
An algebraic process calculus

Emmanuel Beffara∗

Institut de Mathématiques de Luminy
CNRS & Université Aix-Marseille II

E-mail: beffara@iml.univ-mrs.fr

Abstract

We present an extension of the πI-calculus with formal
sums of terms. The study of the properties of this sum
reveals that its neutral element can be used to make as-
sumptions about the behaviour of the environment of a pro-
cess. Furthermore, the formal sum appears as a fundamen-
tal construct that can be used to decompose both internal
and external choice. From these observations, we derive an
enriched calculus that enjoys a confluent reduction which
preserves the testing semantics of processes. This system is
shown to be strongly normalising for terms without repli-
cation, and the study of its normal forms provides a fully
abstract trace semantics for testing of πI processes.

1. Introduction

The point of this paper is to define a meaningful notion
of normalisation for process calculi. Normalisation is not
an obvious idea in the context of concurrency because of
the non-determinism that is present in most process calculi,
and it makes it crucial to distinguish two related notions for
term languages: execution, which is a relation that describes
the intended dynamics of a term considered as a program in
a given model of computation, and evaluation, which is a
relation that preserves the computational meaning of terms
while simplifying them (in some sense).

In the λ-calculus, the standard notion of evaluation is β-
reduction, which is confluent and strongly normalising for
typed terms, while execution refers to particular evaluation
strategies, or particular abstract machines. In the π-calculus,
the dynamics of terms is usually given either as a labelled
transition system or as a reduction relation up to some struc-
tural congruence; we refer to the latter form as execution,
since it represents the way a process actually runs.

A problem in the search for semantics for processes is
that there is no related notion of evaluation. For instance,

∗Work supported by the French ANR project “Choco”.

consider the most straightforward case of non-determinism:
p := (νa)(a.p1 |a.p2 |ā). This process obviously has two pos-
sible reductions: p→ p1 and p→ p2, assuming a does not
occur in p1 or p2. We cannot say that the value of p is that
of p1 or p2, since this would either lose information about
p or imply that p1 and p2 have the same value; the most we
can say is that the value of p is “either that of p1 or that of
p2”. This cannot be expressed in general in the language of
processes, therefore we introduce in the language a formal
sum, so that we can formally get the equation p = p1 + p2.

This sum has pleasant properties like bilinearity of par-
allel composition (i.e. (p + q) | r = p | r + q | r) and linearity
of hiding and even prefixes. However, the real gain in ex-
pressiveness comes when considering the neutral element
of this sum, that we will write 0. This element has to satisfy
the equation p | 0 = 0, which is unusual in a process cal-
culus. As we will see, it has a meaningful interpretation in
terms of testing semantics, where an occurrence of 0 at top
level means success. Moreover, a study of the properties of
0 shows that standard actions are not actually linear, since
α.0 , 0, but rather affine, and we can extract a notion of
purely linear action that does satisfy the rule α̂.0 = 0. The
introduction of 0 and linear actions provides enough expres-
siveness so that we can define for our calculus a system of
reduction rules that is normalising and preserves the testing
semantics.

Contributions After recalling the syntax and operational
semantics of the πI-calculus, in section 3 we define the al-
gebraic πI-calculus and provide intuition on the meaning of
the new constructs. Execution is presented in two equiva-
lent forms, namely as a reduction up to structural congru-
ence, and as a labelled transition system, and the definition
of fair testing is deduced. In section 4, we introduce the
system of evaluation rules over processes and we prove its
soundness with respect to the fair testing semantics. Exam-
ples show that these rules can be used to effectively compute
process equivalences. In section 5 we prove that this sys-
tem is locally confluent and that it is strongly normalising
for terms without replication, and in section 6 we study the

1

normal forms of processes for this reduction. It appears that
normal forms are sums of traces augmented with inaction
information, i.e. an extended trace is a sequence of actions
followed by the information that some actions could have
been performed but will not. This provides a simple trace
semantics that is proved to be fully abstract for finite terms.
Deciding the observational preorder over traces is straight-
forward, and this provides an effective way to decide the
testing preorder over finite terms. In section 7, we discuss
how our approach can be extended to handle a wider class
of processes and different forms of equivalence.

Related work The relevance of linearity in the study of
processes has been known and studied for some time. It
was first stressed by Kobayashi, Pierce and Turner [10] who
showed that linear typing of processes leads to significant
improvements in the theory of the calculus, in particular by
providing a form of partial confluence. Yoshida, Berger and
Honda [17] propose a type system for strong normalisation
that uses linearity information to guarantee normalisation
using an “extended reduction” that allows processes to be
reduced in a more liberal way than by standard execution.
The use of linear actions, i.e. actions that will be performed
exactly once, is a crucial element in these studies, as in the
present paper. In a sense, our approach allows to keep the
refinement of linearity without the need for typing.

Using a formal sum to express non-determinism without
losing information is a natural idea. It is used for instance in
Ehrhard and Regnier’s differential λ-calculus [6]: in order
to get a framework in which differential operators can be de-
fined, the λ-calculus is extended with linear combinations of
terms, which appear as a natural and semantically justified
way of representing non-determinism without renouncing
to denotational semantics. This idea is further justified by
the possibility of embedding a finitary π-calculus in differ-
ential interaction nets [5]. Our algebraic process calculus
should provide insight on the relationships between this use
of differential nets and process calculi. One can also expect
that extant work on the links between the λ-calculus and
π-calculi could be extended to the differential case in our
formalism.

The study of such connections is deferred to further
works, since the focus of this paper is the study of the for-
mal sum itself in the context of process calculi. Moreover,
establishing a formal link with the differential λ-calculus
requires the introduction of linear coefficients in our pro-
cesses. Vaux’s study of linear combinations of λ-terms [16]
shows that one should be careful even in the very regular
setting of the λ-calculus, so extra complications are to be
expected here, notably when seeking confluence. Besides,
the meaning of coefficients is unclear from the point of view
of semantics of concurrency, hence no reference semantics
is there yet to guide us in making linear combinations more

than a formal construction. On the other hand, the sum and
zero were justified by the study of behaviours in testing se-
mantics, as shown in particular in the author’s work on con-
current realisability [1, 2].

Giving proper status to 0 is necessary if the formal sum
needs to have the actual structure of a sum; its interpretation
as a testing token and the fact that it greatly improves the
theory of the calculus should not come as a surprise, for in-
stance a similar approach lead to the definition of ludics [8]
from the sequent calculus of linear logic.

The trace semantics we derive from the evaluation rules
has a simple formulation, and the interpretation of “inac-
tions” that make it fully abstract for fair and must testing
is new, as far as the author knows. However, several forms
of extended trace semantics exist in the literature. Among
those presented in van Glabbeek’s survey [15] of process
semantics, our semantics, when restricted to standard terms
(as of definition 4) is equivalent to the so-called readiness
semantics of Olderog and Hoare [11]: a readiness trace is a
sequence of actions followed by the set of actions that can
be performed next, and inactions do provide this informa-
tion, at least when considering standard processes.

Other axiomatisations of various equivalences over the
π-calculus have been proposed in previous works (see [14]
for instance). In particular, Hennessy’s fully abstract deno-
tational semantics of the π-calculus [9] contains an axioma-
tisation of testing equivalences that is comparable to the
present work. Indeed, many of the equations in Hennessy’s
axiomatisation of the testing preorder can be deduced from
equivalence or reduction rules in our system. His approach
is based on the distinction between internal choice (which
is much like our algebraic sum) and external choice; we be-
lieve our system to be more fundamental since our sum and
its neutral element enjoy simpler algebraic properties while
being expressive enough to represent both kinds of choices,
as discussed in section 7.1. A supporting argument in this
respect is the fact that we need less axioms because we do
not have to distinguish two sums.

Note on notation The notations used here are in conflict
with the tradition of process calculi, but we believe this con-
flict to be justified. The algebraic sum that we introduce is
written p+q, because + is the only sensible symbol for this.
It is significantly different from the external choice opera-
tor usually written +; this choice operator will be written &
here by analogy with linear logic. The neutral element of
the sum, or “null process” is naturally written 0 for coher-
ence. The process that does nothing is called “neutral pro-
cess” and is written 1, since it is the neutral element of par-
allel composition, which is a multiplicative operation (that
distributes over the sum, in particular).

2

2. The πI-calculus

We start from Sangiorgi’s polyadic π-calculus with in-
ternal mobility, or πI-calculus [13], without choice, and we
use fair testing as the observational equivalence over pro-
cesses. We briefly recall the definitions of this calculus here
for reference. The decision not to include choice in the main
part of our study is for simplicity; as shown in section 7.1,
including it would be harmless.

Definition 1. Let N be an infinite set of names. Let P =

{´, ˆ} be the set of polarities, let ε range over P. Terms are
generated by the following grammar:

p, q := uε(x1 . . . xn).p action
!uε(x1 . . . xn).p replicated action
(νx)p hiding
1 p | q parallel composition

In uε(x1 . . . xn) we have u, x1, . . . , xn ∈ N and these names
are pairwise distinct. (νx)p is a binder for x, uε(x1 . . . xn).p
is a binder for x1, . . . , xn, and terms are considered up to
injective renaming of bound names.

We often write (νx1 . . . xn)p for (νx1) . . . (νxn)p, and ~x
for x1 . . . xn. The ε in actions is the polarity, by conven-
tion ´ is positive and corresponds to input, ˆ is negative and
corresponds to output. Subsequently u(~x) stands for u´(~x)
and ū(~x) stands for uˆ(~x). If α is an action, ᾱ stands for the
action with opposite polarity.

Definition 2. Structural congruence is generated by the fol-
lowing rules, where z does not occur free in p:

p | q ≡ q | p p | (q | r) ≡ (p | q) | r p | 1 ≡ p

(νxy)p ≡ (νyx)p (νz)(p | q) ≡ p | (νz)q (νx)1 ≡ 1
!α.p ≡ α.(p | !α.p)

Terms up to structural congruence are called processes. Ex-
ecution is the smallest relation over processes that is stable
under parallel composition and hiding and contains the rule

ū(~x).p | u(~x).q→ (ν~x)(p | q)

The rule above is written with the same sequence of
names ~x in both actions; this is not a restriction, since terms
are considered up to renaming of bound names.

Definition 3. Assume N contains an element ω that is al-
ways used as the action ωˆ(), written ω̄. A term p is accept-
ing if there is a p′ such that p ≡ ω̄ | p′. For terms p and q,
p passes the test q if for any execution p | q →∗ r there is
an execution r →∗ s with s accepting. The testing preorder
is defined as p vI q if for all r, if p passes the test r then q
passes the test r.

