivalences between quasi-categories and complete
Segal spaces given by Joyal and Tierney in [32].

The tools we use in this work are of two kinds. First, we use the machinery of
A-localizers developed by Cisinski in [20]. In particular, our work relies heavily on the
notion of simplicial completion of a localizer. For n = 1, this theory simpli�es the work of
Joyal and Tierney. Second, we use the techniques that Joyal and Tierney have developed
to prove that their two adjunctions between quasi-categories and complete Segal spaces
are Quillen equivalences. Many of our arguments are very similar (if not identical) to
the ones used in their proofs. We have tried to make that clear by citing very precisely
their work.

After we made public the �rst version of this paper, we were informed that J. Hahn
has obtained related results in his ongoing Ph.D. thesis under the supervision of Barwick
and that Gindi has developed a related homotopy theory of Θ-sets. Since then, Gindi's
work [23] has been made public.

Organization of the paper. In Section 1, we introduce some preliminary terminology.
In Section 2, we give a short introduction to Cisinski's theory of A-localizers, which is
the language we will use throughout this paper. In particular, we present the notion of
simplicial completion of an A-localizer. As explained above, this notion will play a crucial
role in this paper. Everything from this section is extracted from [20]. In Section 3, we
introduce tools developed by Joyal and Tierney in [32]. Unfortunately, we will need
these tools in a more general setting than the one used in ibid. Nevertheless, everything
adapts trivially and we do not claim any originality for this section. In Section 4, we
study the simplicial completion of an A-localizer when A is a regular skeletal Reedy
category. The techniques of this section are still based on [32] even though they have to
be adapted since we do not have a notion of �mid anodyne map� in this context. For this
purpose, we introduce the notion of formal Rezk A-spaces. In Section 5, we introduce
the n-truncation Θn of Joyal's cell category as a full subcategory of the category of
strict n-categories and we de�ne our Θn-localizer of n-quasi-categories. In Section 6, we
explain why the idea of Cisinski and Joyal has to be modi�ed. More precisely, we show
that our new generators, which come from equivalences of strict n-categories, are not
weak equivalences in the sense of Cisinski and Joyal. In Section 7, we explain why nerves
of strict n-categories are not n-quasi-categories in general (contrary to what happens
for quasi-categories). More precisely, we show that the nerve of a strict n-category is
an n-quasi-category if and only if this n-category has no non-trivial invertible k-arrows
for k > 1. In Section 8, we recall the de�nition of Rezk Θn-spaces and we show that their
localizer is the simplicial completion of our localizer of n-quasi-categories. We obtain two
Quillen equivalences between n-quasi-categories and Rezk Θn-spaces. We deduce that
the model category of n-quasi-categories is cartesian closed from the analogous result for
Rezk Θn-spaces. Finally, in an appendix, we compare the language of localizers to the
language of Bous�eld localization.
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Notation. Let C be a category. The class of objects of C will be denoted by Ob(C) and
if X,Y is a pair of objects of C, the set of morphisms of C from X to Y will be denoted
by HomC(X,Y ). The opposite category of C will be denoted by Co. If D is a second
category, we will denote by Hom(C,D) the category of functors from C to D.

If A is a small category, the category of presheaves on A will be denoted by Â. If X is
a presheaf on A and a is an object of A, we will sometimes write Xa for X(a). We will
denote by e

Â
the terminal object of Â and by ∅

Â
the initial object of Â.

If u : A → B is a functor between small categories, we will denote by u∗ the functor

from B̂ to Â given by precomposition by u. We will denote by u! its left adjoint and
by u∗ its right adjoint.

Finally, we will denote by Cat the category of small categories.

1. Preliminaries

In this section, we gather some categorical preliminaries.

1.1. Let C be a category. Let i : A→ B and p : X → Y be two morphisms of C. Recall
that the morphism i has the left lifting property with respect to p (or that the morphism p
has the right lifting property with respect to i) if for every commutative square

A

i
��

// X

p

��

B // Y ,

there exists a lift, i.e., a morphism B → X making the two triangles commute. We will
then write it p. If the lift is unique, one says that the lifting property is a unique lifting
property.

Let C be a class of morphisms of C. We will denote by l(C) (resp. by r(C)) the class of
morphisms having the left lifting property (resp. the right lifting property) with respect
to C (i.e., with respect to every morphism of C). We de�ne the saturation Sat(C) of C
as

Sat(C) = lr(C).

The class C is said to be saturated if C = Sat(C).
One easily checks that

r(Sat(C)) = r(C).

Dually, we have Sat(l(C)) = l(C). In other words, the class of morphisms having the left
lifting property with respect to a �xed class of morphisms is saturated.

If C is a presheaf category and S is a set of morphisms of C, the small object argument
shows that Sat(S) is the class of retracts of trans�nite compositions of pushouts of
morphisms of S.

1.2. Let C be a cartesian closed category with an internal Hom functor Hom and let
u : A→ B, v : C → D and w : E → F be three morphisms of C. We will denote by

u×′ v : A×D qA×C B × C → B ×D
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the canonical morphism induced by the commutative square

A× C //

��

A×D

��

B × C // B ×D ;

and by

Hom′(v, w) : Hom(D,E)→ Hom(C,E)×Hom(C,F ) Hom(D,F )

the canonical morphism induced by the commutative square

Hom(D,E)

��

// Hom(D,F )

��

Hom(C,E) // Hom(C,F ) .

By adjunction (see for instance Proposition 7.6 of [32]), we have

u×′ v tw ⇔ utHom′(v, w).

1.3. Let A be a small category. A cellular model of Â is a set M of monomorphisms

of Â such that Sat(M) is the class of monomorphisms of Â. Such a cellular model always
exists by Proposition 1.2.27 of [20].

A morphism of Â is a trivial �bration if it has the right lifting property with respect

to monomorphisms of Â. If M is a cellular model of Â, then a morphism of Â is a trivial
�bration if and only if it has the right lifting property with respect to M.

1.4. A Reedy category is a category A endowed with two subcategories A+ and A−
satisfying the following properties:

(1) there exists a map d : Ob(A)→ N, assigning to every object of A an non-negative
integer, such that:
(a) if a→ a′ is a morphism of A+ which is not an identity, then d(a) < d(a′);
(b) if a→ a′ is a morphism of A− which is not an identity, then d(a) > d(a′);

(2) every morphism of A factors uniquely as a morphism of A− followed by a mor-
phism of A+.

We will often denote a Reedy category simply by its underlying category.
Let A be a Reedy category. It is obvious that A contains no non-trivial automorphisms.

Moreover, if f is a monomorphism (resp. an epimorphism) of A, then f belongs to A+

(resp. to A−).
A Reedy category A is said to be skeletal if it satis�es the following additional property:

(3) every morphism of A− admits a section; two parallel morphisms of A− are equal
if and only if they admit the same set of sections.

A skeletal Reedy category A is said to be regular if it satis�es the following additional
property:

(4) every morphism of A+ is a monomorphism.
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These two notions come from Chapter 8 of [20] where they are called normal skeletal
categories and regular skeletal categories.

By a remark above, if A is a regular skeletal Reedy category, then A+ is exactly the
class of monomorphisms of A. In particular, being a regular skeletal Reedy category is a
property of a category and not an additional structure.

Let A be a Reedy category and let a be an object of A. We will denote by ∂a the
subpresheaf of a obtained by taking the union of the images of all the morphisms a′ → a
of A+ di�erent from the identity. We will denote by δa : ∂a→ a the inclusion morphism.

Proposition 1.5. Let A be a skeletal Reedy category. Then the set

{δa : ∂a→ a; a ∈ Ob(A)}

is a cellular model of Â.

Proof. Since A is a Reedy category, it contains no non-trivial automorphisms. The result
thus follows from Proposition 8.1.37 of [20]. �

1.6. Let ∆ be the simplex category. Recall that its objects are the ordered sets

∆n = {0, . . . , n}, n ≥ 0,

and its morphisms are the order preserving maps between them. The category ∆ carries a
Reedy category structure where ∆+ is the set of injections and ∆− is the set of surjections.
This Reedy category structure is regular skeletal. For n ≥ 0, we will denote by δn the
morphism δ∆n : ∂∆n → ∆n of simplicial sets (i.e., of presheaves on ∆).

Let n ≥ 1 and let k such that 0 ≤ k ≤ n. Recall that the horn Λkn is the sub-
simplicial set obtained by taking the union of the images of all the injections ∆m → ∆n

except the identity and the unique injection ∆n−1 → ∆n avoiding k. We will denote
by hkn : Λkn → ∆n the inclusion morphism.

Set

Λ = {hkn; n ≥ 1, 0 ≤ k ≤ n}.
The class of simplicial anodyne extensions is the saturation of the set Λ. A morphism of
simplicial sets is a Kan �bration if it has the right lifting property with respect to Λ and
hence with respect to every simplicial anodyne extension.

Recall that the category of simplicial sets admits a combinatorial model category
structure, de�ned by Quillen in [41], in which co�brations are the monomorphisms and
�brations are the Kan �brations. We will call the weak equivalences of this model
category the simplicial weak homotopy equivalences.

2. Cisinski's theory of A-localizers

The purpose of this section is to introduce Cisinski's theory of A-localizers. In the
language of localizers, the main theorem of this paper can be stated by saying that
the localizer of Rezk Θn-spaces is the simplicial completion of the localizer of n-quasi-
categories.

Let us explain roughly what this means. If A is a small category, an A-localizer is

a class W of maps of Â satisfying some conditions that are satis�ed when W is the

class of weak equivalences of a model category structure on Â whose co�brations are the
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monomorphisms. Conversely, by a theorem of Cisinski, ifW is an (accessible) A-localizer,

then W is the class of weak equivalences of such a model category structure on Â.
To every A-localizerW, there is an associated (A×∆)-localizerW∆ called the simplicial

completion ofW. By a theorem of Cisinski, the model category structures associated toW
and W∆ are Quillen equivalent. In particular, what we called above the main theorem
of this paper implies that n-quasi-categories and Rezk Θn-spaces are Quillen equivalent.

Throughout the section, we �x a small category A.

2.1. An A-localizer is a class W of morphisms of Â such that the following conditions
hold:

(1) W satis�es the 2-out-of-3 property;

(2) every trivial �bration of Â is in W;

(3) the class of monomorphisms of Â belonging to W is stable under pushout and
trans�nite composition.

If W is an A-localizer, the elements of W will be called W-equivalences. It is immediate
that an intersection of A-localizers is again an A-localizer. If C is a class of morphisms

of Â, the A-localizer generated by C is by de�nition the intersection of all the A-localizers
containing C. We will denote it by W(C). A localizer is accessible if it is generated by a
set.

Theorem 2.2. Let W be a class of morphisms of Â. Then the following conditions are
equivalent:

(1) W is an accessible A-localizer;

(2) there exists a co�brantly generated model category structure on Â whose weak
equivalences are the elements of W and whose co�brations are the monomor-
phisms.

Proof. See Theorem 1.4.3 of [20]. �

2.3. We will denote by W∞ the ∆-localizer of simplicial weak homotopy equivalences.
Simplicial weak homotopy equivalences will thus also be called W∞-equivalences.

2.4. By the above theorem, from an accessible A-localizerW, we obtain a model category

structure on Â. We will call this model category structure theW-model category structure.
The weak equivalences of the W-model category structure are the elements of W and the
co�brations are the monomorphisms. The �brations (resp. the �brant objects) will be
called W-�brations (resp. W-�brant objects).

Remark 2.5. The language of localizers is very related to the language of left Bous�eld
localization. In particular, we prove in an appendix to this paper that if W is an acces-
sible A-localizer and W ′ is an accessible A-localizer generated by W and a class of mor-
phisms C, then the W ′-model category is the left Bous�eld localization of the W-model
category with respect to C.

2.6. We will say that a localizer W is cartesian if it is closed under binary product.

Proposition 2.7. Let W be an accessible A-localizer. The following conditions are equiv-
alent:
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(1) the localizer W is cartesian;
(2) the class of monomorphisms of Â belonging to W is closed under binary product;
(3) the W-model category is cartesian closed.

Proof. By de�nition, the class of monomorphisms of Â belonging to W is the class of
trivial co�brations of the W-model category. The equivalence (1) ⇔ (2) thus follows
immediately from the fact that monomorphisms and trivial �brations are stable under
product.

Let us prove the implication (2)⇒ (3). Let U → V and S → T be two monomorphisms

of Â. Consider the diagram

U × S //

��

U × T

��

��

V × S //

--

U × T qU×S V × S

((

V × T .

The morphism U × T qU×S V × S → V × T is a monomorphism (it is nothing but the
inclusion of U×T ∪V ×S into V ×T ). Suppose moreover that the morphism U → V is a
W-equivalence. Then U ×S → V ×S and U ×T → V ×T are trivial co�brations by (2).
It follows that U × T → U × T qU×S V ×S is a trivial co�bration and, by the 2-out-of-3
property, that U × T qU×S V × S → V × T is a W-equivalence, thereby proving (3).

Let us show the converse. Let U → V be a trivial co�bration and let T be a presheaf
on A. It clearly su�ces to show that U × T → V × T is a trivial co�bration. By
applying (3) to U → V and to the unique morphism ∅

Â
→ T , we obtain that the

morphism U × T qU×∅ V × ∅
Â
→ V × T is a trivial co�bration. But this morphism is

nothing but U × T → V × T . �

Proposition 2.8. Let W be an A-localizer, let W ′ be an A′-localizer and let F : Â→ Â′

be a functor. Suppose that F respects binary products and that W = F−1(W ′). Then if
the localizer W ′ is cartesian, so is the localizer W.

Proof. This is an immediate consequence of the de�nition of cartesian localizers. �

2.9. An interval of Â consists of a presheaf I on A and two morphisms ∂ 0, ∂ 1 : e
Â
→ I.

We will often denote such an interval simply by I. If I is an interval of Â, we will denote
by {ε}, where ε = 0, 1, the image of ∂ ε in I. We will denote by ∂I the union {0} ∪ {1}
and by δI : ∂I → I the canonical inclusion. If X is a presheaf on A and ε = 0, 1, we will
denote by ∂ εX : X → X × I the morphism X × ∂ ε.

An interval I is separating if the intersection of {0} and {1} is ∅
Â
. The interval I is

injective if the morphism I → e
Â
is a trivial �bration of Â.

2.10. Let I be a separating interval of Â. A class of anodyne I-extensions is a class An

of monomorphisms of Â satisfying the following conditions:

(1) there exists a set S such that An = Sat(S);
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(2) the canonical inclusion

U × I ∪ V × {ε} → V × I

is in An for every monomorphism U → V of Â and ε = 0, 1;
(3) the canonical inclusion

U × I ∪ V × ∂I → V × I

is in An for every U → V in An.

Let S be a set of monomorphisms of Â. By Proposition 1.3.13 of [20], there exists a
smallest class of anodyne I-extensions containing S. We will denote this class by AnI(S)
and we will call its elements anodyne (S, I)-extensions.

The class of anodyne (S, I)-extensions can be described in the following way. We

de�ne by induction on k ≥ 0 a set ΛkI (S) of monomorphisms of Â by setting

Λ0
I(S) = S, Λk+1

I (S) = ΛI(Λ
k
I (S)),

where

ΛI(T ) = {U × I ∪ V × ∂I → V × I; U → V ∈ T}.
By de�nition, the set Λ∞I (S) is the union of the ΛkI (S), k ≥ 0. Let M be any cellular

model of Â. Then the class of anodyne (S, I)-extensions is the saturated class generated
by

Λ∞I (S) ∪ {U × I ∪ V × {ε} → V × I; U → V ∈M, ε = 0, 1}.
Note that this description is not exactly the one given in paragraph 1.3.12 of [20]. Nev-
ertheless, it follows easily from Remark 1.3.15 of ibid. that it is correct.

Remark 2.11. By Section 2 of Chapter IV of [22], in the case where A = ∆, I = ∆1

and S is empty, the class of anodyne (S, I)-extensions is precisely the class of simplicial
anodyne extensions. See also paragraph 2.1.3 of [20].

Lemma 2.12. Let S be a set of monomorphisms of Â and let I be a separating interval.

Let C be a class of monomorphisms of Â satisfying the following conditions:

(1) C contains S;
(2) C is saturated;

(3) if u : X → Y and v : Y → Z are monomorphisms of Â such that vu and u are
in C, then v is in C;

(4) the morphisms ∂ εX : X → X × I belong to C for every presheaf X on A and
ε = 0, 1.

Then C contains the class of anodyne (S, I)-extensions.

Proof. See Lemma 1.3.16 of [20]. �

2.13. Let S be a set of monomorphisms of Â and let I be a separating interval of Â. A

morphism of Â will be said to be a naive (S, I)-�bration if it has the right lifting property
with respect to the class of anodyne (S, I)-extensions. A presheaf X on A will be said
to be (S, I)-�brant if the morphism X → e

Â
is a naive (S, I)-�bration.
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Theorem 2.14. Let S be a set of monomorphisms of Â and set W =W(S). Let J be an

injective separating interval of Â. Then, if f is a morphism whose target is a W-�brant
object, then f is a W-�bration if and only if it is a naive (S, J)-�bration. In particular,
the class of W-�brant objects and of (S, J)-�brant objects coincide.

Proof. By Corollary 1.4.18 of [20], the W-model category is the model category associ-
ated to S and J in the sense of Theorem 1.3.22 of ibid. The result then follows from
Proposition 1.3.36 of ibid. �

From now on, we �x an A-localizer W.

2.15. We will denote by

A
p←− A×∆

q−→ ∆

the two canonical projections. They induce functors

Â
p∗−→ Â×∆

q∗←− ∆̂.

These functors admit left and right adjoints and hence respect limits and colimits. In
particular, they preserve monomorphisms.

We will denote by
i0 : A→ A×∆

the functor de�ned by
i0(a) = (a,∆0).

It follows from the fact that ∆0 is a terminal object of ∆ that the functor

i∗0 : Â×∆→ Â

is right adjoint to p∗.

2.16. We will say that a morphism f : X → Y of Â×∆ is a horizontal equivalence if
for every n ≥ 0, the morphism f•,n : X•,n → Y•,n is a W-equivalence. We will denote
by Whor the class of horizontal equivalences. If follows from the existence of the injective
model category structure for combinatorial model categories that if W is accessible, then
Whor is an accessible (A×∆)-localizer.

We will say that a morphism f : X → Y of Â×∆ is a vertical equivalence if for
every object a of A, the morphism fa,• : Xa,• → Ya,• is a W∞-equivalence. We will
denote by Wvert the class of vertical equivalences. If follows again from the existence of
the injective model category structure for combinatorial model categories that if W is
accessible, then Wvert is an accessible (A×∆)-localizer.

The simplicial completion of W is the (A×∆)-localizer generated by

Whor ∪ {X × q∗(∆1)→ X; X ∈ Ob(Â×∆)}.
We will denote it by W∆.

Remark 2.17. To make sense of the terminology �vertical weak equivalences� and �hori-
zontal weak equivalences�, one has to think of a presheaf on A×∆ as a grid of sets whose
columns are indexed by objects of A and whose rows are indexed by integers n ≥ 0.

Proposition 2.18. If the A-localizer W is accessible, then the (A ×∆)-localizer W∆ is
accessible.
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Proof. See Proposition 2.3.24 of [20]. �

Proposition 2.19. If A is a regular skeletal Reedy category, then the simplicial comple-
tion of W is generated by Whor and Wvert.

Proof. This is a direct consequence of Proposition 8.2.9 and Corollary 3.4.37 of [20]. �

Proposition 2.20. Suppose W is accessible. Then the adjunction

p∗ : Â� Â×∆ : i∗0,

where Â (resp. Â×∆) is endowed with the W-model category structure (resp. with the
W∆-model category structure), is a Quillen equivalence.

Proof. We have already noticed that the functor p∗ preserves monomorphisms and hence
co�brations. It also preserves weak equivalences by de�nition of W∆. The pair (p∗, i∗0)
is hence a Quillen adjunction. By Proposition 2.3.27 of [20], the functor p∗ induces an
equivalence on the homotopy categories. The pair (p∗, i∗0) is hence a Quillen equivalence.

�

Corollary 2.21. Suppose W is accessible. If the simplicial completion of W is cartesian,
then so is the localizer W.

Proof. The functor p∗ respects limits and in particular binary products. Since every
object is co�brant in the W-model category structure, it follows from the above propo-
sition that it preserves and re�ects weak equivalences. The result thus follows from
Proposition 2.8. �

2.22. Let D be a cosimplicial object in Â, i.e., a functor D : ∆→ Â. For n ≥ 0, we will
denote D(∆n) by Dn.

Consider the functor

D : A×∆→ Â

de�ned by

D(a,∆n) = a×Dn.

Since Â is cocomplete, this functor induces an adjunction

RealD : Â×∆� Â : SingD,

where RealD is the unique extension of D to Â×∆ which respects colimits, and SingD is
de�ned by

SingD(X)a,n = Hom
Â

(a×Dn, X),

where a is an object of A and n ≥ 0.
The cosimplicial object D is a cosimplicial W-resolution if it satis�es the following

conditions:

(1) the morphism D0 q D0 → D1 induced by δ1 : ∂∆1 = ∆0 q ∆0 → ∆1 is a
monomorphism;

(2) for every n ≥ 0 and every presheaf X on A, the canonical projection X×Dn → X
is a W-equivalence.
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Proposition 2.23. Suppose W is accessible and let D be a cosimplicial W-resolution.
Then the adjunction

RealD : Â×∆� Â : SingD,

where Â×∆ (resp. Â) is endowed with the W∆-model category structure (resp. with the
W-model category structure), is a Quillen equivalence.

Proof. By Lemma 2.3.10 of [20], the functor RealD preserves monomorphisms and hence
co�brations. By Proposition 2.3.27 of ibid., it also preserves weak equivalences. The
pair (RealD, SingD) is hence a Quillen pair. By the same proposition, the functor RealD
induces an equivalence on the homotopy categories. The pair (RealD, SingD) is hence a
Quillen equivalence. �

3. The vertical and the horizontal model categories

Let A be a skeletal Reedy category and let W be an accessible A-localizer. We have
two di�erent Reedy model category structures on the category

Â×∆ = Hom(Ao, ∆̂) = Hom(∆o, Â).

One is coming from the Reedy structure of A and the classical model category structure
on simplicial sets; the second is coming from the Reedy structure of ∆ and the model
category structure associated to the localizer W (see Theorem 2.2). Following Section 2
of [32], the former model category structure we will called the vertical model category
structure, and the latter will be called the horizontal model category structure (see
Remark 2.17 on this terminology). The purpose of this section is to introduce and study
these two model category structures. (Our case of interest in this paper is the case where
A = Θn and W is the localizer of n-quasi-categories de�ned in paragraph 5.17.)

Throughout the section, we �x two small categories A and B. (We will soon specialize
to the case B = ∆.)

3.1. We will denote by

� : Â× B̂ → Â×B

the functor de�ned in the following way: if X is a presheaf on A, Y is a presheaf on B,
a is an object of A and b is an object of B, then

(X �Y )a,b = Xa × Yb.
If X is a �xed presheaf on A, then the functor

X �− : B̂ → Â×B
admits a right adjoint

X\− : Â×B → B̂

given by
(X\Z)b = Hom

Â×B(X � b, Z),

where Z is a presheaf on A×B and b is an object of B. Similarly, if Y is a �xed presheaf
on B, the functor

−�Y : Â→ Â×B
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admits a right adjoint

−/Y : Â×B → Â.

given by

(Z/Y )a = Hom
Â×B(a�Y,Z),

where Z is a presheaf on A×B and a is an object of A.
Thus, if X is a presheaf on A, Y is a presheaf on B and Z is a presheaf on A×B, we

have natural bijections

Hom
Â×B(X �Y,Z) ∼= Hom

B̂
(Y,X\Z) ∼= Hom

Â
(X,Z/Y ).

3.2. Let u : U → V be a morphism of Â and let v : S → T be a morphism of B̂. We will
denote by

u�’ v : U �T qU �S V �S → V �T

the morphism induced by the commutative square

U �S //

��

U �T

��

V �S // V �T .

If f : X → Y is a morphism of Â×B, we will denote by

〈u\f〉 : V \X → V \Y ×U\Y U\X

the morphism induced by the commutative square

V \X //

��

V \Y

��

U\X // U\Y ;

and by

〈f/v〉 : X/T → Y/T ×Y/S X/S
the morphism induced by the commutative square

X/T //

��

Y/T

��

X/S // Y/S .

Proposition 3.3. If u is a morphism of Â, v is a morphism of B̂ and f is a morphism

of Â×B, then we have

(u�’ v)t f ⇔ ut〈f/v〉 ⇔ v t〈u\f〉.

Proof. See Proposition 7.6 of [32]. �

From now on, we set B = ∆.
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Proposition 3.4. If M is a cellular model of Â, then

{δ�’ δn : U �∆n qU � ∂∆n V � ∂∆n → V �∆n; δ : U → V ∈M, n ≥ 0}

is a cellular model of Â×∆.