This preorder is written vI to distinguish it from the pre-
order v defined below. Their equivalence is theorem 4.

3. Introducing the sum

We now redefine the calculus, with its operational se-
mantics and testing, extending it with sum and zero.

Definition 4. Let N be the infinite set of names. Let P =

{ˆ, ´} be the set of polarities, let ε range over P. Terms are
generated by the following grammar:

p, q := uε(x1 . . . xn).p affine action
!uε(x1 . . . xn).p replicated action
ûε(x1 . . . xn).p linear action
(νx)p hiding
1 p | q parallel composition
0 p + q formal sum

In uε(x1 . . . xn) and ûε(x1 . . . xn) we have u, x1, . . . , xn ∈ N
and these names are pairwise distinct. (νx)p is a binder for
x, u∗ε(x1 . . . xn).p is a binder for x1, . . . , xn, terms are con-
sidered up to injective renaming of bound names. We write
fn(p) for the set of free names of the term p.

A term is quasi-standard if it has no occurrence of + or
linear actions, it is standard if has no occurrence of 0 either.

The same notations as above are used for actions and
name sequences. We use Greek letters α, β, γ . . . to repre-
sent actions. For cases where linearity is ignored, α̊ stands
for either α or α̂.

3.1. Execution and observation

Definition 5. Structural congruence is that of definition 2
extended with the following rules:

p | (q + r) ≡ p | q + p | r (νx)(p + q) ≡ (νx)p + (νx)q

Note that these structural equivalence rules do not pro-
vide the structure one could expect from a sum: it is neither
associative nor commutative, and 0 is neither neutral for the
sum nor absorbing for composition, since there is no rule
that involves it. Indeed, structural congruence contains the
minimum required for defining the execution relation.

Definition 6. Execution is the smallest relation over pro-
cesses that is stable under sum, parallel composition and
hiding and contains the rule

˚̄u(~x).p | ů(~x).q→ (ν~x)(p | q)

Non-standard processes are not considered as proper
computational objects, i.e. their execution is not intended
to be seen as computation in any realistic model. However,
it does make sense to interpret each term in a sum as a pos-
sible state of a given system, this way an execution step of
the sum is an execution step of one of its possible states.
These “possible states” are formally called slices:

3

Definition 7. A slice is a term where any sum occurs under
an action. The set s(p) of the slices of a term p is defined
inductively as

s(p) := {p} if p is a constant or an action
s((νx)p) := { (νx)s | s ∈ s(p) }
s(p + q) := s(p) ∪ s(q)
s(p | q) := { (s | t) | s ∈ s(p), t ∈ s(q) }

Interpreting the sum as pure non-deterministic choice is
adequate. The meaning of 0 and linear actions requires
more explanation. A sum of terms p1 + . . . + pn can be
understood as the fact that, after some execution steps of
a process p, this process may have reached either of the
states p1, . . . , pn, depending on non-deterministic choices
that have occurred. In this context, 0 and the linearity an-
notations are used to make such choices ahead of time, by
making assumptions on what will happen:

• a linear action α̂.p is the action α.p with the assump-
tion that it will actually be consumed at some point of
the execution,

• 0 at top level in a term means that contradicting as-
sumptions were made.

This interpretation is the key of the present study, and we
will see that it allows to decompose standard actions as
α.p ' α̂.p+α.0. In words, this simply means that a standard
action either will be consumed at some point, or will never
be consumed. From a formal point of view, this justifies that
standard actions are affine, α̂.p being the linear part and α.0
being the constant.

The definition of slices does not consider sums that oc-
cur under an action, because these are non-deterministic
choices that will be made when the action is consumed.
Therefore the execution of a slice does not in general lead
to a slice, for this reason we define slicing execution:

Definition 8. Slicing execution is the relation⇒ over slices
such that s ⇒ t if there is a p such that s → p and t ∈ s(p).
A run is a sequence of slicing executions. A maximal run
of s is either a finite sequence (s0, . . . , sn) such that s0 = s,
si ⇒ si+1 for all i < n, and sn is irreducible, or an infinite
sequence (si)i∈N such that s0 = p and si ⇒ pi+1 for all i.

As mentioned above, linear actions and 0 are used to ex-
press assumptions on the execution of a process. This is
formalised as the following notion of consistency:

Definition 9. A slice s is null if there is an s′ such that
s ≡ 0 | s′. A run (si) is consistent if none of the si is null
and for any linear action occurring at top level in some si

there is an execution step s j ⇒ s j+1 where it is consumed.
A slice is consistent if it has a consistent maximal run. A
term or process p is consistent if it has a consistent slice.

Lemma 1. Inconsistency is preserved by structural congru-
ence, execution and slicing execution.

Consistency is what we need to get a meaningful opera-
tional interpretation of terms with sums: an execution in the
standard sense corresponds to a consistent run. Of course
this is not computationally realistic, since it amounts to hav-
ing an oracle that could decide if a given process is con-
sistent. This is not really a problem since standard terms,
which are the actual object of study, are always consistent
and execution of standard terms leads to standard terms.

Definition 10. A slice s is successful if for any run s⇒∗ s′,
there is a run s′ ⇒∗ s′′ with s′′ inconsistent. Slices s and t
are orthogonal, written s ⊥ t, if s | t is successful. Processes
p and q are orthogonal if all slices of p | q are successful.

For a set A of processes, let A⊥ = { q | ∀p ∈ A, p ⊥ q }.
A behaviour is a set of processes A such that A⊥⊥ = A. The
testing preorder is defined as p v q if {p}⊥ ⊆ {q}⊥. The
associated testing equivalence is written p ' q.

The term “successful” might seem in contradiction with
the definition that requires inconsistency. We consider it as
success because it corresponds to the case where a pair of
processes are in the orthogonality relation. It can also be
considered as success on the part of the environment, i.e.
the opponent, in game semantics terms. This is all a matter
of conventions, anyway.

This definition of testing by orthogonality is not funda-
mentally new, we use it because it provides a good structure
to the set of processes. The power of this simple technique
was used for instance in the functional framework in Kriv-
ine’s realisability [3, 4], it was also employed in a different
way by Rathke, Sassone and Sobociński [12] as a way of
defining observables in process algebra.

Lemma 2. Let p and q be two terms. p v q if and only if
for all slices s, if s ⊥ p then s ⊥ q.

3.2. Labelled transition system

We now redefine the operational semantics of slices as a
labelled transition system, strictly defined on terms without
structural congruence. This will simplify proofs of obser-
vational equivalence by allowing us to reason only on se-
quences of transitions, without worrying about the precise
syntax of terms.

Definition 11. The set L of labels consists of τ and actions
uε(x1 . . . xn), with u, x1, . . . , xn pairwise distinct. Define:

names: n(τ) = ∅ n(uε(~x)) = {u, x1, . . . , xn}

bound names: bn(τ) = ∅ bn(uε(~x)) = {x1, . . . , xn}

The labelled transition relation is the relation between slices
and terms, labelled over L, defined by the rules of table 1

4

α̊.p
α
−→ p !α.p

α
−→ p | !α.p

p
ūε(~x)
−−−→ p′ q

uε(~x)
−−−→ q′

p | q
τ
−→ (ν~x)(p′ | q′)

p
`
−→ p′ bn(`) ∩ fn(q) = ∅

p | q
`
−→ p′ | q

p
`
−→ p′ x < n(`)

(νx)p
`
−→ (νx)p′

Table 1. Transition rules for slices

(and the symmetric rule for parallel composition). The slic-
ing transition relation over slices is defined as s

a
=⇒ t if there

is a term p such that s
a
−→ p and t ∈ s(p).

Definition 12. Affine contexts are defined by the grammar

C ::= [], C | p, p |C, C + p, p + C, (νx)C, α.C, α̂.C

Execution contexts are contexts made of parallel composi-
tions and hidings. Replacing [] by p in C is written C[p].

Proposition 1. For any slices s and t, there is a slicing
execution s ⇒ t if and only if there is a slice t′ such that
t ≡ t′ and the transition s

τ
=⇒ t′ holds.

The proof can be found in the appendix. Thanks to this
proposition, we can consider interchangeably slicing execu-
tion steps or slicing τ transitions.

Proposition 2. The testing preorder is preserved by affine
contexts.

Proof. Let p and q be two terms such that p v q, i.e. such
that for any term s, if p|s is successful then q|s is successful.

Let r be a term. Let s be a term such that (p + r) | s is
successful. Then for all slices t ∈ s(p) ∪ s(r) and s′ ∈ s(s),
t | s′ is successful. This implies that p | s′ is successful, so
q | s′ is successful, i.e. for all slice t ∈ s(q), t | s′ is successful.
Therefore (q + r) | s is successful, so p + r v q + r.

Let r be a term, then for any term s, if (p |r) | s is success-
ful, then p | (r | s) is successful (since success is preserved
by structural congruence), so q | (r | s) is successful (by hy-
pothesis), so (q | r) | s is successful. Hence p | r v q | r.

Let x be a name. Let s be a term. Let y be a fresh name,
that does not occur in p, q or s. Assume (νx)p | s is success-
ful, then by structural congruence (νy)(p[y/x] | s) is success-
ful. By the definition of success it is clear that p[y/x] | s is
successful. From p v q we can deduce p[y/x] v q[y/x],
so q[y/x] | s is successful, and so are (νy)(q[y/x] | s), and
(νx)q | s. Therefore (νx)p v (νx)q.

Let α be an action. Let s be a slice such that α.p | s is
successful. Consider a run α.q | s⇒∗ r. There are two cases:

• Either the action α.q is consumed, then there is a se-

quence of transitions s
τ∗
=⇒ s′

ᾱ
=⇒ s′′ such that the run is

decomposed as α.q | s⇒∗ α.q | s′ ⇒ (ν~x)(q′ | s′′)⇒∗ r
with q′ ∈ s(q). For any slice p′ ∈ s(p) The run
α.p | s ⇒∗ α.p | s′ ⇒ (ν~x)(p′ | s′′) holds too, and by
hypothesis α.p | s is successful, so p | s′′ is successful,
and since p v q the term q | s′′ is successful, so q′ | s′′

is successful and r has an inconsistent reduct.

• Or the action is not consumed, and the run can be writ-
ten α.q|s⇒∗ α.q|s′ with s⇒∗ s′. If there is a sequence

of transitions s′
τ∗
=⇒ s′′

ᾱ
=⇒ t then we can extend the con-

sidered run into one that does consume the action and
we are back to the previous case. Otherwise α.p | s′ has
an inconsistent reduct of the form α.p | s′′, and α.q | s′′

is inconsistent too.

Hence α.q|s is successful, from which we deduce α.p v α.q.
We prove α̂.p v α̂.q by the same argument, except that in
the second case, if s′ has no transition labelled ᾱ, then α̂.q|s′

is inconsistent because α̂ can never be consumed. �

4. Reduction rules

In the following sections, we focus mainly on the finite
fragment of the calculus, in particular the reduction defined
below says nothing about replicated actions. Nevertheless,
the formulated results hold for terms with replications, un-
less stated. We implicitly consider replicated terms up to
structural congruence, i.e. !α.p is the infinite term q such
that q = α.(p | q). The question of extending this work to
handle replication explicitly is discussed in section 7.2.

Definition 13. The equivalence relation � over terms and
the relation � over terms up to � are defined by the rules of
table 2, in any affine context, except that no reduction rule
applies in a subterm p such that p � 0.

The congruence � allows every term to be written either
as 0 or as a sum of slices with no 0 in active position. Such
a presentation of a term is called an expanded form. The
side conditions are easy to check on these forms.

In definition 13 and rules A and L2, the clumsy treatment
of 0 is needed to avoid trivial loops like 0 � 0 | p � 0 | p′ �
0 (whenever p � p′) or α.0 � α̂.0 + α.0 � 0 + α.0 �
α.0 or α̂.p � α̂.(p + 0) � α̂.p + α̂.0 � α̂.p + 0 � α̂.p.
Another possibility would be to turn the related structural
equivalence rules for 0 into reduction rules, but this would
make the system heavier. The condition in N3 reflects the
fact that actions of different arities cannot interact. If the
terms were typed so that each name is used with a fixed
arity, the rule could be simplified into (νu)uε(~x).0 � 1.

It is clear that if a reduction p � q holds, then a similar
reduction holds in the expanded form, possibly duplicated

5

Structural equivalence, with z < fn(p):

(νxy)p � (νyx)p (νx)1 � 1
(νz)(p | q) � p | (νz)q (νx)(p + q) � (νx)p + (νx)q

p | q � q | p p | (q | r) � (p | q) | r p | 1 � p

p + q � q + p p + (q + r) � (p + q) + r p + 0 � p

p | (q + r) � p | q + p | r p | 0 � 0

Normalisation:

S p + p � p
A α.p � α̂.p + α.0 if p � 0
L1 α̂.0 � 0
L2 α̂.(p + q) � α̂.p + α̂.q if p � 0 and q � 0
I1 α̂.p | ˆ̄α.q � α̂.(p | ˆ̄α.q) + ˆ̄α.(α̂.p | q) + (ν~x)(p | q)

where ~x = bn(α), if p � 0 and q � 0
I2 α̂.p | β̂.q � α̂.(p | β̂.q) + β̂.(α̂.p | q) if β , ᾱ
I3 α̂.p | β.0 � α̂.(p | β.0)
I4 α.0 | α.0 � α.0
I5 α.0 | ᾱ.0 � 0
N1 (νv)ûε(~x).p � û(~x).(νv)p if u , v
N2 (νu)ûε(~x).p � 0
N3 (νu)n � 1 if n is a composition of terms of

the form uε(~x).0 that contains no dual actions

Table 2. Rules for normalisation

because of the distribution rule. Therefore we can restrict
to expanded forms without loss of generality.

Theorem 1 (soundness). Let p and q be two terms. If p � q
or p � q then p ' q.

Proof. Let us sketch the soundness proof of rule A. We
have to show that for any slice q, α.p ⊥ q if and only if
α.0 ⊥ q and α̂.p ⊥ q. First assume that α.p ⊥ q. Consider
a run α̂.p | q ⇒∗ r. We can assume that the action of α̂.p is
consumed, i.e. that the considered run is α̂.p|q⇒∗ α̂.p|q1 ⇒

(ν~x)(p | q2) ⇒∗ r, with ~x = bn(α). Thus there is a run
α.p | q ⇒∗ α.p | q1 ⇒ (ν~x)(p | q2) ⇒∗ r and by hypothesis
there is a run r ⇒∗ s with s inconsistent. Therefore α̂.p ⊥ q.
Now consider a run α.0 | q ⇒∗ r. If this run consumes the
action α, then the reduct r has 0 in active position and it is
inconsistent, otherwise the run is α.0 | q⇒∗ α.0 | q′. If there
is an run of α.0 | q′ that consumes α then the considered
run can be extended to an inconsistent state. Otherwise any
maximal run of α.0|q′ is a maximal run of q′ in parallel with
a.0. From this we deduce a maximal run of α.p |q′, which is
inconsistent by hypothesis. Since α.p is left untouched, the
source of inconsistency in α.p |q′ also applies in α.0 |q′, and
α.0 | q′ is inconsistent too. Therefore we also have α.0 ⊥ q.

Now assume that α̂.p ⊥ q and α.0 ⊥ q, and consider a
run α.p|q⇒∗ r. If this run consumes α.p or can be extended

into a run that does, then there is a run of α̂.p | q that leads
to r by the same reduction steps, by hypothesis α̂.p | q is
successful so r has an inconsistent reduct. Otherwise we
have r = α.p | q′, and the run α.0 | q ⇒∗ α.0 | q′ holds, and
α.0 | q′ reduces to an inconsistent term α.0 | q′′ without ever
consuming α.0. This proves that the source of inconsistency
is q′′, and α.p | q′′ is inconsistent too, therefore α.p ⊥ q.

So we split the runs of α.p | s into those that consume α
or may do it, and those that do not. Similar arguments are
used for the other rules. For instance, in the case of I1, we
split the runs of α̂.p | ˆ̄α.q | s according to the first transition
of α̂.p | ˆ̄α.q, which can be α, ᾱ or τ. For I2, the same applies
without the τ transition. The full proof for all rules can be
found in the appendix. �

As this proof illustrates, the combined use of linearity
and the formal sum allows our calculus to admit many more
simplifications than other calculi. This is because the alge-
braic sum enjoys the good properties of both internal choice
(like the distributivity p | (q + r) ' p | q + p | r) and exter-
nal choice (like the interleaving rules I1 and I2), together
with other regularity properties, like linearity of actions in
the rule α̂.(p + q) ' α̂.p + â.q.

Examples The soundness of our rewrite system shows
that it can be used to prove observational equivalence of
processes by purely computational methods. For instance
we can formulate the interference between two identical ac-
tions in a natural way:

α.p | α.q ' α̂.p | α̂.q + α̂.p | α.0 + α.0 | α̂.q + α.0 | α.0
' α̂.(p | α̂.q + α̂.p | q + p | α.0 + α.0 | q) + α.0
' α̂.(p | (α̂.q + α.0) + (α̂.p | α.0) | q) + α.0
' α.(p | α.q + α.p | q)

Interaction without interference can also be computed:

(νu)(u(~x).p | ū(~x).q)
' (νu)(û(~x).p | ˆ̄u(~x).q) + (νu)(û(~x).p | ū(~x).0)

+ (νu)(u(~x).0 | ˆ̄u(~x).q) + (νu)(u(~x).0 | ū(~x).0)

' (νu)û(~x).(p | ˆ̄u(~x).q) + (νu)û(~x).(ˆ̄u(~x).p | q) + (νu~x)(p | q)
+ (νu)û(~x).(p | ū(~x).0) + (νu) ˆ̄u(~x).(u(~x).0 | q) + 0
' 0 + 0 + (νu~x)(p | q) + 0 + 0 + 0 ' (νu~x)(p | q)

From this we can show that the formal sum is equivalent to
pure internal choice as follows, where u is not free in p or q:

(νu)(u.p | u.q | ū) ' (νu)(u.(p | u.q + u.p | q) | ū)
' p | (νu)u.q + (νu)u.p | q ' p | 1 + 1 | q ' p + q

where (νu)u.p ' 1 is computed as (νu)u.p ' (νu)û.p +

(νu)u.0 ' 0 + 1 ' 1.

6

The rewrite rules can also be used to detect deadlocks.
Consider the symptomatic term p = a.b̄ | b.ā.q. We can
easily show the general formula

α.p | β.q ' α.0 | β.0 + α̂.(p | β.q) + β̂.(α.p | q)

so we get p ' a.0 | b.0 + â.(b̄ | b.ā.q) + b̂.(a.b̄ | ā.q). There-
fore (νab)p is equal to the same sum with (νab) at top level
in each summand, but every summand except the first one
starts with a linear action in a or b so we get

(νab)p ' (νab)(a.0 | b.0) ' (νa)a.0 | (νb)b.0 ' 1 | 1 ≡ 1

which proves purely by computation that (νab)p is a dead-
lock. If we only restrict the name a we also deduce some-
thing about the process:

(νa)p ' (νa)a.0 | b.0 + (νa)b̂.(a.b̄ | ā.q)

' b.0 + b̂.(νa)(a.b̄ | ā.q)

' b.0 + b̂.(b̄ | (νa)q)
' b.(b̄ | (νa)q)

5. Normalisation

The purpose of this section is to prove strong normalisa-
tion of the relation � over terms without replication. In the
following developments, an n-ary sum (up to �) is written
using the

∑
notation, and an n-ary parallel composition is

written using the
∏

notation.

Local confluence The first step of our normalisation
proof is to prove local confluence of the relation �. For
this we need the following lemma:

Lemma 3. For all actions α and all terms p and q, α̂.p | q
and α̂.p | q + α̂.(p | q) have a common reduct for �.

The detailed proof can be found in the appendix. The
idea is that q can be reduced to a parallel composition of
actions α̂i.qi or actions αi.0, and using the rules I1, I2 and
I3 we reduce α̂.p | q to a term that contains a slice α̂.(p | q),
then we conclude using rule S.

This lemma is the reason we introduced the rule S in our
system. It also explains why introducing scalar coefficients,
to get linear combinations instead of sums, seems problem-
atic in the current state of things.

Theorem 2. The relation � is locally confluent.