Proof. See Lemma 2.3.2 of [20]. �

Proposition 3.5. A morphism f of Â×∆ is a trivial �bration if and only if the following
equivalent conditions are satis�ed:

(1) 〈δ\f〉 is a trivial �bration for every δ in a �xed cellular model of Â;

(2) 〈u\f〉 is a trivial �bration for every monomorphism u of Â;
(3) 〈f/δn〉 is a trivial �bration for all n ≥ 0;
(4) 〈f/v〉 is a trivial �bration for every monomorphism v of simplicial sets.

Proof. The proof is essentially the same as the one of Proposition 2.3 of [32]. Fix a

cellular model M of Â. By the previous proposition, a morphism f of Â×∆ is a trivial
�bration if and only if for every δ in M and every n ≥ 0, we have δ�’ δn t f . But by
Proposition 3.3, we have

δ�’ δn t f ⇔ δn t〈δ\f〉 ⇔ δ t〈f/δn〉,
thereby proving that f is a trivial �bration if and only if one of the conditions (1) and (3)
is satis�ed. The other equivalences follow from the fact that the class of morphisms having
the left lifting property with respect to a �xed class of morphisms is saturated. �

From now on, we assume that A is a skeletal Reedy category. In particular, if a is an
object of A, we have a morphism δa : ∂a→ a.

3.6. Recall that we have de�ned in paragraph 2.16 a class Wvert of morphisms of Â×∆

called vertical equivalences. In the language of this section, a morphism f of Â×∆
is a vertical equivalence if and only if, for every object a of A, the map a\f is a
W∞-equivalence.

Theorem 3.7 (Reedy, Kan). The class Wvert is an accessible (A × ∆)-localizer. The
�brations of the Wvert-model category structure are the morphisms f such that for every
object a of A, the morphism 〈δa\f〉 is a Kan �bration. Moreover, this model category
structure is proper, simplicial and cartesian closed.

Proof. The proof is essentially the same as the one of Theorem 2.6 of [32]. Consider the

Reedy model category structure on Â×∆ seen as Hom(Ao, ∆̂), where ∆̂ is endowed with
the W∞-model category structure. By de�nition, the weak equivalences of this model
category structure are the vertical equivalences. Recall that a morphism f : X → Y

of Â×∆ is a �bration (resp. a trivial �bration) if and only if, for every object a of A,
the morphism

Xa → Ya ×Ma(Y ) Ma(X),

whereMa(Z) denotes the a-th latching object of a presheaf Z, is a Kan �bration (resp. a
trivial �bration). But this morphism is nothing but 〈δa\f〉. In particular, by Propo-
sition 3.5, the trivial �bration of this Reedy structure are the trivial �brations in the
sense of paragraph 1.3. It follows that the co�brations of this Reedy structure are the
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monomorphisms. This Reedy structure is hence a model category structure whose weak
equivalences are the Wvert-equivalences and whose co�brations are the monomorphisms.
By Theorem 2.2, the class Wvert is hence an accessible localizer and the Wvert-model
category structure is this Reedy model category structure.

The fact that this model category structure, which is nothing but the injective model
category structure on simplicial presheaves, is proper, simplicial and cartesian closed is
well-known (see the proof of Theorem 2.6 of [32] for a proof). �

3.8. We will call theWvert-model category structure on Â×∆ the vertical model category
structure. A �bration of this structure will be called a vertical �bration.

Proposition 3.9. A morphism f of Â×∆ is a vertical �bration if and only if the
following equivalent conditions are satis�ed:

(1) 〈δa\f〉 is a Kan �bration for every object a of A;

(2) 〈u\f〉 is a Kan �bration for every monomorphism u of Â;
(3) 〈f/hkn〉 is a trivial �bration for all n ≥ 1 and 0 ≤ k ≤ n;
(4) 〈f/v〉 is a trivial �bration for every simplicial anodyne extension v.

Proof. The proof is essentially the same as the one of Proposition 2.5 of [32]. The
morphism 〈δa\f〉 is a Kan �bration if and only if for every n ≥ 1 and 0 ≤ k ≤ n, we
have hkn t〈δa\f〉. But

hkn t〈δa\f〉 ⇔ δa t〈f/hkn〉,
and the result follows from the fact that the δa's form a cellular model of Â (Proposi-
tion 1.5). �

From now on, we �x an accessible A-localizer W.

3.10. Recall that we have de�ned in paragraph 2.16 a class Whor of morphisms of Â×∆

called horizontal equivalences. In the language of this section, a morphism f of Â×∆
is a horizontal equivalence if and only if, for every n ≥ 0, the morphism f/∆n is a
W-equivalence.

Theorem 3.11 (Reedy). The classWhor is an accessible (A×∆)-localizer. The �brations
of the Whor-model category structure are the morphisms f such that for every n ≥ 0, the
morphism 〈f/δn〉 is a W-�bration.

Proof. The proof is essentially the same as the one of Proposition 2.10 of [32]. Consider

the Reedy model category structure on Â×∆ seen as Hom(∆o, Â), where Â is endowed
with the W-model category structure. By de�nition, the weak equivalences of this model
category structure are the horizontal equivalences. For the same reasons as in the proof of

Theorem 3.7, a morphism f of Â×∆ is a �bration (resp. a trivial �bration) for this Reedy
structure if and only if for every n ≥ 0, the morphism 〈f/δn〉 is a W-�bration (resp. a
trivial �bration). It follows as in the proof of Theorem 3.7 that the co�brations of this
Reedy structure are the monomorphisms. The class Whor is hence an accessible localizer
and the Whor-model category structure is this Reedy model category structure. �

3.12. We will call the Whor-model category structure on Â×∆ the horizontal model
category structure. A �bration of this structure will be called a horizontal �bration.
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Remark 3.13. All the results of this section have appropriate generalizations when ∆ is
replaced by a skeletal Reedy category B endowed with an accessible B-localizer. This is
easily seen once Proposition 3.4 has been generalized. An inspection of the proof of this
proposition, that is of the proof of Lemma 2.3.2 of [20], reveals that all the properties
of ∆ used in this proof are shared by skeletal Reedy categories (see Section 8.1 of [20]).

4. The model category of formal Rezk spaces

In this section, we associate to any accessible A-localizerW, where A is a skeletal Reedy
category, an (A×∆)-localizer WfRezk of formal Rezk spaces. The purpose of the section
is then to show that when the skeletal Reedy category A is regular, the localizer WfRezk

is the simplicial completion of the localizer W.

Throughout the section, we �x a skeletal Reedy category A, a set S of monomorphisms

of Â and an injective separating interval J of Â. We denote by W the A-localizer
generated by S.

4.1. We will denote by WfRezk the (A×∆)-localizer generated by

Wvert ∪ p∗(S) ∪ {p∗(X × J → X); X ∈ Ob(Â)}.
Note that by the 2-out-of-3 property, WfRezk is also generated by

Wvert ∪ p∗(S) ∪ {p∗(∂ εX : X → X × J); X ∈ Ob(Â), ε = 0, 1}.

Proposition 4.2. The (A×∆)-localizer WfRezk is accessible.

Proof. By Theorem 3.7, the localizer Wvert is accessible. Let T be a generating set
of Wvert. We claim that the set

T ∪ p∗(S) ∪ {p∗
(
∂a× J ∪ a× {ε} → a× J

)
; a ∈ ObA, ε = 0, 1}

generates the localizer WfRezk.
Let W′ be the localizer generated by this set. We �rst show that W′ is included

in WfRezk. Let a be an object of A and let ε = 0, 1. Consider the diagram

p∗(∂a× {ε}) //

��

p∗(∂a× J)

��

��

p∗(a× {ε})) //

--

p∗(∂a× J ∪ a× {ε})

))

p∗(a× J) .

The morphisms

p∗
(
∂a× {ε} → ∂a× J

)
and p∗

(
a× {ε} → a× J

)
are WfRezk-equivalences. The upper horizontal morphism is hence both a WfRezk-equiva-
lence and a monomorphism. Since the square of the diagram is cocartesian, the lower
horizontal morphism is also a WfRezk-equivalence. It follows from the 2-out-of-3 property
that the morphism

p∗
(
∂a× J ∪ a× {ε} → a× J

)
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is a WfRezk-equivalence.
Let us now show that WfRezk is included in W′. Let C be the class of monomor-

phisms U → V of Â such that

p∗
(
U × J ∪ V × {ε} → V × J

)
belongs to W′ for ε = 0, 1. It is easy to check that this class is saturated. But by

de�nition of W′, the class C contains a cellular model of Â. It hence contains every

monomorphism of Â. If X is a presheaf on A, the morphism f : ∅
Â
→ X thus belongs

to C. This means that

p∗
(
X × {ε} → X × J

)
is in W′, thereby proving the result. �

4.3. We will call the WfRezk-model category structure on Â×∆ the model category
structure of formal Rezk A-spaces. A WfRezk-�brant object will be called a formal Rezk
A-space.

Proposition 4.4. A presheaf X on A × ∆ is a formal Rezk A-space if and only if it
satis�es the following conditions:

(1) X is vertically �brant;
(2) s\X is a trivial �bration for every s in S;
(3) ∂ εY \X is a trivial �bration for every presheaf Y on A and ε = 0, 1.

Proof. Let

C = p∗(S) ∪ {p∗(∂ εX : X → X × J); X ∈ Ob(Â), ε = 0, 1}.

By de�nition, the localizer WfRezk is generated by Wvert and C. It follows from Propo-
sition A.9 that the formal Rezk A-spaces are the �brant C-local objects of the vertical

model category, i.e., the vertically �brant objects X of Â×∆ such that for every mor-
phism f : K → L in C, the morphism

Map(f,X) : Map(L,X)→ Map(K,X),

where Map denotes the simplicial enrichment of Â×∆, is a W∞-equivalence. (Recall
that the vertical model category is a simplicial model category.) But if a morphism f

of Â×∆ is equal to p∗(f0) for some morphism f0 : K0 → L0 of Â, then Map(f,X) is
nothing but the morphism

f0\X : L0\X → K0\X.
Thus, a presheaf X on A × ∆ is a formal Rezk A-space if and only if it satis�es the
following conditions:

(1) X is vertically �brant;
(2) s\X is a W∞-equivalence for every s in S;
(3) ∂ εY \X is a W∞-equivalence for every presheaf Y on A and ε = 0, 1.

But by Proposition 3.9, under the assumption that X is vertically �brant, the mor-
phisms s\X and ∂ εY \X, where s is in S and Y is a presheaf on A, are Kan �brations.
They are henceW∞-equivalences if and only if they are trivial �brations, thereby proving
the result. �
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Proposition 4.5. Let X be a vertically �brant presheaf on A ×∆. Then the following
conditions are equivalent:

(1) X is a formal Rezk A-space;
(2) u\X is a trivial �bration for every anodyne (S, J)-extension u;
(3) X/δn is a naive (S, J)-�bration for all n ≥ 0;
(4) X/v is a naive (S, J)-�bration for every monomorphism v of simplicial sets.

Proof. The proof is similar to the one of Proposition 3.4 of [32].

2 ⇔ 3 ⇔ 4) Let u be a morphism of Â. The morphism u\X is a trivial �bration if
and only if, for all n ≥ 0, we have δn tu\X. But we have

δn tu\X ⇔ utX/δn.

1⇒ 2) Let C be the class of monomorphisms u of Â such that u\X is a trivial �bration.
We have just seen that u belongs to C if and only if, for all n ≥ 0, we have utX/δn.
The class C is thus saturated. Moreover, by Proposition 3.9, if u is a monomorphism

of Â, then u\X is a Kan �bration. In particular, u belongs to C if and only if u\X is
a W∞-equivalence. It follows that the class C satis�es the 2-out-of-3 property. Since X
is a formal Rezk A-space, the morphisms of S and the ∂ εY 's belong to C by the previous
proposition. It follows from Lemma 2.12 that the class C contains the class of anodyne
(S, J)-extensions.

2⇒ 1) By de�nition, the morphisms of S and the ∂ εY 's are anodyne (S, J)-extensions.
�

Corollary 4.6. If X is a formal Rezk A-space, then for every simplicial set U , the
presheaf X/U is W-�brant. In particular, X•,n is W-�brant for every n ≥ 0.

Proof. Consider the morphism of simplicial sets v : ∅
∆̂
→ U . By the previous propo-

sition, the morphism X/v = X/U → X/∅
∆̂

= e
Â
is a naive (S, J)-�bration. By Theo-

rem 2.14, the object X/U is hence W-�brant. The second assertion follows from the fact
that X/∆n = X•,n. �

Proposition 4.7. Let f : X → Y be a vertical �bration between formal Rezk A-spaces.
Then, for every monomorphism v : S → T of simplicial sets, the morphism

〈f/v〉 : X/T → Y/T ×Y/S X/S
is a W -�bration between W -�brant objects.