Proof. We proceed by studying all possible conflicts be-
tween the rules. Not counting rule S, there are 22 criti-
cal pairs, all developed in the appendix. Most cases are

easily solved, the most difficult case is that of two interfer-
ing applications of rule I1, and we detail it here. The term
p0 = α̂.p | α̂.q | ˆ̄α.r reduces into two terms:

p1 = α̂.(p | ˆ̄α.r) | α̂.q + ˆ̄α.(α̂.p | r) | α̂.q + (ν~x)(p | r) | α̂.q
p2 = α̂.(q | ˆ̄α.r) | α̂.p + ˆ̄α.(α̂.q | r) | α̂.p + (ν~x)(q | r) | α̂.p

We reduce p1 as follows (the reduced terms are underlined):

p1 = α̂.(p | ˆ̄α.r) | α̂.q + ˆ̄α.(α̂.p | r) | α̂.q + (ν~x)(p | r) | α̂.q

�2 α̂.(p | α̂.q | ˆ̄α.r) + α̂.(α̂.(p | ˆ̄α.r) | q)

+ ˆ̄α.(α̂.p | α̂.q | r) + α̂.(ˆ̄α.(α̂.p | r) | q)
+ α̂.p | (ν~x)(r | q) + (ν~x)(p | r) | α̂.q

�3 α̂.(p | α̂.(q | ˆ̄α.r)) + α̂.(p | ˆ̄α.(α̂.q | r))
+ α̂.(p | (ν~x)(q | r)) + α̂.(α̂.(p | ˆ̄α.r) | q)
+ ˆ̄α.(α̂.p | α̂.q | r) + α̂.(ˆ̄α.(α̂.p | r) | q)
+ α̂.p | (ν~x)(q | r) + α̂.q | (ν~x)(p | r)

The last step is �3 because it is one step of I1 followed by
two steps of L2 to expand the sum. If we do the same in p2,
we get the same term with p and q swapped. Define

S = α̂.(p | α̂.(q | ˆ̄α.r)) + α̂.(α̂.(p | ˆ̄α.r) | q) + ˆ̄α.(α̂.p | α̂.q | r)
+ α̂.(p | ˆ̄α.(α̂.q | r)) + α̂.(ˆ̄α.(α̂.p | r) | q)

then swapping p and q does not change S and we have

p1 �
∗ S + α̂.q | (ν~x)(p | r)
+ α̂.p | (ν~x)(q | r) + α̂.(p | (ν~x)(q | r))

p2 �
∗ S + α̂.p | (ν~x)(q | r)
+ α̂.q | (ν~x)(p | r) + α̂.(q | (ν~x)(p | r))

By lemma 3, the terms α̂.q | (ν~x)(p | r) and α̂.q | (ν~x)(p | r) +

α̂.(q | (ν~x)(p | r)) have a common reduct r1, so

p1 �
∗ S + r1 + α̂.p | (ν~x)(q | r) + α̂.(p | (ν~x)(q | r))

p2 �
∗ S + α̂.p | (ν~x)(q | r) + r1

and by the same lemma α̂.p | (ν~x)(q | r) + α̂.(p | (ν~x)(q | r))
and α̂.p | (ν~x)(q | r) have a common reduct r2, hence p1 and
p2 both reduce to S + r1 + r2. �

Termination We now prove that the relation � is well
founded on finite terms. For this we make a relationship
between evaluation and execution, first by considering re-
ductions at top level.

Definition 14. For a term p, let ‖p‖t be the maximum length
of the runs of slices of p, or ∞ if it is undefined. Let �t be
the top-level reduction, i.e. p �t q if p � q by applying a
reduction rule not under an action.

7

Lemma 4. If p �t q then ‖p‖t > ‖q‖t.

Lemma 5. The restriction of �t that does not use the rule
I1 is terminating.

Lemma 4 is a simple case analysis on the rules, and
lemma 5 uses a measure that essentially counts the num-
ber of actions in parallel in each slice (details are in the
appendix). This shows that the only possible source of in-
finite reductions is rule I1, indeed it is the one that extends
the execution relation. By combining the measure used in
lemma 5 and the norm ‖p‖t, which strictly decreases along
execution, we can prove the following equivalence:

Lemma 6. For all terms p, there is an infinite sequence of
�t if and only if a slice of p has an infinite run.

The next step is to generalise this to arbitrary reductions.
For this we introduce another norm, which takes into ac-
count the maximum length of sequences of transitions, in-
stead of execution steps:

Definition 15. For a slice s, let ‖s‖a be the maximum length
of sequences of transitions of s, of ∞. For a term p, let
‖p‖a = max { ‖s‖a | s ∈ s(p) }. Let ‖p‖ be the maximum of
‖·‖a over all subterms of p.

Lemma 7. If p � q then ‖p‖ > ‖q‖.

Proposition 3. p has no infinite reduction if ‖p‖ is finite.

The proof (detailed in appendix) is by induction on ‖p‖.
The idea is that any sequence of reductions can be reordered
so that all top-level reductions come first, followed by all re-
ductions of subterms prefixed by actions; such subterms are
strictly smaller than ‖p‖. A proof by induction on the height
terms would not work since some rules make the height of
terms strictly grow. As a direct consequence we finally get
the expect result, remarking that terms without replication
always have a finite norm ‖p‖:

Theorem 3. The relation � is strongly normalising on
terms without replication.

6. A trace semantics

The soundness and strong normalisation of relation �
imply that every term without replication is equivalent to
an irreducible term. The point of this section is to study the
properties of these normal forms.

Definition 16. An inaction set n is a finite set of terms α.0
that does not contain dual actions, i.e. such that for all α.0 ∈
n and β.0 ∈ n, β , ᾱ. Inaction sets are identified with the
parallel composition of their elements. A trace is a term of
the form t = α̂1.α̂2 . . . α̂k.n where n is an inaction set. k is
called the length of t and is written |t|, the sequence α̂1 . . . α̂k

is the action part of t, n is the inaction part of t.

Proposition 4. Normal forms are sums of distinct traces.

The proof (in appendix) consists in showing that all
affine actions, parallel compositions and hidings are elim-
inated by reduction. By theorem 3, this shows that each
term is equivalent to a sum of traces, and reduction pro-
vides a way to compute a set of traces equivalent to a given
term. Thus we get a trace semantics, and the purpose of this
section is to study some properties of this semantics.

Definition 17. Let T be the set of all traces. For any set B ⊆
T, define B∗ = { t | t ∈ T,∀u ∈ B, t ⊥ u }. A trace behaviour
is a set B ⊆ T such that B = B∗∗.

Proposition 5. The set of term behaviours and the set
of trace behaviours, ordered by inclusion, are isomorphic
complete lattices. The isomorphism is the function t defined
as t(A) = A ∩ T, with t−1(B) = B⊥⊥.

Proof. Firstly, remark that for any term behaviour A we
have A⊥ = t(A)⊥: it is obvious that t(A) ⊆ A, so A⊥ ⊆ t(A)⊥.
For the reverse inclusion consider a term p ⊥ t(A) and a
term q ∈ A. By theorem 3 and proposition 4, there is a
decomposition q '

∑n
i=1 ti where the ti are traces, therefore

p ⊥ q if and only if p ⊥ ti for all i. By definition of observa-
tional equivalence we have { ti | 1 6 i 6 n }⊥⊥ = {q}⊥⊥ ⊆ A
so for each i we have ti ∈ A, so ti ∈ t(A), therefore p ⊥ ti.
This proves p ⊥ q, and subsequently p ⊥ A so p ∈ A⊥.

This implies that for any term behaviour A we have
A = t(A)⊥⊥, moreover by definition for any set of traces
B we have B∗ = t(B⊥) hence B∗∗ = t(t(B⊥)⊥) = t(B⊥⊥), so t
is a bijection. It is clearly increasing, and it also clear that it
commutes with lower bounds, since lower bounds are inter-
sections in both sets. For upper bounds, if (Ai)i∈I is a family
of term behaviours, we have t

(∨
i∈I Ai

)
= t

((⋃
i∈I Ai

)⊥⊥)
=

t
((⋃

i∈I t(Ai)⊥⊥
)⊥⊥)

= t
((⋃

i∈I t(Ai)
)⊥⊥)

=
(⋃

i∈I t(Ai)
)∗∗

=∨
i∈I t(Ai). Therefore t is a lattice isomorphism. �

This proposition implies that the behaviour of a process
p is completely described by the set of traces contained in
{p}⊥⊥, i.e. by the trace behaviour of p. So it is enough to
consider trace behaviours when studying the testing seman-
tics of processes. This is especially interesting because or-
thogonality of traces is straightforward to characterise syn-
tactically (the proof can be found in appendix):

Proposition 6. Let t = α̂1 . . . α̂k.m and u = β̂1 . . . β̂`.n be
two traces, then

• t ⊥ u unless k = `, βi = ᾱi for all i, and m ∩ n̄ = ∅,

• t v u if and only if k = `, βi = αi for all i, and m ⊆ n.

In the sequel we write JpK to represent the trace be-
haviour of p. This characterisation of the testing preorder
shows that it is actually an order over traces: syntactically
distinct traces are always distinguishable. It also implies

8

that the preorder is decidable for terms without replication:
if p and q are normal forms, i.e. finite sets of traces, then
p v q if and only if JqK ⊆ JpK, if and only if for all traces
t ∈ JqK there is a trace u ∈ JpK such that u v t. If we add a
reduction rule t + u � t if t and u are traces and t v u (the
condition is easy to check), then strong normalisation is ob-
viously preserved, and normal forms are finite sets of pair-
wise incomparable traces. Then equivalence of processes
coincides with the equality of normal forms.

We thus have an isomorphism between behaviours, i.e.
sets of terms closed upwards for the observational preorder,
and trace behaviours, i.e. sets of traces closed upwards for
the inclusion of inaction sets. The trace behaviour of a term
can be expressed inductively as follows:

Jp + qK = JpK ∪ JqK J0K = ∅

Jp | qK =
⋃

t∈JpK,u∈JqK[t | u] J1K = { t | t ∈ T, |t| = 0 }

Jα.pK =
{
α̂.t

∣∣∣ t ∈ JpK
}
∪ {α.0}

Jα̂.pK =
{
α̂.t

∣∣∣ t ∈ JpK
}

J(νx)pK =

{
α̂1 . . . α̂k.(n \ x)

∣∣∣∣∣∣ α̂1 . . . α̂k.n ∈ JpK
∀i, x < n(αi)

}
where n \ x is the set n without the inactions with x as
the subject name. The notation [t | u] stands for the set
of traces obtained by normalising t | u. We can define
a kind of abstract machine to compute it: say a state is
a set of names X ⊆ N and a configuration is a triple
c ∈ T×P(N)×T. Define three kinds of actions: productions
(t, X, u)

α
−→ (t′, X′, u′), silent steps (t, X, u) → (t′, X′, u′) and

terminations (t, X, u)→ n. Define execution as

(α̂.t, X, u)
α
−→ (t, X ∪ bn(α), u) if n(α) ∩ X = ∅

(t, X, β̂.u)
β
−→ (t, X ∪ bn(β), u) if n(β) ∩ X = ∅

(α̂.t, X, ˆ̄α.u)→ (t, X ∪ bn(α), u)
(m, X, n)→ (m ∪ n) \ X if m ∩ n̄ = ∅

Then [t | u] is the set of traces α̂1 . . . α̂k.n such that there is a
run (t, ∅, u)→∗

α1
−−→→∗

α2
−−→→∗ · · ·

αk
−−→→∗ n.