Proof. The proof is similar to the one of Proposition 3.10 of [32]. Let v : S → T
be a monomorphism of simplicial sets. By the above corollary, the presheaves X/S
and X/T are W-�brant. By proposition 4.5, the morphism Y/T → Y/S is a naive
(S, J)-�bration. It follows that Y/T ×Y/S X/S → X/S is a naive (S, J)-�bration. The
presheaf Y/T ×Y/S X/S is thus W-�brant by Theorem 2.14.

By the same theorem, it su�ces to show that 〈f/v〉 is a naive (S, J)-�bration, i.e.,
that for every anodyne (S, J)-extension u, we have ut〈f/v〉. But we have

ut〈f/v〉 ⇔ v t〈u\f〉,
and it thus su�ces to show that for every anodyne (S, J)-extension u : U → V , the
morphism

〈u\f〉 : V \X → V \Y ×U\Y U\X
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is a trivial �bration. Let u be such an anodyne (S, J)-extension. Since f is a vertical
�bration, by Proposition 3.9, the morphism 〈u\f〉 is a Kan �bration. It thus su�ces to
prove that 〈u\f〉 is a W∞-equivalence. Consider the commutative square

V \X //

��

V \Y

��

U\X // U\Y .

Since X and Y are formal Rezk A-spaces, by Proposition 4.5, the vertical morphisms are
trivial �brations. This square is hence homotopically cartesian and the result follows. �

Corollary 4.8. Let f : X → Y be a vertical �bration between formal Rezk A-spaces.
Then f is a horizontal �bration.

Proof. By the previous proposition, for every n ≥ 0, the morphism 〈f/δn〉 is aW-�bration.
The results hence follows from Theorem 3.11. �

Theorem 4.9. The (A×∆)-localizer WfRezk contains Whor.

Proof. The proof is similar to the one of Theorem 4.5 of [32]. We have an adjunction

F : Â×∆ hor � Â×∆ fRezk : G,

where Â×∆ hor and Â×∆ fRezk denote the Whor-model category and the WfRezk-model
category, respectively, and F,G both denote the identity functor. The functor F clearly
preserves monomorphisms and hence co�brations. Moreover, by the above corollary,
the functor G preserves �brations between �brant objects. It follows from a lemma of
Dugger (Corollary A.2 of [21]) that (F,G) is a Quillen pair. In particular, by Ken Brown's
lemma, F preserves weak equivalences between co�brant objects, and hence all the weak

equivalences since every object of Â×∆ hor is co�brant. This exactly means that WfRezk

contains Whor. �

From now on, we suppose that A is a regular skeletal Reedy category.

Theorem 4.10. The (A×∆)-localizer WfRezk is the simplicial completion of W.

Proof. Since A is a regular skeletal Reedy category, by Proposition 2.19, the localizerW∆

is generated by Wvert and Whor. By de�nition, Wvert is included in WfRezk and by the
above theorem, Whor is included in WfRezk. The localizer W∆ is thus included in WfRezk.

Conversely, let us show that WfRezk is included in W∆. By Proposition 2.19, Wvert is
included in W∆. Moreover, the morphisms of S are in W by de�nition and the mor-
phisms X × J → X, where X is a presheaf on A, are in W since J is injective. But by
de�nition, p∗ sends W into Whor and hence into W∆. The generators of WfRezk are hence
included in W∆, thereby proving the result. �

Theorem 4.11. Let us endow Â (resp. Â×∆) with the W-model category structure
(resp. with the WfRezk-model category structure).

(1) Then the adjunction

p∗ : Â� Â×∆ : i∗0
is a Quillen equivalence.
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(2) Let D : ∆→ Â be a cosimplicial W-resolution. Then the adjunction

RealD : Â×∆� Â : SingD,

is a Quillen equivalence.

Proof. This follows from Propositions 2.20 and 2.23, and from the above theorem. �

5. n-quasi-categories

The purpose of this section is to introduce our notion of n-quasi-categories.

Throughout the section, we �x an integer n ≥ 1.

5.1. We will denote by Gn the category generated by the graph

D0

σ1 //

τ1
// D1

σ2 //

τ2
// · · ·

σn−1
//

τn−1

// Dn−1

σn //

τn
// Dn

under the relations

σi+1σi = τi+1σi and σi+1τi = τi+1τi, 1 ≤ i < n.

For i, j such that 0 ≤ j ≤ i ≤ n, we will denote by σij and τ
i
j the morphisms from Dj

to Di de�ned by

σij = σi · · ·σj+2σj+1 and τ ij = τi · · · τj+2τj+1.

By de�nition, the category of n-graphs is the category Ĝn of presheaves on Gn. An
n-graph X thus consists of a diagram of sets

Xn

sn //

tn
// Xn−1

sn−1
//

tn−1

// · · ·
s2 //

t2
// X1

s1 //

t1
// X0

satisfying the relations

sisi+1 = siti+1 and tisi+1 = titi+1, 1 ≤ i < n.

If X is an n-graph, we will call X0 the set of objects of X and Xk, for 0 ≤ k ≤ n, the
set of k-arrows of X. If f is a k-arrow of X for k ≥ 1, the (k−1)-arrow si(f) (resp. ti(f))
will be called the source (resp. the target) of f . We will often denote an arrow f of X
whose source is x and whose target is y by f : x→ y.

We will say that two k-morphisms f, g of an n-graph X are parallel if, either k = 0,
or k ≥ 1 and these morphisms satisfy

sk(f) = sk(g) and tk(f) = tk(g).

If f, g is a pair of parallel k-arrows for k < n, we will denote by HomX(f, g) the set of
(k + 1)-arrows of X from f to g.

5.2. Let m be a positive integer. A table of dimensions of width m consists of a table(
i1 i2 · · · im

i′1 i′2 · · · i′m−1

)
�lled with integers satisfying

ik > i′k and ik+1 > i′k, 1 ≤ k < m.
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The dimension of a table of dimensions is the greatest integer appearing in it.
Let C be a category under Gn, i.e., a category endowed with a functor F : Gn → C.

We will often denote in the same way the objects and morphisms of Gn and their image
by the functor F . Let

T =

(
i1 i2 · · · im

i′1 i′2 · · · i′m−1

)
be a table of dimensions of dimension at most n. The globular sum in C associated to T
(if it exists) is the iterated pushout

(Di1 , σ
i1
i′1

)qDi′1
(τ i2
i′1
,Di2 , σ

i2
i′2

)qDi′2
. . .qDi′m−1

(τ im
i′m−1

,Dim)

in C, i.e., the colimit of the diagram

Di1 Di2 Di3 Dim−1 Dim

· · ·
Di′1

σ
i1
i′1

__

τ
i2
i′1

??

Di′2
′σ

i2
i′2

__

τ
i3
i′2

??

Di′m−1

σ
im−1

i′m−1

cc

τ im
i′m−1

<<

in C. We will denote it simply by

Di1 qDi′1
Di2 qDi′2

. . .qDi′m−1

Dim .

We will always see Ĝn as a category under Gn by using the Yoneda functor. If T is
a table of dimensions of dimension at most n, we will denote by GT the globular sum

associated to T in Ĝn.

Example 5.3. If T is the table of dimensions(
2 2 2 3 2 1

1 0 1 1 0

)
,

then the associated 3-graph GT is

• // •
��
%%

99
EE

��

�� ��
*4

��

•
  
//
>>

��

��
• .

Remark 5.4. The GT 's are exactly the n-graphs associated to �nite planar rooted trees
by Batanin in [9].

5.5. We will denote by n-Cat the category of strict n-categories and strict n-functors.
This category can be de�ned by induction by saying that n-Cat is the category of cate-
gories enriched in (n -1)-Cat. Thus, a strict n-category C is given by

• a set of objects Ob(C);
• for every pair x, y of objects of C, an (n− 1)-category MapC(x, y);
• for every triple x, y, z of objects of C, a strict (n− 1)-functor

∗0 : MapC(y, z)×MapC(x, y)→ MapC(x, z);

• for every object x, a distinguished object 1x of MapC(x, x),
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satisfying the associativity and unit axioms. This de�nition can be unpacked to a
more explicit de�nition (see for instance Section 1.2 of [5]). If C and D are two strict
n-categories, a strict n-functor u : C → D is given by

• a map u0 : Ob(C)→ Ob(D);
• for every pair x, y of objects of C, a strict (n− 1)-functor

ux,y : MapC(x, y)→ MapD(u0(x), u0(y)),

satisfying some obvious axioms. In the sequel, by �strict n-functor� we will mean �strict
n-functor between strict n-categories�.

We will denote by

Un : n-Cat→ Ĝn

the forgetful functor sending a strict n-category to its underlying n-graph. We will often
implicitly apply this forgetful functor to transfer notation and terminology from n-graphs
to strict n-categories. The functor Un admits a left adjoint

Ln : Ĝn → n-Cat

sending an n-graph G to the free strict n-category on G.
The category n-Cat will always be seen as a category under Gn by using the functor Ln.

In particular, for k ≤ n we have a strict n-category Dk. Note that D0 is the terminal
object of n-Cat.

Recall that the category n-Cat is cartesian closed. If C and D are two n-categories, we
will denote by Hom(C,D) the corresponding internal Hom. A k-arrow of Hom(C,D) is
given by a strict n-functor C ×Dk → D. In particular, the set of objects of Hom(C,D)
is in canonical bijection with Homn-Cat(C,D).

5.6. We will denote by Θn the category de�ned in the following way:

• the objects of Θn are the tables of dimensions of dimension at most n;
• if S and T are two objects of Θn, then

HomΘn(S, T ) = Homn-Cat(Ln(GS), Ln(GT ));

• the composition and the identities of Θn are induced by those of n-Cat.

By de�nition of Θn, we have a fully faithful functor Θn → n-Cat sending an object T
of Θn to Ln(GT ). This functor is injective on objects and thus identi�es Θn to a full
subcategory of n-Cat.

The functor

Gn → Ĝn
Ln−−→ n-Cat

factors through Θn and the category Θn will always be seen as a category under Gn by
using this functor. It follows from the fact that Ln commutes with colimits that if

T =

(
i1 i2 · · · im

i′1 i′2 · · · i′m−1

)
is an object of Θn, then

T = Di1 qDi′1
Di2 qDi′2

. . .qDi′m−1

Dim ,

where the globular sum is taken in Θn.
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For n = 1, the category Θ1 is canonically isomorphic to the simplex category ∆. The
object ∆m corresponds to the table of dimensions of width m(

1 1 · · · 1
0 0 · · · 0

)
and we indeed have

∆m = ∆1 q∆0
· · · q∆0

∆1

in ∆. In the sequel, we will identify Θ1 and ∆.

Remark 5.7. The category Θn is canonically isomorphic to (a truncation of) the cell
category introduced by Joyal in [27]. This was proved independently by Makkai and
Zawadowski in [37] and by Berger in [11]. Alternative de�nitions of this category are
given in [11] and [12]. See also Proposition 3.11 of [2] for a de�nition by universal
property.

5.8. Since the category n-Cat is cocomplete, the inclusion functor ι : Θn → n-Cat induces
an adjunction

τn : Θ̂n � n-Cat : Nn,

where τn is the unique extension of ι to Θ̂n preserving colimits and Nn is given by the
formula

Nn(C)T = Homn-Cat(ι(T ), C),

where C is a strict n-category and T is an object of Θn. It follows formally from the
fact that ι : Θn → n-Cat is fully faithful and that n-Cat is cartesian closed that the
functor τn commutes with binary products (see the proof of Proposition B.0.15 of [31]).
Moreover, abstract (but non-trivial) considerations (see Example 4.24 of [46]) show that
the functor Nn is fully faithful.

For n = 1, the functor N1 is the usual nerve functor N : Cat→ ∆̂.

Remark 5.9. The fact that Nn is fully faithful was �rst proved by Berger starting from
a combinatorial de�nition of Θn (see Theorem 1.12 of [11]).

Theorem 5.10 (Berger). The category Θn is a regular skeletal Reedy category.

Proof. By Lemma 2.4 and Remark 2.5 of [11], there is a structure of skeletal Reedy
category on Θn. It is not hard to show that this structure is regular (i.e., that the level
preserving cellular operators in Berger's terminology are monomorphisms). �

Remark 5.11. Another point of view on the Reedy structure on Θn can be found in [18].

5.12. Since Θn is a Reedy category, for every object T we have a presheaf ∂T on Θn

endowed with a monomorphism δT : ∂T → T . The presheaf ∂T is obtained by taking
the union of the images of all the monomorphisms S → T of Θn except the identity.