To get back to our starting point, that is the testing pre-
order in the πI-calculus, the final question we have to ask is
the relationship between this testing, from definition 3, and
the one we studied in the algebraic setting. This relationship
is easy: the preorders are equal. To prove this, first remark
that using 0 as the testing token is equivalent to using an
action on a special channel:

Lemma 8. For any term p, let [p]ω be the term obtained
by replacing each occurrence of 0 by the action ω̄. If p is a
quasi-standard term such thatω < fn(p) then p is successful
if and only if for any run [p]ω ⇒∗ q there is a run q⇒∗ ω̄ |r.

The details of this proof are in the appendix, it consists in
remarking that 0 and ω̄ play the same role in testing. From
this we can finally deduce our full abstraction theorem:

Theorem 4. For all standard terms p and q, p v q if and
only if p vI q if and only if JpK ⊆ JqK.

Proof. The first step is to remark that every term is observa-
tionally equivalent to a quasi-standard term. To prove this
we translate each extended syntactic construction using the
equivalences of table 2. In section 4 we have shown that for
any terms p and q and any fresh name u we have p + q '
(νu)(u.p |u.q | ū). For linear actions, consider a term α̂.p and
a fresh name u. Remark that u.0 |ū ' u.0 |ū.0+u.0 | ˆ̄u ' ˆ̄u.u.0,
so we have

(νu)(α.u.p | u.0 | ū)
' (νu)((α̂.û.p + α̂.u.0 + α.0) | ˆ̄u.u.0)
' (νu)(α̂.û.p | ˆ̄u.u.0) + (νu)(α̂.u.0 | ˆ̄u.u.0) + α.0 | (νu) ˆ̄u.u.0
' α̂.(νu)(p | u.0) + (νu)(α̂.(u.0 | ˆ̄u.u.0)) + 0
' α̂.(p | (νu)u.0) + α̂.(νu) ˆ̄u.(u.0 | u.0)
' α̂.(p | 1) + α̂.0 ' α̂.p

This proves that two standard terms p and q are distinguish-
able in the algebraic setting if and only if they are distin-
guishable by a quasi-standard term. By lemma 8 this is the
same as being distinguishable according to definition 3. �

Note that this implies that the testing preorder over finite
terms is decidable by the purely axiomatic system given by
the rules of table 2 and the characterisation of proposition 6.

7. Extensions

7.1. Choice

When introducing the sum operator, it is natural to ask
which relationship there is between this sum and the tradi-
tional choice operator of process calculi. Assume we have a
construct &i∈I αi.pi whose operational semantics is defined
in the labelled transition system as

&
i∈I
αi.pi

αi
−→ pi

for each i ∈ I. The argument justifying rule A applies here
as follows: either one of the αi will be consumed, or none of
them will. Formally, assuming that the set {αi | i ∈ I } does
not contain dual actions, we get the equation

&i∈I αi.pi '
∑

i∈I α̂i.pi +
∏

i∈I αi.0

where the product stands for a parallel composition. Thus
external choice is indeed related to the algebraic sum, and
our extensions already provide enough power to express it,
even mixed choice, the only exception being that of a choice
between dual actions.

This decomposition does not hold when two dual ac-
tions occur in the same choice, because of the rule I5:

9

α.0 | ᾱ.0 ' 0. If we were to extend our formalism to allow
this kind of choice, the only extra material needed would be
terms of the form α.0 & ᾱ.0, which intuitively require that
the environment will never perform ᾱ nor α. One can easily
check that this simple extension does not compromise the
results exposed in this paper.

Using the rule above with the rules of table 2, we can
easily derive usual laws like the following, where β , ᾱ:

α.p | β.q ' α.(p | β.q) & β.(α.p | q)
α.p & α.q ' α.(p + q)

Among standard examples used to describe the properties of
process calculi is the comparison of a.(b & c) and a.b & a.c
(with our notations). These terms are not bisimilar although
they have the same traces (in the usual sense), and indeed
they are equivalent for may-testing but not for must-testing.
The use of inactions in our traces solves this problem:

a.(b & c) ' â.(b̂ + ĉ + b.0 | c.0) + a.0

' â.b̂ + â.ĉ + â.(b.0 | c.0) + a.0

a.b & a.c ' â.(b̂ + b.0) + â.(ĉ + c.0) + a.0

' â.b̂ + â.ĉ + â.(b.0 + c.0) + a.0

In the first case there is one trace α̂.(b.0 | c.0) while in the
second case there are two traces α̂.b.0 and â.c.0. The first
case reveals that the process may have two available actions
after performing α (although 0 assumes none of them will
happen) while the second case states that only one action
is available. The syntactic characterisation of the observa-
tional preorder also implies a.b & a.c v a.(b & c).

Composing these terms with, say, ā.b̄.d makes the differ-
ence in behaviours explicit: in the first case we get

(νabc)(a.(b & c) | ā.b̄.d)

' (νabc)(a.(b̂ + ĉ + b.0 | c.0) | ā.(ˆ̄b.d + b̄.0))

' (νbc)((b̂ + ĉ + b.0 | c.0) | (ˆ̄b.d + b̄.0))

' (νbc)(b̂ | ˆ̄b.d) + (νbc)(ĉ | ˆ̄b.d) + (νbc)(b.0 | c.0 | ˆ̄b.d)

+ (νbc)(b̂ | b̄.0) + (νbc)(ĉ | b̄.0) + (νbc)(b.0 | c.0 | b̄.0)
' d + 0 + 0 + 0 + 0 + 0 ' d

In the second case we get

(νabc)(a.b & a.c | ā.b̄.d)

' (νabc)(a.(b̂ + ĉ + b.0 + c.0) | ā.(ˆ̄b.d + b̄.0))

' (νbc)((b̂ + ĉ + b.0 + c.0) | (ˆ̄b.d + b̄.0))

' (νbc)(b̂ | ˆ̄b.d) + (νbc)(ĉ | ˆ̄b.d) + (νbc)(b.0 | ˆ̄b.d)

+ (νbc)(c.0 | ˆ̄b.d) + (νbc)(b̂ | b̄.0) + (νbc)(ĉ | b̄.0)
+ (νbc)(b.0 | b̄.0) + (νbc)(c.0 | b̄.0)
' d + 0 + 0 + 0 + 0 + 0 + 0 + 1 ' d + 1

This shows that in the second case, there is the possibility
of a deadlock, since the final sum contains 1, while in the
first case there is no such possibility because d is the only
term in the result.

7.2. Infinity

The main developments in this paper focus on terms
without replication, and the trace semantics is not valid
anymore in the presence of infinite behaviours. Consider
for instance the term !u. The recursive definition states
!u ≡ u.!u, so if U is the trace behaviour of !u we must have
U = {u.0} ∪ { û.t | t ∈ U }. This has one solution, namely
U = { ûn.u.0 | n ∈ N }, where ûn.t stands for a term û. · · · .û.t
with n occurrences of û. Now if we check if U and Ū
are orthogonal, we have to check that ûi.u.0 ⊥ ˆ̄u j.ū.0 for
all i and j, an by proposition 6 this always holds, hence
U ⊥ Ū. But clearly !u and !ū are not orthogonal, since
!u | !ū has exactly one maximal run, namely the infinite run
!u | !ū→ !u | !ū→ · · · , which is consistent.

This can be solved in several ways, as explained below.
We defer the detailed study of these possible solutions to an
extended version of this paper.

Cheating Consider infinite runs as inconsistent. This is
the easiest way but it is an unusual kind of test which
amounts to considering that all the terms we ever consider
terminate. This might be satisfactory in a context where ter-
mination is guaranteed, for instance by typing. However,
restricting to a typed calculus may have important conse-
quences when defining testing semantics, for instance if
testing is defined against typed environments only. Besides,
our motivation here is to study an untyped calculus.

Partial traces This approach consists in adapting the con-
cept of Böhm trees to our calculus. By introducing a new
process constant Ω to represent undefinedness, we can de-
fine partial traces, i.e. traces ending with Ω. Then trace
behaviours will be sets of traces downwards closed by a
refinement order. An equivalent formulation is to extend
the language with infinite traces, as limits of partial traces.
Since the reduction rules produce traces in an incremental
way, we can even compute approximations of a term.

This approach is appropriate if we want to extend our
fully abstract trace semantics. On the other hand, it does not
provide a way to extend our decidability result for the test-
ing preorder to a class of processes with infinite behaviour.

New rules While these solutions keep the same rewriting
rules, a different approach is to extend the rules with nor-
malisation of replicated actions. The extended rules should
probably allow special cases like (νu)(!u(x).p | !v(y).q) �∗

!v(y).(νu)(!u(x).p | q) (if u does not occur in p).

10

This kind of rule for simplifying replication has al-
ready been proposed in fragments of the π-calculus (an ex-
tended reduction with comparable properties is proposed by
Yoshida, Berger and Honda in their typed π-calculus [17]).
Because of the undecidability of most equivalences on in-
finitary processes, the possibility of defining a reduction
that could normalise arbitrary terms is unlikely, but partial
solutions could exist, for instance in reasonable restrictions
of the calculus. This approach is appropriate in order to
study embeddings of λ-calculi in process calculi, as it would
provide an extension and decomposition of β-reduction.

7.3. Other forms of tests

All results here are derived while specifically consider-
ing the fair testing semantics, and a similar work could be
done for other forms of testing. Standard must testing is
defined as p ⊥ q if every maximal execution of p | q even-
tually reaches a state where the action ω̄ is available; in our
algebraic setting it simply means that p | q is inconsistent.