Note that a morphism of Θn is a monomorphism if and only if its underlying n-graph
morphism is a monomorphism, that is, if and only if it induces injections on k-arrows for
every k such that 0 ≤ k ≤ n.

5.13. The category Θ̂n will always be seen as the category under Gn by using the functor

Gn → Θn → Θ̂n.
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Let

T =

(
i1 i2 · · · im

i′1 i′2 · · · i′m−1

)
be an object of Θn. We will denote by IT the globular sum

Di1 qDi′1
Di2 qDi′2

. . .qDi′m−1

Dim

taken in Θ̂n. There is a canonical morphism

iT : IT → T

in Θ̂n coming from the universal property of IT . One easily checks that this morphism
is a monomorphism.

When n = 1, the object I∆k
will be denoted by Ik. This is the sub-simplicial set

of ∆k obtained by taking the union of all the 1-simplices of ∆k whose vertices are con-
secutive integers. This object is called the spine of ∆k by Joyal in [31]. We will denote
by ik : Ik → ∆k the inclusion morphism.

Remark 5.14. Let T be an object of Θn. The restriction of the morphism IT → T

of Θ̂n to Ĝn is nothing but the inclusion morphism GT → UnLn(GT ) given by the unit
of the adjunction (Ln, Un).

5.15. Let k ≥ 1 and let C be a strict (k−1)-category. We de�ne a strict k-category ∆1 oC
as a category enriched in strict (k − 1)-categories in the following way:

• the objects of ∆1 o C are 0 and 1;
• for every objects ε and ε′ of ∆1 o C, we have

Map∆1oC(ε, ε′) =


C if ε = 0 and ε′ = 1,

∗ if ε = ε′,

∅ if ε = 1 and ε′ = 0.

A priori, we have only de�ned a graph enriched in strict (k− 1)-categories. It is obvious
that there is a unique structure of enriched category on this enriched graph and the strict
n-category ∆1 oC is thus well-de�ned. The construction ∆1 oC is clearly functorial in C.

Let J be the simply connected groupoid on two objects 0 and 1. In other words, J is
de�ned in the following way:

• the objects of J are 0 and 1;
• for every objects ε and ε′ of J , we have HomJ(ε, ε′) = ∗.

We will denote by ∂J the discrete subcategory of J consisting of the objects 0 and 1,
and by δJ : ∂J → J the inclusion functor.

We de�ne by induction on k ≥ 1 a strict k-category Jk in the following way:

J1 = J and Jk = ∆1 o Jk−1, k ≥ 2.

This k-category is equipped with a strict k-functor jk : Jk → Dk−1. For k = 1, the
functor j1 is the unique functor J → D0. We will also denote this functor simply by j.
For k ≥ 2, we have

Dk−1 = ∆1 oDk−2.
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This allows us to de�ne jk by induction setting

jk = ∆1 o jk−1 : ∆1 o Jk−1 → ∆1 oDk−2.

This k-functor admits two sections s0
k and s1

k. For k = 1 and ε = 0, 1, the section sε1
corresponds to the object ε of J . It will also be denoted by ∂ ε. For k ≥ 2 and ε = 0, 1,
we de�ne sεk by induction in the following way:

sεk = ∆1 o sεk−1 : ∆1 oDk−2 → ∆1 o Jk−1.

Remark 5.16. Here are (the underlying graph without the identities of) J1, J2 and J3:

J1 = 0
$$
1dd , J2 = 0

##

;;��

KS
1 and J3 = 0

!!

==����
jt
*4

1 .

The two arrows of maximal dimension are inverse of each other. The two sections sεk
correspond to the two non-trivial (k − 1)-arrows of Jk. The k-functor jk is the unique
strict k-functor from Jk to Dk−1 which sends these two (k − 1)-arrows to the unique
non-trivial (k − 1)-arrow of Dk−1.

5.17. Let

In = {iT : IT → T ; T ∈ Ob(Θn)}
and

Jn = {Nn(jk) : Nn(Jk)→ Nn(Dk−1); 1 < k ≤ n}.
The localizer of n-quasi-categories is the Θn-localizer generated by In and Jn. We will
denote it by WQCatn

. By the 2-out-of-3 property, this localizer is also generated by In
and J ′n where

J ′n = {Nn(sεk) : Nn(Dk−1)→ Nn(Jk); 1 < k ≤ n, ε = 0, 1}.

TheWQCatn
-model category structure on Θ̂n will be called the model category of n-quasi-

categories. By de�nition, an n-quasi-category is a WQCatn
-�brant object.

Remark 5.18. We will show in the next section that Nn(j) : Nn(J) → Nn(D0) is a
trivial �bration and hence belongs to any Θn-localizer, and that, on the contrary, none
of the morphisms of Jn belong to the Θn-localizer generated by In.

5.19. Recall that a simplicial set X is a quasi-category if the unique morphism from X
to ∆0 has the right lifting property with respect to hkn : Λkn → ∆n for every n ≥ 2 and
every 0 < k < n. Joyal de�ned in [31] (see Theorem 6.12) a model category structure on
simplicial sets, the so-called model category of quasi-categories. This model category is
uniquely de�ned by the fact that its co�brations are the monomorphisms and its �brant
objects are the quasi-categories.

Theorem 5.20 (Joyal). The model category of 1-quasi-categories coincide with the model
category of quasi-categories.

Proof. Let us denote byWJoyal the ∆-localizer associated to the model category of quasi-
categories. By Proposition 2.13 of [31], the morphisms of I1 areWJoyal-equivalences. The
localizer WQCatn

is thus contained in WJoyal. It follows that the WJoyal-�brant objects,
i.e., the quasi-categories, are WQCatn

-�brant objects.
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Let us show the converse. It su�ces to prove that for every n ≥ 2 and every 0 < k < n,
the morphism hkn : Λkn → ∆n is a WQCatn

-equivalence. This follows from Lemma 3.5
of [32] applied to the class of trivial co�brations of the WQCatn

-model category.
We have shown that the two model categories have the same �brant objects. Since

they also have the same co�brations, they coincide. �

Remark 5.21. If C is a category, it is well-known that its nerve N1(C) is a quasi-
category. As we will see in Section 7, it is not true that the nerve of a strict n-category
is an n-quasi-category in general. For instance, Nn(Jk) is not an n-quasi-category for
1 < k ≤ n (see Corollary 7.11). This is the reason why we have chosen the terminology
�n-quasi-category� rather than �quasi-n-category� which was used in a preliminary version
of this paper: strict n-categories should be quasi-n-categories.

6. On our generators of the localizer of n-quasi-categories

In this section, we study our generators of the localizer of n-quasi-categories. We �rst
show that the morphism Nn(j) : Nn(J)→ Nn(D0) is a trivial �bration and hence belongs
to any Θn-localizer. This is the reason why in dimension 1 (the case Θ1 = ∆) the spines
are su�cient to generate the localizer of quasi-categories. This is probably also the reason
why Cisinski and Joyal conjectured that the higher spines would generate a Θn-localizer
which would model (∞, n)-categories. We show in this section that it is not the case:
more precisely, we show that none of the morphisms of Jn (which are equivalences of
strict n-categories and hence should be equivalences of (∞, n)-categories) belong to the
Θn-localizer generated by In.

Throughout the section, we �x an integer n ≥ 1.

6.1. Consider the inclusion functor i : Cat → n-Cat. This functor admits a left adjoint
t : n-Cat → Cat and a right adjoint tr : n-Cat → Cat. The functor t will be called the
truncation functor. It sends a strict n-category C to the category whose objects are the
same as those of C and whose arrows are the 1-arrows of C up to 2-arrows. The functor tr
will be called the right truncation functor. It sends a strict n-category to the category
whose objects and 1-arrows are the same as those of C.

The adjunction
t : n-Cat� Cat : i

restricts to an adjunction
t : Θn � ∆ : i.

This new adjunction induces a third adjunction

t∗ : ∆̂� Θ̂n : i∗.

An immediate calculation shows that the square

∆̂
t∗ // Θ̂n

Cat

N1

OO

i
// n-Cat

Nn

OO

commutes.
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On the contrary, the functor tr : n-Cat → Cat does not restrict to a functor Θn → ∆.
Nevertheless, we can consider the functor

Θn → n-Cat
tr−→ Cat→ ∆̂.

Since ∆̂ is cocomplete, this functor induces an adjunction

tr ! : Θ̂n � ∆̂ : t∗r ,

where tr ! is the unique extension of this functor Θn → ∆̂ to Θ̂n preserving colimits and
t∗r is given by the formula

t∗r(X)T = Hom
∆̂

(tr(T ), X),

where X is a simplicial set and T is an object of Θn. The functor tr ! and i
∗ both preserve

colimits and coincide on objects of Θn. It follows that they are isomorphic and hence
that their right adjoints are isomorphic. In particular, if X is a simplicial set and T is
an object of Θn, we have

i∗(X)T ∼= t∗r(X)T = Hom
∆̂

(tr(T ), X).

Proposition 6.2. Let f be a morphism of simplicial sets. Then i∗(f) is a trivial �bration

of Θ̂n if and only if f is a trivial �bration of simplicial sets.

Proof. The functor i∗ admits a left adjoint and hence preserves monomorphisms. It
follows that its right adjoint i∗ preserves trivial �brations.

The same argument shows that i∗ preserves trivial �brations (its left adjoint t∗ admits
a left adjoint). Suppose i∗(f) is a trivial �bration. We have just seen that i∗i∗(f) is a
trivial �bration. But since i is fully faithful, we have i∗i∗(f) ∼= f and so f is a trivial
�bration. �

6.3. We will say that a category is a preorder if there is at most one arrow between every
pair of objects.

Corollary 6.4. Let u be a functor between preorders. Then Nn(u) is a trivial �bration

of Θ̂n if and only if N1(u) is a trivial �bration of simplicial sets.

Proof. If u is any functor, by paragraph 6.1, we have t∗N1(u) = Nn(u). On the other
hand, if C is a preorder, we have

t∗N1(C)T = HomCat(t(T ), C) ∼= HomCat(tr(T ), C) ∼= i∗N1(C)T

for every object T of Θn. If follows that if u is a functor between preorders, we have

Nn(u) ∼= i∗N1(u)

and the result follows from the above proposition. �

Proposition 6.5. Let u be a functor. Then N1(u) is a trivial �bration of simplicial sets
if and only if u is an equivalence of categories surjective on objects.

Proof. The morphism N1(u) is a trivial �bration if and only if for every n ≥ 0, we
have δn tN1(u). By adjunction, we have

δn tN1(u) ⇔ τ1(δn)tu.
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But it is well-known that τ1(δn) is an isomorphism for n ≥ 3 (see for instance the lemma
page 32 of [22]). Thus, the morphism N1(u) is a trivial �bration if and only if it satis�es

τ1(δn)tu, n = 0, 1, 2.

The condition for n = 0 (resp. n = 1, resp. n = 2) is equivalent to the surjectivity
on objects of u (resp. the fullness of u, resp. the faithfulness of u), thereby proving the
result. �

Corollary 6.6. Let u be a functor between preorders. Then Nn(u) is a trivial �bration

of Θ̂n if and only if u is an equivalence of categories surjective on objects.

Proof. This follows from Proposition 6.4 and the above proposition. �

Corollary 6.7. The morphism Nn(j) : Nn(J)→ Nn(D0) is a trivial �bration of Θ̂n.

Proof. The functor J → D0 is an equivalence of categories surjective on objects between
preorders. The result thus follows from the above corollary. �

6.8. Consider Nn(J) endowed with the two morphisms

∂ ε = Nn(∂ ε) : Nn(D0)→ Nn(J), ε = 0, 1.

The presheaf Nn(D0) is the terminal object of Θ̂n and Nn(J) is thus endowed with the
structure of an interval. It is immediate that this interval is separating. Moreover, by
the above lemma, this interval is injective.

Proposition 6.9. For every object T of Θn, the n-functor

τn(iT ) : τn(IT )→ τn(T )

is an isomorphism of n-categories.

Proof. Let
T = Di1 qDi′1

. . .qDi′m−1

Dim .

It is immediate that, with the notation of paragraphs 5.2 and 5.5, we have

T = NnLn(GT ).

Using the fact that the functor Nn is fully faithful, we obtain

τn(T ) ∼= τnNnLn(GT )

∼= Ln(GT )

∼= Ln
(
Di1 qDi′1

. . .qDi′m−1

Dim

)
∼= Ln(Di1)qLn(Di′1

) · · · qLn(Di′m−1
) Ln(Dim)

∼= Di1 qDi′1
. . .qDi′m−1

Dim

∼= τn(Di1)qτn(Di′1
) · · · qτn(Di′m−1

) τn(Dim)

∼= τn
(
Di1 qDi′1

. . .qDi′m−1

Dim

)
∼= τn(IT ),

thereby proving the result. �
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Lemma 6.10. Let T be an object of Θn di�erent from D0. Then the map δT : ∂T → T
induces a bijection δT,D0 : ∂TD0 → TD0.

Proof. By de�nition, the morphism δT is a monomorphism. The map δT,D0 is thus
injective. Let us show that it is also surjective. Let x : D0 → T be a morphism of Θn.
Since D0 is the terminal object of Θn, the morphism x is a monomorphism. The object T
being di�erent from D0, the morphism x is not an identity and it thus factors through ∂T
by de�nition of ∂T . The map δT,D0 is thus surjective. �

Proposition 6.11. Let X be a presheaf on Θn. Then the set of objects of τn(X) is in
canonical bijection with XD0.

Proof. We have seen in paragraph 6.1 that the square

∆̂
t∗ // Θ̂n

Cat

N1

OO

i
// n-Cat

Nn

OO

is commutative. By taking left adjoints, we obtain that the square

∆̂

τ1

��

Θ̂n
t!oo

τn

��

Cat n-Cat
t

oo

is also commutative (up to isomorphism). We thus have

Ob(τn(X)) = Ob(tτn(X)) ∼= Ob(τ1t!(X)) = t!(X)0,

where the last equality comes from the case n = 1 of the proposition which is well-known
(see for instance the proposition page 33 of [22]). By the theory of Kan extensions, we
have

t!(X)0
∼= lim−→

(S,∆0→t(S))∈(∆0\Θn)o

XS ,

where ∆0\Θn denotes the category whose objects are pairs (S,∆0 → t(S)) consisting
of an object S of Θn and a morphism ∆0 → t(S) of ∆, and whose morphisms are the
obvious ones. It follows from the canonical bijection

Hom∆(∆0, t(S)) ∼= HomΘn(D0, S)

that the category ∆0\Θn admits (D0, 1∆0
) as an initial object. The above colimit is thus

canonically isomorphic to XD0 , thereby proving the result. �

Corollary 6.12. Let T be an object of Θn di�erent from D0. Then the n-functor

τn(δT ) : τn(∂T )→ τn(T )

is bijective on objects.

Proof. This follows from Lemma 6.10 and the above proposition. �
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6.13. Let u : C → D be a strict n-functor. We will say that u is fully faithful if for every
pair x, y of objects of C, the (n− 1)-functor

ux,y : MapC(x, y)→ MapD(u(x), u(y))

is an isomorphism of strict (n − 1)-categories. Explicitly, this means that for every k
such that 0 < k ≤ n and every pair f, g of parallel (k − 1)-arrows of C, the n-functor u
induces a bijection

HomC(f, g)→ HomD(u(f), u(g)).

Lemma 6.14. Let C be a strict n-category and let ε = 0, 1. Then the n-functor

Hom(∂ ε, C) : Hom(J,C)→ Hom({ε}, C) ∼= C

is fully faithful.

Proof. We will prove the case ε = 1. The case ε = 0 will follow by duality. Recall that
we denote by ∗0 the composition in dimension 0 of two k-arrows of an n-category.

By de�nition, objects of Hom(J,C) are invertible 1-arrows of C. Let f : x → y
and f ′ : x′ → y′ be two invertible 1-arrows of C. A morphism from f to f ′ in Hom(J,C)
is given by a pair h : x→ x′, k : y → y′ of morphisms of C making the square

x

f

��

h // x′

f ′

��

y
k
// y′

commute. Since f and f ′ are invertible, the pair (h, k) is uniquely determined by k. This
exactly means that the map

HomHom(J,C)(f, f
′)→ HomC(y, y′)

induced by u is a bijection.
Let us now describe the k-arrows of Hom(J,C) for k such that 0 < k ≤ n. By

de�nition, a k-arrow of Hom(J,C) is given by a strict k-functor J × Dk → C. Such
a k-functor is given by a tuple (f, g, α, β) where f, g are two invertible 1-arrows of C
and α, β are two k-arrows of C such that the compositions β ∗0 f and g ∗0 α make sense
and are equal. Two k-arrows (f, g, α, β) and (f ′, g′, α′, β′) of Hom(J,C) are parallel if
and only if f = f ′, g = g′, α and α′ are parallel, and β and β′ are parallel.

Suppose now k is such that 1 < k ≤ n and let (f, g, α, β) and (f, g, α′, β′) be two
parallel k-arrows of Hom(J,C). We have to show that the map

HomHom(J,C)((f, g, α, β), (f, g, α′, β′))→ HomC(β, β′)

induced by u is a bijection. The same argument as in dimension 0 applies. Formally, an
inverse of this map is given by

Γ : β → β′ 7→ (f, g, g−1 ∗0 Γ ∗0 f,Γ). �

Proposition 6.15. Let v be a fully faithful strict n-functor. Then v has the unique right
lifting property with respect to strict n-functors bijective on objects.
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Proof. The assertion is a special case of a standard result in enriched category theory.
Let us prove our particular case. We will use the notation of paragraph 5.5. Consider a
commutative square

A

u
��

f
// C

v
��

B g
// D ,

where u is a strict n-functor bijective on objects and v is a fully faithful strict n-functor.
Let h : B → C be a lift. The condition hu = f imposes that if x is an object of B,
then h(x) = f(u−1

0 (x)). On the other hand, the condition hv = g imposes that if x, y is a

pair of objects of B, then hx,y = v−1

fu−1
0 (x),fu−1

0 (y)
g. The strict n-functor h is thus unique.

One immediately checks that the formulas given above de�ne a strict n-functor, thereby
proving the result. �

Corollary 6.16. Let u : C → D be a strict n-functor bijective on objects. Then the
strict n-functors

u×′ ∂ εJ : C × J qC×{ε} D × {ε} → D × J, ε = 0, 1,

are isomorphisms of strict n-categories.

Proof. Let A be a strict n-category. By the Yoneda lemma, it su�ces to prove that

Homn-Cat(D × J,A)→ Homn-Cat(C × J qC×{ε} D × {ε}, A)

is a bijection, or, in other words, that the functor of the statement has the unique left
lifting property with respect to the unique strict n-functor A→ D0. By adjunction, this
is equivalent to saying that the functor

Hom(∂ ε, A) : Hom(J,A)→ Hom({ε}, A) ∼= A

has the unique right lifting property with respect to the functor C → D. This follows
from Lemma 6.14 and the above proposition. �

6.17. Let u : C → D be a functor. Recall that u is said to be an iso-�bration if for every
invertible arrow f ′ : x′ → y′ of D and every object y of C such that u(y) = y′, there exists
an invertible arrow f : x → y of C such that u(f) = f ′. In other words, the functor u
is an iso-�bration if it has the right lifting property with respect to ∂ 1 : D0 → J . Note
that u is an iso-�bration if and only if uo : Co → Do is an iso-�bration, that is, if and
only if u has the right lifting property with respect to ∂ 0 : D0 → J .

Proposition 6.18. Let u be a strict n-functor and denote byW the Θn-localizer generated
by In. Then the morphism Nn(u) is a W-�bration if and only if the right truncation tr(u)
of u is an iso-�bration. In particular, for any strict n-category C, its nerve Nn(C) is
W-�brant.

Proof. In this proof, by �naive �bration� we will mean �naive (In, Nn(J))-�bration�. (By
paragraph 6.8, Nn(J) is an injective separating interval and we will thus be able to apply
Theorem 2.14.)
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By paragraph 2.10, the morphism Nn(u) is a naive �bration if and only if it has the
right lifting property with respect to

Λ∞Nn(J)(In) ∪ {∂T ×Nn(J) ∪ T × {ε} → T ×Nn(J); T ∈ Ob(Θn), ε = 0, 1}.

By adjunction and using the fact that τn commutes with colimits and binary products,
we obtain that Nn(u) is a naive �bration if and only if u has the right lifting property
with respect to

Λ∞J (τn(In))∪{τn(∂T )×J qτn(∂T )×{ε} τn(T )×{ε} → τn(T )×J ; T ∈ Ob(Θn), ε = 0, 1}.
(A priori, we have only de�ned the Λ∞ construction in presheaf categories. Nevertheless,
it is clear that the de�nition still makes sense in any category admitting �nite prod-
ucts and pushouts.) By Proposition 6.9, the n-functors of τn(In) are isomorphisms.
Since isomorphisms are stable under pushout and binary product, it follows that the
n-functors of Λ∞J (τn(In)) are also isomorphisms. Moreover, by Corollaries 6.12 and 6.16,
the n-functors of

{τn(∂T )× J qτn(∂T )×{ε} τn(T )× {ε} → τn(T )× J ; T ∈ Ob(Θn)\{D0}, ε = 0, 1}
are again isomorphisms. It follows that Nn(u) is a naive �bration if and only if u has
the right lifting property with respect to

τn(∂D0)× J qτn(∂D0)×{ε} τn(D0)× {ε} → τn(D0)× J.
But this n-functor is nothing but ∂ ε : D0 → J and Nn(u) is thus a naive �bra-
tion if and only if tr(u) is an iso-�bration. In particular, every strict n-category C
is (In, Nn(J))-�brant and hence W-�brant by Theorem 2.14. The result follows from the
same theorem since Nn(u) is a morphism between W-�brant objects. �

Remark 6.19. Let W be the Θn-localizer generated by In. By the above proposition,
nerves of strict n-categories are W-�brant objects. We will see in the introduction of the
next section that this implies that when n > 1 the functor Nn cannot have the property
that a strict n-functor u is an equivalence of strict n-categories if and only if Nn(u) is a
W-equivalence. This shows that we have to add other generators to obtain a model for
(∞, n)-categories.

Proposition 6.20. Let k be an integer such that 1 < k ≤ n. Then the morphism

Nn(jk) : Nn(Jk)→ Nn(Dk−1)

is not a trivial �bration of Θ̂n.

Proof. Let T be the object Dk−1 qDk−2
Dk−1 of Θn. We claim that Nn(jk) does not

have the right lifting property with respect to δT : ∂T → T , or, by adjunction, that
jk does not have the right lifting property with respect to τn(δT ) : τn(∂T ) → τn(T ).
Since τn commutes with colimits, we have

τn(∂T ) = lim−→
S
6=
↪→T

S,

the colimit being taken over the category of non-trivial monomorphisms of Θn whose
target is T . Using this formula, one easily obtains that a strict n-functor from τn(∂T ) to
a strict n-category C is given by a triangle of (k−1)-arrows composable in dimension k−2.
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It follows that a strict n-functor u : C → D has the right lifting property with respect
to τn(δT ) : τn(∂T ) → τn(T ) if and only if every such triangle in C which is sent to a
commutative triangle in D is already commutative in C, or equivalently, if and only if
u is injective on parallel (k − 1)-arrows, i.e., if two parallel (k − 1)-arrows f, g of C are
sent to the same (k − 1)-arrow in D, then f = g. This condition is not ful�lled by jk,
thereby proving that Nn(jk) is not a trivial �bration. �

Corollary 6.21. Let k be an integer such that 1 < k ≤ n. Then the morphism

Nn(jk) : Nn(Jk)→ Nn(Dk−1)

is not in the Θn-localizer generated by In.

Proof. Denote by W the Θn-localizer generated by In. The functor tr(jk) is an iso-
�bration and the morphism Nn(jk) is thus a W-�bration by Proposition 6.18. By the
above proposition, this morphism is not a trivial �bration. It follows that it is not a
W-equivalence. �

7. Nerves of strict n-categories and n-quasi-categories

If C is a category, it is well-known that its nerve N1(C) is a quasi-category. In
this section, we show that it is not true that nerves of strict n-categories are n-quasi-
categories as soon as n > 1. More precisely, we will show that the nerve Nn(C) of a
strict n-category C is an n-quasi-category if and only if C has no non-trivial invertible
k-arrows for k > 1.

There is actually an abstract reason for which nerves of strict n-categories cannot
be n-quasi-categories. Indeed, if they were n-quasi-categories, they would be co�brant-
�brant objects in the model category of n-quasi-categories. That would imply that any
weak equivalence between nerves of strict n-categories has an inverse up to homotopy.
Assuming that Nn has the property that a strict n-functor u is an equivalence of strict
n-categories if and only if Nn(u) is a weak equivalence of n-quasi-categories (which is
expected but not proved in this paper) and using the fully faithfulness of Nn, we would
get that if a strict n-functor C → D is an equivalence of strict n-categories, then there
exists a strict n-functor D → C which is an equivalence of strict n-categories, which is
false when n > 1.