This is equivalent to fair testing in the finitary calculus,
and the difference appears with divergence. Although the
definition of orthogonality is simpler than in fair testing,
the semantics is a bit more complicated. Now we need a
new constant Ω to represent pure divergence, and we also
need a constant τ.0 to represent a process that is not null but
may always reduce to 0. Their respective execution rules
are Ω→ Ω and τ.0→ 0. Then we get the following rules:

Ω | p � Ω if p � 0
I3′ α̂.p | c � α̂.(p | c) if c = τ.0 or c = Ω

I5 α.0 | ᾱ.0 � τ.0
I6 α.0 | τ.0 � τ.0

Now traces may end not with an inaction set but with τ.0 or
Ω, and the syntactic characterisation of the testing preorder
has to be extended. The discussion in section 7.2 about in-
finite traces also applies in this case.

Doing the same work for may testing, on the other hand,
requires a radical change in the definition of the observa-
tion. While consistency is unchanged, we now define that
s ⊥ t if there is a run s | t ⇒∗ r with r inconsistent. We
did not study the precise consequences of this, but the re-
sulting reduction can be expected to be very different, since
most of the soundness arguments use here become invalid.
Nevertheless, carrying the same study for other forms of
tests would surely provide insight into the genericity of our
construction; such a generalisation will be discussed in an
extended version of the present work.

Finally, it is natural to ask whether a similar approach
could be used to get axiomatisations of some forms of
bisimulation. The answer to this question is likely to be neg-
ative: the decomposition of processes into sums of traces

seems to lose all branching information while branching is
crucial in bisimulations.

7.4. Name passing

The present work studies the introduction of an algebraic
sum in the πI-calculus instead of the full π-calculus because
this fragment is simpler and allows us to focus specifically
on the new elements introduced by algebraicity. The next
step in the search for normalisation in process calculi is
communication of free names, as in standard π-calculus.

Adapting our approach to this context does not lead to
fundamental changes, but quite a few things have to be ad-
justed. First of all, in order to make the testing preorder con-
textual, we have to break the symmetry between processes
and tests: now a test is a pair (q, σ) where q is a process
and σ is a name substitution, and a process p passes the test
(q, σ) if pσ | q is successful. The equivalence rules are kept
unchanged except for I1 and I5, which are the ones where
interaction may occur. The rule I1 is extended as follows,
with the side condition that |~x| = |~y|:

ˆ̄u〈~x〉.p | v̂(~y).q � ˆ̄u〈~x〉.(p | v̂(~y).q) + v̂(~y).(ˆ̄u〈~x〉.p | q)
+ [u=̂v] | p | q[~x/~y]

In the reduct, [u=̂v] is the linear content of the usual match
operator, which is decomposed as

[u=v].p ' [u=̂v] | p + [u,̂v]

i.e. using also a linear mismatch operator. The meaning of
[u=̂v] is intuitively “when I am in head position, u and v
will have been unified by substitution”, while [u,̂v] means
that they will not. Incidentally, this proves that if the match
operator is present, then the mismatch operator will auto-
matically be available too.

Since tests contain name substitutions, these operators
can be simplified only if they are are trivial or under binders:

[u=̂u] � 1 (νu)[u=̂v] � 0
[u,̂u] � 0 (νu)[u,̂v] � 1

if u and v are distinct names.
Normalisation requires other equivalence rules, includ-

ing something like [u=̂v] | p ' [u=̂v] | p[u/v], which is rem-
iniscent of the structural rule for explicit fusions in Gard-
ner and Wischik’s calculus [7]. After introducing all the re-
quired rules, we will finally get normal forms that are sums
of extended traces of the form

c1 | α̂1.(c2 | α̂2 . . . (ck | α̂k.(ck+1 | n)) . . .)

where the ci are conditions, i.e. parallel compositions of lin-
ear matches and mismatches, the αi are transition labels of
the form u(~x) or (ν~z)ū〈~y〉 with ~z ⊆ ~y \ {u}, and where n is a
parallel composition of inactions.

11

References

[1] E. Beffara. Logique, réalisabilité et concurrence. PhD the-
sis, Université Paris 7, dec 2005.

[2] E. Beffara. A concurrent model for linear logic. In 21st
International Conference on Mathematical Foundations of
Programming Semantics (MFPS), volume 155, pages 147–
168, may 2006.

[3] E. Beffara and V. Danos. Disjunctive normal forms and local
exceptions. In 8th ACM International Conference on Func-
tional Programming (ICFP), pages 203–211. ACM Press,
2003.

[4] V. Danos and J.-L. Krivine. Disjunctive tautologies as syn-
chronisation schemes. In P. Clote and H. Schwichtenberg,
editors, 14th Annual Conference of the European Associa-
tion for Computer Science Logic (CSL), number 1862, pages
292–301. Springer Verlag, 2000.

[5] T. Ehrhard and O. Laurent. Interpreting a finitary π-calculus
in differential interaction nets. In L. Caires and V. T. Vas-
concelos, editors, 18th International Conference on Concur-
rency Theory (Concur), volume 4703 of LNCS, pages 333–
348. Springer, Sept. 2007.

[6] T. Ehrhard and L. Regnier. The differential λ-calculus. The-
oretical Computer Science, 309(1):1–41, 2003.

[7] P. Gardner and L. Wischik. Explicit fusions. In M. Nielsen
and B. Rovan, editors, 25th International Symposium on
Mathematical Foundations of Computer Science (MFCS),
volume 1893, pages 373–382. Springer Verlag, 2000.

[8] J.-Y. Girard. Locus solum. Mathematical Structures in Com-
puter Science, 11(3):301–506, 2001.

[9] M. Hennessy. A fully abstract denotational semantics for the
π-calculus. Theoretical computer science, 278:53–89, May
2002.

[10] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and
the π-calculus. ACM Transactions on Programming Lan-
guages and Systems, 21(5):914–947, 1999.

[11] E.-R. Olderog and C. A. R. Hoare. Specification-oriented
semantics for communicating processes. Acta Informatica,
23(1):9–66, 1986.

[12] J. Rathke, V. Sassone, and P. Sobociński. Semantic barbs
and biorthogonality. In Proceedings of Foundations of Soft-
ware Science and Computation Structures, FOSSACS 2007,
volume 4423, pages 302–316, 2007.

[13] D. Sangiorgi. π-calculus, internal mobility and agent-
passing calculi. Theoretical Computer Science, 167(2):235–
274, 1996.

[14] D. Sangiorgi and D. Walker. The π-calculus: a theory of
mobile processes. Cambridge University Press, 2001.

[15] R. J. van Glabbeek. The linear time - branching time spec-
trum. In Proceedings of Concur’90, volume 458 of Lecture
Notes in Computer Science, pages 278–297. Springer, 1990.

[16] L. Vaux. On linear combinations of λ-terms. In Rewriting
Techniques and Applications (RTA), volume 4533 of LNCS,
June 2007.

[17] N. Yoshida, M. Berger, and K. Honda. Strong normalisa-
tion in the π-calculus. In 16th IEEE Symposium on Logic in
Computer Science (LICS), pages 311–322, 2001.

12

A. Technicalities

A.1. Labelled transition system

Proof of proposition 1. For the “only if” part, consider a
slicing execution s ⇒ t. By definition, there is a slice
s′ = E[˚̄u(~x).p | ů(~x).q], where E is an execution context, and
a slice t′ ∈ s(p | q) such such that s ≡ s′ and t ≡ E[(ν~x)t′].
The transition ˚̄u(~x).p|ů(~x).q

τ
−→ (ν~x)(p|q) holds by definition

of the LTS, hence the transition s′
τ
−→ E[(ν~x)(p | q)] holds.

Since t′ ∈ s(p | q) we have s ≡ s′
τ
=⇒ E[(ν~x)t′] ≡ t.

For the “if” part, consider a transition s
τ
=⇒ t. By defini-

tion of the LTS there is a an action α = uε(~x) and a decom-
position s = E[E1[α.p] | E2[ᾱ.q]] (where E, E1 and E2 are
execution contexts) such that the transition is derived as

α̊.p
α
−→ p

E1[α̊.p]
α
−→ E1[p]

˚̄α.q
ᾱ
−→ q

E2[˚̄α.q]
ᾱ
−→ E2[q]

E1[α̊.p] | E2[˚̄α.q]
τ
−→ (ν~x)(E1[p] | E2[q])

s
τ
−→ E[(ν~x)(E1[p] | E[q])]

and t ∈ s(E[E1[p] | E[q]]). Thus there are slices t1 ∈ s(p)
and t2 ∈ s(q) such that t = E[E1[t1] | E2[t2]]. By an easy
induction on contexts, one can show that there is a sequence
of names ~y and a term r such that the following holds:

s = E[E1[α̊.p] | E[˚̄α.q]] ≡ (ν~y)(r | (α̊.p | ˚̄α.q))
→ (ν~y)(r | (ν~x)(p | q)) ≡ E[(ν~x)(E1[p] | E2[q])]

thus there is a slicing execution s⇒ t. �

A.2. Soundness

The proof of the soundness theorem is mostly decom-
posed into the various propositions in this section. The
soundness of � derives from the fact that testing equiva-
lence contains the structural equivalence ≡ and from propo-
sition 7. The soundness of rule S is obvious since p and
p + p have the same slices. Rule A is proposition 8. Rules
L1 and L2 are proposition 9. Rule I1 is proposition 10. Rule
I2 is proposition 11. Rules I3, I4 and I5 are proposition 12.
Rules N1, N2 and N3 are proposition 13.

Proposition 7. For any terms p, q, r, the following holds:

p + q ' q + p p + (q + r) ' (p + q) + r

p + 0 ' p p | 0 ' 0

Proof. By definition 10, for terms p and q, p ' q means that
for any slice s, all slices of p | s are successful if and only
if all slices of q | s are successful. By definition s(p + q) =

s(p) ∪ s(q), so associativity and commutativity of the sum
are immediate.

Any slice that contains 0 at top level is inconsistent,
hence 0 | s is inconsistent. Since s(p + 0) = s(p) ∪ {0} and
0 | s is inconsistent, we have p + 0 ⊥ s if and only if p ⊥ s,
hence p + 0 ' 0.

All slices of (0 | p) | s are inconsistent, as well as all those
of 0 | s, therefore 0 | p ' 0. �

Lemma 9. A slice α̂.p|q is successful if and only if for every
run α̂.p | q

τ∗
=⇒ r that consumes the action α̂ there is a run

r
τ∗
=⇒ s such that s is inconsistent.

Proof. If α̂.p | q is successful, then for any run α̂.p | q
τ∗
=⇒ r

there is a run r
τ∗
=⇒ s such that s is inconsistent, so this holds

in particular for the runs that consume the action α̂.
Now assume that for every run α̂.p |q

τ∗
=⇒ r that consumes

the action α̂ there is a run r
τ∗
=⇒ s such that s is inconsistent.

Consider an arbitrary run α̂.p | q
τ∗
=⇒ r′. If this run does

consume α̂, then r′ has an inconsistent reduct by hypothesis.
Otherwise the run is α̂.p |q

τ∗
=⇒ α̂.p |q′. If there is a sequence

of transitions q′
τ∗
=⇒ q′′

ᾱ
=⇒ t, then there is a run α̂.p |q

τ∗
=⇒ α̂.p |

q′′
τ
=⇒ (ν~x)(p | t) where ~x is the sequence of bound names of

α. Then this is a run that consumes α̂ so it can be extended
into a run that reaches an inconsistent term, by hypothesis.

Finally, if there is no sequence of transitions q′
τ∗
=⇒ q′′

ᾱ
=⇒

t, then every maximal run of α̂.p | q′ leaves α̂ untouched,
which means that α̂.p | q′ is inconsistent. Therefore α̂ is
successful. �

Proposition 8. For any action α and any term p, we have
α.p ' α̂.p + α.0.

Proof. Let uε(~x) be the action α. We have to show that for
any slice q, α.p ⊥ q if and only if α.0 ⊥ q and α̂.p ⊥ q.

First assume that α.p ⊥ q. Consider a run α̂.p | q
τ∗
=⇒ r.

Using lemma 9, we assume that the action of α̂.p is con-
sumed in this run by a reduct of q, i.e. there are tran-

sitions q
τ∗
=⇒ q1

ᾱ
=⇒ q2 such that the considered run is

α̂.p | q
τ∗
=⇒ α̂.p | q1

τ
=⇒ (ν~x)(p | q2)

τ∗
=⇒ r. Thus there is a

run α.p | q
τ∗
=⇒ α.p | q1

τ
=⇒ (ν~x)(p | q2)

τ∗
=⇒ r and by hypothesis

there is a run r
τ∗
=⇒ s with s inconsistent. Therefore α̂.p ⊥ q.

Now consider a run α.0 | q
τ∗
=⇒ r. Two cases may occur:

• Either the action of α.0 is consumed by a reduct of q,

i.e. there are transitions q
τ∗
=⇒ q1

ᾱ
=⇒ q2 such that the

considered run is α.0 | q
τ∗
=⇒ α.0 | q1

τ
=⇒ (ν~x)(0 | q2)

τ∗
=⇒ r.

Then r is null thus inconsistent.

• Or the action is not consumed and the run is actually a
run of q: α.0|q

τ∗
=⇒ α.0|q1 = r. Then α.p|q

τ∗
=⇒ α.p|q1 is

13

a valid run, and by hypothesis there is a run α.p|q1
τ∗
=⇒ s

with s inconsistent. If this run consumes the action in
α.p then there is a run of α.0 | q1 which consumes the
action in α.0, and the reduct is null thus inconsistent.
Otherwise the action is not consumed and the run can
be written α.p |q1

τ∗
=⇒ α.p |q2 with α.p |q2 inconsistent.

This means that α.p |q2 has no consistent maximal run.
Consider a maximal run of α.0 | q2: if it consumes the
action of α.0, then it is inconsistent since it reaches a
null state. Otherwise α.0 is left untouched and the run
is a maximal run of q2, from which we can deduce a
maximal run of α.p | q2, which is inconsistent by hy-
pothesis. This means that either it reaches a null state,
then it is also the case for the run α.0 | q2, or it leaves
some active linear action untouched, then this action
is produced by a reduct of q2, and the same action is
never consumed in the run of α.0 | q2. Therefore any
maximal run of α.0 | q2 is inconsistent, and α.0 | q2 is
inconsistent.

Therefore α.0 ⊥ q.
Now assume that α̂.p ⊥ q and α.0 ⊥ q. Consider a run

α.p | q
τ∗
=⇒ r.

• If this run consumes α.p then there is a run of α̂.p|q that
leads to r by the same reduction steps. By hypothesis
α̂.p | q is successful so r has an inconsistent reduct.

• If this run does not consume α.p, then we have r =

α.p |q′ with q
τ∗
=⇒ q′. By hypothesis α̂.p |q and α.0 |q are

successful, and so α̂.p |q′ and α.0 |q′ have inconsistent
reducts.

– If r has a run that consumes α.p, then this run is
α.p | q′

τ∗
=⇒ α.p | q′′

τ
=⇒ (ν~x)(p | t), and (ν~x)(p | t) is

also a reduct of α̂.p | q′, hence it has an inconsis-
tent reduct.

– If there is no run of r that consumes α.p, then
we consider α.0 | q′: by hypothesis there is a run
α.0 | q′

τ∗
=⇒ α.0 | q′′ where α.0 | q′′ is inconsistent.

This does not depend on the 0 that is prefixed
with α since this α is never consumed, so α.p |q′′

is inconsistent too.

Therefore r has an inconsistent reduct, and α.p ⊥ q. �

Proposition 9. For all actions α and terms p and q,

α̂.0 ' 0 α̂.(p + q) ' α̂.p + α̂.q

Proof. In order to prove α̂.0 ' 0 it suffices to prove that, for
any slice s, α̂.0 ⊥ s. Let s be an arbitrary slice, consider a
run α̂.0 | s

τ∗
=⇒ r. By lemma 9, assume this run consumes α̂,

then 0 occurs at top level in r so r is inconsistent.

Let s be a slice orthogonal to α̂.(p + q), consider a run
α̂.p | s

τ∗
=⇒ r that consumes α̂. Thus the run it is α̂.p | s

τ∗
=⇒

α̂.p | s′
τ
=⇒ (ν~x)(t | s′′)

τ∗
=⇒ r where ~x is the set of bound names

of α, s′′ is a term such that s′
ᾱ
=⇒ s′′ and t is a slice of p.

Then t is a slice of p + q thus the execution α̂.(p + q) | s
τ∗
=⇒

α̂.(p + q) | s′
τ
=⇒ (ν~x)(t | s′′)

τ∗
=⇒ r holds, and by hypothesis r

has an inconsistent reduct. Thus α̂.p ⊥ s, and by the same
argument we get α̂.q ⊥ s, so α̂.p + α̂.q ⊥ s.

Now let s be a slice orthogonal to α̂.p and α̂.q, consider
a run α̂.(p + q) | s

τ∗
=⇒ r that consumes α̂. Then the run

is α̂.(p + q) | s
τ∗
=⇒ α̂.(p + q) | s′

τ
=⇒ (ν~x)(t | s′)

τ∗
=⇒ r with

s′
ᾱ
=⇒ s′′ and t ∈ s(p + q) = s(p) ∪ s(q). If t ∈ s(p) then

the run α̂.p | s
τ∗
=⇒ α̂.p | s′

τ
=⇒ (ν~x)(t | s′′)

τ∗
=⇒ r holds, and

by hypothesis r has an inconsistent reduct. If t ∈ s(q), we
conclude by a similar argument, therefore α̂.(p+q) ⊥ s. �

Proposition 10. For all actions α = uε(~x) and terms p
and q,

α̂.p | ˆ̄α.q ' α̂.(p | ˆ̄α.q) + ˆ̄α.(α̂.p | q) + (ν~x)(p | q)

Proof. Let s be a slice that is orthogonal to α̂.(p | ˆ̄α.q),
ˆ̄α.(α̂.p | q) and (ν~x)(p | q). Consider a run α̂.p | ˆ̄α.q | s

τ∗
=⇒ r.

• If the first transition of α̂.p | ˆ̄α.q is labelled α, then there

is a sequence of transitions s
τ∗
=⇒ s′

ᾱ
=⇒ t such that the

run is α̂.p | ˆ̄α.q | s
τ∗
=⇒ α̂.p | ˆ̄α.q | s′

τ
=⇒ (ν~x)(p | ˆ̄α.q | t)

τ∗
=⇒ r.

From this we can deduce the execution α̂.(p | ˆ̄α.q) | s
τ∗
=⇒

α̂.(p | ˆ̄α.q) | s′
τ
=⇒ (ν~x)(p | ˆ̄α.q | t)

τ∗
=⇒ r, so by hypothesis

r has an inconsistent reduct.

• The case where the first transition of α̂.p| ˆ̄α.q is labelled
ᾱ is similar.

• If the first transition of α̂.p | ˆ̄α.q is labelled τ, then there
is a sequence of transitions s

τ∗
=⇒ s′ such that the run is

α̂.p| ˆ̄α.q|s
τ∗
=⇒ α̂.p| ˆ̄α.q|s′

τ
=⇒ (ν~x)(p|q)|s′

τ∗
=⇒ r. From this

we can deduce the execution (ν~x)(p |q) | s
τ
=⇒ (ν~x)(p |q) |

s′
τ∗
=⇒ r, so by hypothesis r has an inconsistent reduct.

• If the considered run does not contain any transition of
α̂.p | ˆ̄α.q then the run can be extended by one step that
reduces α̂.p | ˆ̄α.q into (ν~x)(p | q) and we get back to the
previous case.

Therefore s is orthogonal to α̂.p | ˆ̄α.q.
Now let s be a slice orthogonal to α̂.p | ˆ̄α.q. Using

lemma 9, consider a run α̂.(p | ˆ̄α.q) | s
τ∗
=⇒ r that consumes α̂,

then r is a reduct of α̂.p| ˆ̄α.q|s so it has an inconsistent reduct,
therefore we have α̂.(p | ˆ̄α.q) ⊥ s. By a similar argument we
get α̂.(p | ˆ̄α.q) ⊥ s. Finally, consider a run (ν~x)(p |q) | s

τ∗
=⇒ r:

the execution α̂.p | ˆ̄α.q | s
τ
=⇒ (ν~x)(p | q) | s

τ∗
=⇒ r is valid so

14

r has an inconsistent reduct by hypothesis. Therefore s is
orthogonal to α̂.(p | ˆ̄α.q) + ˆ̄α.(α̂.p | q) + (ν~x)(p | q). �

Proposition 11. For any non dual actions α and β and
terms p and q,

α̂.p | β̂.q ' α̂.(p | β̂.q) + β̂.(α̂.p | q)

Proof. The proof is essentially the same as that of proposi-
tion 10 except that the cases for the interaction between α
and ᾱ are irrelevant here. �

Proposition 12. For any actions α and β and any term p,
we have α̂.p|β.0 ' α̂.(p|β.0), α.0|α.0 ' α.0 and α.0|ᾱ.0 ' 0.