Throughout the section, we �x an integer n ≥ 1 and an integer k such that 1 < k ≤ n.

7.1. We will say that a strict n-category C is rigid in dimension k if any (strictly)
invertible k-arrow of C is the identity of a (k − 1)-arrow.

Proposition 7.2. A strict n-category C is rigid in dimension k if and only if the unique
n-functor C → D0 has the right lifting property with respect to the n-functor

s0
k ×′ δJ : Dk−1 × J qDk−1×∂J Jk × ∂J → Jk × J

induced by s0
k : Dk−1 → Jk and δJ : ∂J → J .

Proof. Let us denote by i the unique arrow of J from 0 to 1, and by γ the unique k-arrow
of Jk whose source (resp. whose target) corresponds to the morphism s0

k : Dk−1 → Jk
(resp. to the morphism s1

k : Dk−1 → Jk).
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To any strict n-functor

u : Jk × J → C,

we can associate a tuple (f, g, α, β) given by

f = u(0, i), g = u(1, i), α = u(γ, 0) and β = u(γ, 1).

Conversely, if (f, g, α, β) is a tuple where f, g are invertible 1-arrows of C and α, β are
invertible k-arrows of C, then the above formulas de�ne a strict n-functor if and only if
we have

g ∗0 α = β ∗0 f.
Similarly, to any strict n-functor

u : Dk−1 × J qDk−1×∂J Jk × ∂J → C,

we can associate a tuple (f, g, α, β) given by

f = u(0, i), g = u(1, i), α = u(γ, 0) and β = u(γ, 1).

Conversely, if (f, g, α, β) is a tuple where f, g are invertible 1-arrows of C and α, β are
invertible k-arrows of C, then the above formulas de�ne a strict n-functor if and only if
we have

g ∗0 sk(α) = sk(β) ∗0 f.
Moreover, if a tuple (f, g, α, β) de�nes a functor Jk × J → C, then the induced functor
Dk−1 × J qDk−1×∂J Jk × ∂J → C is also de�ned by (f, g, α, β).

The above analysis shows that C → D0 has the right lifting property with respect
to s0

k×′ δJ if and only if for every tuple (f, g, α, β) where f, g are invertible 1-arrows of C
and α, β are invertible k-arrows of C, if

g ∗0 sk(α) = sk(β) ∗0 f,
then

g ∗0 α = β ∗0 f.
This clearly holds if α and β are identities of (k− 1)-arrows and it hence holds for any α
and β if C is rigid in dimension k. Conversely, suppose C is not rigid in dimension k. By
de�nition, there exists an invertible k-arrow α : v → w which is not an identity. Denote
by x (resp. by y) the source (resp. the target) of v in dimension 0. Consider the tuple
(1x, 1y, α, 1v). We indeed have

1y ∗0 sk(α) = v = sk(1v) ∗0 1x,

but

1y ∗0 α = α 6= 1v = 1v ∗0 1x,

thereby proving the result. �

Remark 7.3. The above proposition is false for k = 1: for any category C, the n-functor
C → D0 has the right lifting property with respect to s0

1 ×′ δJ .

Remark 7.4. We could have replaced s0
k by s

1
k in the statement of the proposition. This

immediately follows from the existence of an automorphism σ of Jk × J satisfying

s1
k ×′ δJ = σ ◦ (s0

k ×′ δJ).
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7.5. We will say that a strict n-functor u : C → D is rigid in dimension k if it has the
right lifting property with respect to the n-functor

s0
k ×′ δJ : Dk−1 × J qDk−1×∂J Jk × ∂J → Jk × J.

(By the above remark, we could replace s0
k by s1

k.) The above proposition can then be
rephrased by saying that a strict n-category C is rigid in dimension k if and only if the
n-functor C → D0 is rigid in dimension k.

Lemma 7.6. The n-functor

s0
k ×′ δJ : Dk−1 × J qDk−1×∂J Jk × ∂J → Jk × J

is an epimorphism.

Proof. We have to show that for any strict n-category C, the map Homn-Cat(s
0
k ×′ δJ , C)

is injective. This is an immediate consequence of the description of this map given in the
proof of Proposition 7.2. �

Proposition 7.7. Let u : C → D be a strict n-functor. If the n-category C is rigid in
dimension k, then so is the n-functor u.

Proof. If follows formally from the fact that the n-functor s0
k ×′ δJ is an epimorphism

(see the above lemma) that if C → D0 has the right lifting property with respect to this
n-functor, so does any strict n-functor whose source is C. The result thus follows from
Proposition 7.2. �

Proposition 7.8. Let C be a strict n-category. If C is rigid in dimension k, then so is
the n-category Hom(J,C).

Proof. Invertible k-arrows of Hom(J,C) are in canonical bijection with strict n-functors
Jk × J → C. We saw in the proof of Proposition 7.2 that these n-functors are in
canonical bijection with tuples (f, g, α, β), where f, g are invertible 1-arrows of C and
α, β are invertible k-arrows of C satisfying g ∗0 α = β ∗0 f . In this correspondence, such
a tuple is an identity in the n-category Hom(J,C) if and only if α and β are identities
in C. The result follows immediately. �

Remark 7.9. The previous proposition is easily seen to hold when J is replaced by
any strict n-category D: all one has to do to adapt the proof is to describe the strict
n-functors Jk ×D → C.

Proposition 7.10. Let C be a strict n-category. Then Nn(C) is an n-quasi-category if
and only if C is rigid in dimension k for 1 < k ≤ n.
Proof. Since Nn(J) is an injective separating interval (see paragraph 6.8), by Theo-
rem 2.14, Nn(C) is an n-quasi-category if and only if it is (In ∪ J ′n, Nn(J))-�brant. By
Proposition 6.18, Nn(C) is always (In, Nn(J))-�brant. We thus have to understand when
the unique map Nn(C)→ D0 has the right lifting property with respect to Λ∞Nn(J)(J

′
n).

By using the same arguments (and notation) than in the proof of Proposition 6.18, this
condition is equivalent to the fact that the map C → D0 has the right lifting property
with respect to

Λ∞J (τn(J ′n)) =
⋃

1<k≤n
Λ∞J ({sεk : Dk−1 → Jk; ε = 0, 1}).
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We now �x k such that 1 < k ≤ n. We will show that C → D0 has the right lifting
property with respect to Λ∞J ({s0

k, s
1
k}) if and only if C is rigid in dimension k.

Given a class S of strict n-functors, de�ne V∞J (S) to be the smallest class of strict
n-functors containing S and closed under the operation

f : A→ B 7−→ Hom′(δJ , f) : Hom(J,A)→ Hom(∂J,A)×Hom(∂J,B) Hom(J,B).

By adjunction (see paragraph 1.2), if S and T are two classes of strict n-functors, we
have

Λ∞J (S)tT ⇔ S tV∞J (T ).

In particular, we have

Λ∞J ({s0
k, s

1
k})t{p} ⇔ {s0

k, s
1
k}tV∞J ({p}),

where p denotes the unique n-functor C → D0. Since the n-functors s0
k and s1

k both
admit a retraction, they have the left lifting property with respect to p : C → D0. By
adjunction, we thus have

{s0
k, s

1
k}tV∞J ({p}) ⇔ {s0

k ×′ δJ , s1
k ×′ δJ}tV∞J ({p}).

This last condition can be rephrased by saying that the n-functors of V∞J ({C → D0})
are rigid in dimension k. In particular, this condition implies that C is rigid in dimen-
sion k. Conversely, if C is rigid in dimension k, then by Proposition 7.8, the sources
of the n-functors of V∞J ({C → D0}) are rigid in dimension k and the result follows by
Proposition 7.7. �

Corollary 7.11. For every k such that 1 < k ≤ n, the presheaf Nn(Jk) is not an
n-quasi-category.

Proof. This follows immediately from the proposition since Jk has non-trivial invertible
k-arrows. �

Corollary 7.12. If C is a category, then Nn(C) is an n-quasi-category.

Proof. This follows immediately from the proposition since categories have only trivial
k-arrows for k > 1. �

8. Comparison with Rezk Θn-spaces

In [43], Rezk introduced a notion of Θn-spaces as �brant objects of a model category
structure on simplicial presheaves on Θn. Since the co�brations of this model category
structure are the monomorphisms, the weak equivalences de�ne a (Θn × ∆)-localizer.
The purpose of this section is to show that this localizer is the simplicial completion
of the localizer of n-quasi-categories. It will then follow formally from the theory of
simplicial completion that we have two Quillen equivalences between the corresponding
model category structures.

8.1. The localizer of Rezk Θn-spaces is the (Θn ×∆)-localizer generated by

Wvert ∪ p∗(In) ∪ {p∗(Nn(j) : Nn(J)→ Nn(D0))} ∪ p∗(Jn),
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whereWvert is the class of vertical equivalences de�ned in paragraph 2.16 (with A = Θn).
We will denote it by WRezkn . By the 2-out-of-3 property, this localizer is also generated
by

Wvert ∪ p∗(In) ∪ {p∗(Nn(∂ ε) : Nn(D0)→ Nn(J)); ε = 0, 1}) ∪ p∗(J ′n).

Since the localizer Wvert is accessible, so is the localizer WRezkn . It follows from the
connection between localizers and Bous�eld localization (see Proposition A.11) that the

WRezkn-model category structure on Θ̂n ×∆ is nothing but the model category struc-
ture ΘnSp∞ introduced by Rezk in [43]. The �brant objects of this model category are
called (∞, n)-Θ-spaces by Rezk. We will call them Rezk Θn-spaces and theWRezkn-model
category will be called the model category of Rezk Θn-spaces.

Theorem 8.2 (Rezk). The model category of Rezk Θn-spaces is simplicial, left proper
and cartesian.

Proof. The model category of Rezk Θn-spaces is a left Bous�eld localization of the vertical
model category. By Theorem 3.7, the vertical model category is simplicial. It follows
from Theorem 4.11 of [25] that the model category of Rezk Θn-spaces is simplicial.

By de�nition, every object is co�brant in the model category of Rezk Θn-spaces. This
structure is hence left proper.

The fact that the model category of Rezk Θn-spaces is cartesian is highly non-trivial.
It is a special case of one of the main results of [43] (Proposition 11.5). �

Theorem 8.3. The (Θn×∆)-localizer of Rezk Θn-spaces is the simplicial completion of
the Θn-localizer of n-quasi-categories.

Proof. By Theorem 5.10, the category Θn is a regular skeletal Reedy category. We
can thus apply Theorem 4.10 to the set S = In ∪ Jn and to the injective separating
interval Nn(J) (see paragraph 6.8). We obtain that the simplicial completion of WQCatn

is the (Θn ×∆)-localizer WfRezk de�ned in paragraph 4.1. By de�nition, this localizer is
generated by

Wvert ∪ p∗(In ∪ Jn) ∪ {p∗(∂ εX : X → X ×Nn(J)); X ∈ Ob(Θ̂n), ε = 0, 1}.
Since ∂ ε = ∂ εD0

, the localizerWRezkn is contained inWfRezk. Conversely, we have to show
that ∂ εX = X×∂ ε belongs toWRezkn . But by Theorem 8.2, theWRezkn-model category is
cartesian and the localizer WRezkn is hence closed under binary product, thereby proving
the result. �

Theorem 8.4. Let us endow Θ̂n (resp. Θ̂n ×∆) with the model category structure of
n-quasi-categories (resp. with the model category structure of Rezk Θn-spaces).

(1) Then the adjunction

p∗ : Θ̂n � Θ̂n ×∆ : i∗0
is a Quillen equivalence.

(2) Let D : ∆→ Θ̂n be a cosimplicial WQCatn
-resolution. Then the adjunction

RealD : Θ̂n ×∆� Θ̂n : SingD

is a Quillen equivalence.

Proof. This follows from Propositions 2.20 and 2.23, and from the above theorem. �
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Corollary 8.5. The model category of n-quasi-categories is cartesian closed.

Proof. By Theorems 8.2 and 8.3, the simplicial completion of the localizer of n-quasi-
categories is cartesian. It follows from Corollary 2.21 that this localizer is cartesian, and
from Proposition 2.7 that the associated model category is cartesian closed. �

8.6. Let ∆̃• : ∆→ Cat be the functor

∆ ↪→ Cat
Π1−−→ Gpd ↪→ Cat,

where Gpd denotes the category of groupoids and Π1 is the fundamental groupoid functor,

i.e., the left adjoint to the inclusion functor Gpd→ Cat. In other words, the functor ∆̃•
sends ∆k to ∆̃k, the simply connected groupoid with objects {0, . . . , k}.

Proposition 8.7. The functor Nn∆̃• : ∆→ Θ̂n is a simplicial WQCatn
-resolution of Θ̂n.

Proof. It is clear that Nn∆̃0 q Nn∆̃0 → Nn∆̃1 is a monomorphism. Let k ≥ 0. We

have to prove that for every presheaf X on Θn, the projection X × Nn∆̃k → X is a

WQCatn
-equivalence. It su�ces to prove that the unique morphism Nn∆̃k → D0 is a

trivial �bration. But this morphism can be obtained by applying the functor Nn to the

unique functor ∆̃k → ∆0. The result thus follows from Corollary 6.6 since ∆̃k → ∆0 is
an equivalence of categories surjective on objects between preorders. �

Corollary 8.8. The simplicial WQCatn
-resolution Nn∆̃• induces a Quillen equivalence

Real
Nn∆̃•

: Θ̂n ×∆� Θ̂n : Sing
Nn∆̃•

,

where Θ̂n ×∆ (resp. Θ̂n) is endowed with the model category structure of Rezk Θn-spaces
(resp. with the model category structure of n-quasi-categories).

Proof. By the above proposition, the functor Nn∆̃• is a simplicial WQCatn
-resolution.

The result thus follows from Theorem 8.4 applied to D = Nn∆̃•. �

Remark 8.9. When n = 1, we recover from Theorem 8.4 and the above corollary the
two Quillen equivalences between quasi-categories and complete Segal spaces de�ned by
Joyal and Tierney in [32].

Appendix A. Localizers and Bousfield localization

In this appendix, we compare the language of localizers to the language of Bous�eld
localization. This comparison is needed for instance to see that the de�nition of Rezk
Θn-spaces we gave in terms of (Θn × ∆)-localizers coincide with the original de�nition
of Rezk.

A.1. In this appendix, the category ∆̂ of simplicial sets will always be endowed with its
classical model category structure (i.e., the one de�ned by Quillen in [41]).

If M is a model category, the category Hom(∆o,M) of simplicial objects in M will
always be endowed with the Reedy model category structure. Similarly, the category
Hom(∆,M) of cosimplicial objects inM will always be endowed with the Reedy model
category structure. The weak equivalences of these structures are the objectwise weak
equivalences. All we will need about their co�brations is that they only depend on the
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co�brations ofM. We refer the reader to Chapters 15 and 16 of [25] for details on these
model categories.

Recall that the functors

M→ Hom(∆o,M) and M→ Hom(∆,M)

sending an object ofM to the associated constant simplicial object (resp. to the associ-
ated constant cosimplicial object) are fully faithful. Moreover, they induce fully faithful
functors

Ho(M)→ Ho(Hom(∆o,M)) and Ho(M)→ Ho(Hom(∆,M))

between homotopy categories. In the sequel, we will often consider these four functors
as inclusions.

A.2. LetM be a model category. The functor

HomM :Mo ×M→ Set
induces a functor

Hom(∆,M)o × Hom(∆o,M)→ ∆̂

that we will denote in the same way. Explicitly, if X is a cosimplicial object inM and
Y is a simplicial object inM, the simplicial set HomM(X,Y ) is given by

HomM(X,Y )n = HomM(Xn, Yn), n ≥ 0.

It is well-known that this functor preserves weak equivalences between �brant objects
and hence admits a right derived functor

RHomM : Ho(Hom(∆,M))o ×Ho(Hom(∆o,M))→ Ho(∆̂).

In particular, we obtain a functor

RHomM : Ho(M)o ×Ho(M)→ Ho(∆̂).

A.3. Let X and Y be two objects of a model category M. Denote by p : ∆̂ → Ho(∆̂)
the localization functor. The theory of derived functors gives the formula

RHomM(X,Y ) ∼= p(HomM(X̃, Ỹ )),

where X̃ is any co�brant cosimplicial replacement of X and Ỹ is any �brant simplicial
replacement of Y . It follows from Proposition 17.4.6 of [25] that RHomM(X,Y ) can be
computed using the simpler formula

RHomM(X,Y ) ∼= p(HomM(X̃, Y ′)),

where X̃ is any co�brant cosimplicial replacement of X and Y ′ is any �brant replacement
of Y inM; or using the dual formula

RHomM(X,Y ) ∼= p(HomM(X ′, Ỹ )),

where X ′ is any co�brant replacement of X in M and Ỹ is any �brant simplicial re-
placement of Y . Moreover, if the model categoryM is simplicial, it follows from Propo-
sition 16.6.4 of [25] that

RHomM : Ho(M)o ×Ho(M)→ Ho(∆̂)
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is the right derived functor of the simplicial enrichment

Map :Mo ×M→ ∆̂

ofM. In other words, we have

RHomM(X,Y ) ∼= p(Map(X ′, Y ′)),

where X ′ is any co�brant replacement of X inM and Y ′ is any �brant replacement of Y
inM.

Lemma A.4. Let M and M′ be two model category structures on the same category
such that

• the class of co�brations ofM andM′ are the same;
• the class of weak equivalences of M is included in the class of weak equivalences
ofM′.

Then for every object X and every �brant object Y ofM′, we have a natural isomorphism

RHomM(X,Y ) ∼= RHomM′(X,Y ).

Proof. Note that the hypothesis onM andM′ implies that

• every �brant object ofM′ is �brant inM;
• the class of co�brations of Hom(∆,M) and Hom(∆,M′) are the same;
• the class of weak equivalences of Hom(∆,M) is included in the class of weak
equivalences of Hom(∆,M′).

In particular, by the �rst point, the object Y is �brant inM. Now let X̃ be a co�brant

cosimplicial replacement of X in Hom(∆,M). By the second and third points, X̃ is also
a co�brant cosimplicial replacement of X in Hom(∆,M′). It follows by paragraph A.3
that

HomM(X̃, Y ) = HomM′(X̃, Y )

can be used to compute both RHomM(X,Y ) and RHomM′(X,Y ), thereby proving the
result. �

A.5. Let M be a model category, let C be a class of morphisms of M and let D be a
class of objects ofM.

• An object Z ofM is said to be C-local if for every morphism f : X → Y in C,
the morphism

RHomM(f, Z) : RHomM(Y,Z)→ RHomM(X,Z)

is an isomorphism.
• A morphism f : X → Y of M is said to be a D-local equivalence if for every
object Z in D, the morphism

RHomM(f, Z) : RHomM(Y,Z)→ RHomM(X,Z)

is an isomorphism. If the class D consists of a single object Z, we will say that
f is a Z-local equivalence.
• A morphism f : X → Y ofM is said to be a C-local equivalence if it is an L-local
equivalence, where L is the class of C-local objects.
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Remark A.6. By de�nition, if C is a class of morphisms of a model category M,
then the elements of C are C-local equivalences. By functoriality of RHomM, the weak
equivalences ofM are also C-local equivalences and even Ob(M)-local equivalences. This
property actually characterizes weak equivalences:

Proposition A.7. The weak equivalences of a model category M are precisely the
Ob(M)-local equivalences. More generally, they are the D-local equivalences, where D is
any class of objects of M such that every object of M is weakly equivalent to an object
in D.

Proof. This is a direct consequence of the formula

π0(RHomM(X,Y )) ∼= HomHo(M)(X,Y ).

(See Theorem 17.7.2 of [25].) �

Lemma A.8. Let A be a small category and let M be a model category structure on Â

whose co�brations are the monomorphisms. Let D be a class of objects of Â. Then the
class of D-local equivalences is an A-localizer. In particular, if C is a class of morphisms

of Â, then the class of C-local equivalences is an A-localizer.

Proof. The 2-out-of-3 property is immediate by functoriality of RHomM.

By hypothesis, the trivial �brations of Â are the trivial �brations ofM. In particular,
they are weak equivalences inM and hence D-local equivalences.

Let us now show the stability conditions of the class of morphisms which are both
monomorphisms and D-local equivalences. Consider a cocartesian square

X

f
��

// X ′

f ′

��

Y // Y ′

in M, where f is both a monomorphism and a D-local equivalence. Let us show that

f ′ is a D-local equivalence. Let Z be an object of M and let Z̃ be a �brant simplicial

replacement of Z. By applying the functor HomC(−, Z̃), we obtain a cartesian square

HomM(Y ′, Z̃)

HomM(f ′,Z̃)
��

// HomM(Y, Z̃)

HomM(f,Z̃)
��

HomM(X ′, Z̃) // HomM(X, Z̃)

of simplicial sets. Since every object of M is co�brant, for every object W of M, we
have

RHomM(W,Z) ∼= p(HomM(W, Z̃)),

where p : ∆̂→ Ho(∆̂) is the localization functor. Moreover, by Theorem 16.5.2 of [25], the

objects of this square are �brant and the morphism HomM(f, Z̃) is a �bration. This shows

that this square is homotopically cartesian. In particular, if the morphism HomM(f, Z̃)

is a weak equivalence, then so is the morphism HomM(f ′, Z̃). In other words, if f is a
Z-local equivalence, then so is f ′. This shows that f ′ is a D-local equivalence.
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The stability under trans�nite composition follows from a similar argument, the key
point being that a limit de�ning a trans�nite cocomposition in which every object is
�brant and every morphism is a �bration is actually a homotopy limit. �

Proposition A.9. Let A be a small category, let W be an accessible A-localizer and
let W ′ be an accessible A-localizer generated by W and a class of morphisms C. Then
the W ′-�brant objects are the W-�brant C-local objects.

Proof. We will denote byM (resp. byM′) the W-model category (resp. the W ′-model
category).

Let Z be a W ′-�brant object. Since W is included in W ′, Z is also W-�brant. Let
us show that Z is C-local. Let X → Y be an element of C. We have to show that the
morphism

RHomM(Y, Z)→ RHomM(X,Z)

is an isomorphism. By Lemma A.4, this is the case if and only if the morphism

RHomM′(Y, Z)→ RHomM′(X,Z)

is an isomorphism, which is true since X → Y is a W′-equivalence.
Suppose now Z is a C-local W-�brant object and let us prove that Z is W ′-�brant.

Let f : U → V be a trivial co�bration ofM′. We have to show that

Hom
Â

(V,Z)→ Hom
Â

(U,Z)

is a surjection. By Proposition 16.6.4 of [25], there exist in Hom(∆,M) co�brant cosim-

plicial replacements Ũ and Ṽ of U and V , respectively, and a co�bration f̃ : Ũ → Ṽ such

that f̃0 = f . It thus su�ces to show that the morphism of simplicial sets

Hom
Â

(Ṽ , Z)→ Hom
Â

(Ũ , Z)

is a trivial �bration. Since f̃ is a co�bration between cosimplicial replacements of objects
ofM and Z isW-�brant, Theorem 16.5.2 of [25] implies that this morphism is a �bration.

Let us show that it is a weak equivalence. By hypothesis, the class of Z-local equiva-
lences containsW and C. Moreover, by Lemma A.8, this class is an A-localizer. It follows
by de�nition ofW ′ that everyW ′-equivalence is a Z-local equivalence. In particular, this
shows that f is a Z-local equivalence and so, by paragraph A.3, that the morphism

Hom
Â

(Ṽ , Z)→ Hom
Â

(Ũ , Z)

is a weak equivalence, thereby proving the result. �

A.10. Let M be a model category and let C be a class of morphisms of M. The left
Bous�eld localization of M with respect to C (if it exists) is the unique model category
structure on the underlying category of M whose weak equivalences are the C-local
equivalences and whose co�brations are the co�brations ofM.

Proposition A.11. Let A be a small category, let W be an accessible A-localizer and
let W ′ be an accessible A-localizer generated by W and a class of morphisms C. Then the
W
′-model category is the left Bous�eld localization of the W-model category with respect

to C.
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Proof. We have to show that the W ′-equivalences are exactly the C-local equivalences.
We will denote byM (resp. byM′) theW-model category (resp. theW ′-model category).

By Lemma A.8, the class of C-local equivalences is an A-localizer. Since it contains W
and C, the de�nition of W ′ implies that every W ′-equivalence is a C-local equivalence.

Conversely, let f : X → Y be a C-local equivalence. Let us show that f is a W ′-weak
equivalence. By Proposition A.7, it su�ces to prove that for every W ′-�brant object Z,
the morphism

RHomM′(Y, Z)→ RHomM′(X,Z)

is an isomorphism. By Lemma A.4, these RHom can be computed inM. Moreover, by
Proposition A.9, the object Z is C-local. The above morphism is thus an isomorphism,
thereby proving the result. �

Remark A.12. The proof of the above proposition only relies on the easy implication
of Proposition A.9. Therefore, we could have proved it directly. Proposition A.9 would
then have been a corollary of the theory of Bous�eld localization (see Proposition 3.4.1
of [25]).
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