Proof. Assume α = uε(~x). Let s be a slice orthogonal to
α̂.p|β.0. Using lemma 9, consider a run α̂.(p|β.0)|s

τ∗
=⇒ α̂.(p|

β.0) | s′
τ
=⇒ (ν~x)(p | β.0 | s′′)

τ∗
=⇒ r with s′′ such that s′

ᾱ
=⇒ s′′,

then the run α̂.p |β.0 | s
τ∗
=⇒ α̂.p |β.0 | s′

τ
=⇒ (ν~x)(p |β.0 | s′′)

τ∗
=⇒ r

holds, and r has an inconsistent reduct.
Now let s be a slice orthogonal to α̂.(p | β.0). Consider

a run α̂.p | β.0 | s
τ∗
=⇒ r, and using lemma 9 assume that this

run consumes α̂. The transition that consumes α̂ is either
produced by β.0, which may happen if β = ᾱ, or by a reduct
of s. In the first case, 0 occurs at top level in r, which is
then inconsistent. In the second case, r is a reduct of α̂.(p |
β.0) | s so it has an inconsistent reduct by hypothesis. Thus
α̂.p | β.0 ⊥ s.

The equivalence of α.0 and α.0 | α.0 comes from the fact
that both terms have exactly one transition labelled α, lead-
ing to a null term, 0 in one case and 0 | α.0 in the other.

For the equivalence of α.0 | ᾱ.0 and 0, consider an arbi-
trary slice s and run α.0 | ᾱ.0 | s

τ∗
=⇒ r. If this run contains

a transition of α.0 | ᾱ.0, then 0 necessarily occurs at top
level in r, which is thus inconsistent. Otherwise we have
r = α.0 | ᾱ.0 | s′ for some run s

τ∗
=⇒ s′, and the transition

α.0 | ᾱ.0 | s′
τ
=⇒ 0 | 0 | s′ holds. Therefore α.0 | ᾱ.0 ⊥ s for any

s, so α.0 | ᾱ.0 ' 0. �

Proposition 13. For any action uε(~x), any term p and
any name v , u, we have (νv)ûε(~x).p ' ûε(~x).(νv)p,
(νu)ûε(~x).p ' 0 and (νu)uε(~x).0 ' 1.

Proof. The first equivalence derives from the fact that
(νv)ûε(~x).p and ûε(~x).(νv)p both have exactly one transition,
labelled uε(~x), that leads to the same term (νv)p (assuming
without loss of generality that v < ~x).

For the second equality, let s be an arbitrary slice. Any
run (νu)ûε(~x).p | s

τ∗
=⇒ r leaves ûε(~x) untouched, since no

occurrence of u may occur in s, therefore (νu)ûε(~x) is in-
consistent, thus r is inconsistent.

The third equality derives from the fact that (νu)uε(~x).0
has no free name, no transition, and no linear action or 0 at
top level that could produce inconsistencies. �

A.3. Confluence

Proof of lemma 3. We first prove, by induction, that if a
slice q has no occurrence of 0 or actions β.q′ with q′ � 0 at
top level, then for all α̂.p there is an r such that α̂.p | q �∗

α̂.(p|q)+r. If q = ˆ̄a.q1, rule I1 gives α̂.p|β̂.q1 � α̂.(p|β̂.q1)+
ˆ̄a.(α̂.p | q1) + (ν~x)(p | q1) where ~x = bn(α), so we can choose
r = ˆ̄α.(α̂.p | q1) + (ν~x)(p | q1). If q = β̂.q1 with β , ᾱ, rule I2
gives α̂.p | β̂.q1 � α̂.(p | β̂.q1)+ β̂.(α̂.p |q1), so we can choose
r = β̂.(α̂.p |q1). If q = β.0, rule I3 gives α̂.p |β.0 � α̂.(p |β.0)
so we can choose r = 0. If q = q1 | q2, then by induc-
tion hypothesis on q1 we get α̂.p | q1 �

∗ α̂.(p | q1) + r1, so
α̂.p | q �∗ α̂.(p | q1) | q2 + r1 | q2. By induction hypothesis
on q2 we get α̂.(p | q1) | q2 �

∗ α̂.(p | q1 | q2) + r2, hence
α̂.p | q �∗ α̂.(p | q) + r1 | q2 + r2. If q = (νx)q′, the induc-
tion hypothesis gives α̂.p | q′ �∗ α̂.(p | q′) + r′, hence we
have α̂.p | (νx)q′ � (νx)(α̂.p | q′) �∗ (νx)α̂.(p | q′) + (νx)r′ �
α̂.(p | (νx)q′) by rule N1. The case of 1 is trivial and com-
pletes this proof.

Now consider an arbitrary term q. By applications of
rule A we get q �∗ q′, where q′ only has actions of the
form α̂.p or α.0 at top level. Up to �, q′ is 0 or a sum of
terms of the form used in the first part of the proof. For 0
we get α̂.p | 0 � 0 and α̂.p | 0 + α̂.(p | 0) � 0 + α̂.0 � 0
by rule L1, hence 0 is a common reduct. If q′ is a sum
q′ =

∑
i∈I qi, we have α̂.p | q �∗

∑
i∈I α̂.p | qi, and by rule L2

we get α̂.(p | q) �∗
∑

i∈I α̂.(p | qi), so α̂.p | q + α̂.(p | q) �∗∑
i∈I

(
α̂.p | qi + α̂.(p | qi)

)
. For each i, by the first part of the

proof, there is an ri such that α̂.p | qi �
∗ α̂.(p | qi) + ri, so we

have α̂.p | qi + α̂.(p | qi) �∗ α̂.(p | qi) + ri + α̂.(p | qi), which
reduces to α̂.(p | qi) + ri by rule S. So we finally get that
α̂.p | q and α̂.p | q + α̂.(p | q) have a common reduct. �

For the proof of theorem 2, let us examine all possible
critical pairs:

• A conflict on S is a reduction p + p � p′ + p, versus a
reduction p+ p � p, and p′ is a reduct of both, through
p′ + p � p′ + p′ � p′ in the first case.

• Rules A and L1 have no conflict (because of the side-
conditions).

• L2/I1:

α̂.(p + q) | ˆ̄α.r � (α̂.p + α̂.q) | ˆ̄α.r
α̂.(p + q) | ˆ̄α.r
� α̂.((p + q) | ˆ̄α.r) + ˆ̄α.(α̂.(p + q) | r) + (ν~x)((p + q) | r)

Then the first reduct is structurally equivalent to α̂.p |
ˆ̄α.r + α̂.q | ˆ̄α.r, and the following reductions hold:

α̂.p | ˆ̄α.r � α̂.(p | ˆ̄α.r) + ˆ̄α.(α.p | r) + (ν~x)(p | r)
α̂.q | ˆ̄α.r � α̂.(q | ˆ̄α.r) + ˆ̄α.(α.q | r) + (ν~x)(q | r)

15

The summands of the second reduct can be reduced as

α̂.((p + q) | ˆ̄α.r) � α̂.(p | ˆ̄α.r + q | ˆ̄α.r)
� α̂.(p | ˆ̄α.r) + α̂.(q | ˆ̄α.r)

ˆ̄α.(α̂.(p + q) | r) � ˆ̄α.((α̂.p + α̂.q) | r)
� ˆ̄α.(α̂.p | r) + ˆ̄α.(α̂.q | r)

(ν~x)((p + q) | r) � (ν~x)(p | r) + (ν~x)(p | r)

The sums in both cases are equal.

• The L2/I2 and L2/I3 conflicts are solved the same way.

• L2/N1:

(νv)ûε(~x).(p + q) � (νv)ûε(~x).p + (νv)ûε(~x).q

�2 ûε(~x).(νv)p + ûε(~x).(νv)q
(νv)ûε(~x).(p + q) � ûε(~x).((νv)p + (νv)q)

� ûε(~x).(νv)p + ûε(~x).(νv)q

• L2/N2:

(νu)ûε(~x).(p + q) � (νu)ûε(~x).p + (νv)ûε(~x).q �2 0 + 0 � 0
(νv)ûε(~x).(p + q) � 0

• I1/I1: This rule is solved in the main part of the text.

• The I1/I2 conflict is resolved in a similar manner.

• I1/I3:

α̂.p | ˆ̄α.q | β.0
� α̂.(p | β.0) | ˆ̄α.q
� α̂.(p | ˆ̄α.q | β.0) + ˆ̄α.(α̂.(p | β.0) | q) + (ν~x)(p | q) | β.0
α̂.p | ˆ̄α.q | β.0
� â.(p | ˆ̄α.q) | β.0 + ˆ̄α.(α̂.p | q) | β.0 + (ν~x)(p | q) | β.0

�2 â.(p | ˆ̄α.q | β.0) + ˆ̄α.(α̂.p | q | β.0) + (ν~x)(p | q) | β.0
� â.(p | ˆ̄α.q | β.0) + ˆ̄α.(α̂.(p | β.0) | q) + (ν~x)(p | q) | β.0

• I1/N1: if u < n(α),

(νu)α̂.p | ˆ̄α.q
� (νu)α̂.(p | ˆ̄α.q) + (νu) ˆ̄α.(α̂.p | q) + (νu~x)(p | q)

�3 α̂.((νu)p | ˆ̄α.q) + ˆ̄α.(α̂.(νu)p | q) + (ν~x)((νu)p | q)
(νu)α̂.p | ˆ̄α.q
� α̂.(νu)p | ˆ̄α.q
� α̂.((νu)p | ˆ̄α.q) + ˆ̄α.(α̂.(νu)p | q) + (ν~x)((νu)p | q)

• For I2/I2, assume we have two reductions

α̂.p | β̂.q | γ̂.r � α̂.(p | β̂.q) | γ̂.r + β̂.(α̂.p | q) | γ̂.r

α̂.p | β̂.q | γ̂.r � α̂.(p | γ̂.r) | β̂.q + γ̂.(α̂.p | r) | β̂.q

then by several applications of the R2 and L2 rules we
can reduce both terms to

α̂.(p | β̂.q | γ̂.r) + β̂.(α̂.(p | γ̂.r) | q) + β̂.(γ̂.(α̂.p | r) | q)

+ γ̂.(α̂.(p | β̂.q) | r) + γ̂.(β̂.(α̂.p | q) | r)

• I2/I3 is resolved like I1/I3.

• I2/N1 is resolved like I1/N1.

• I2/N2: if u is the subject name of α,

(νu)α̂.p | β̂.q � (νu)α̂.(p | β̂.q) + (νu)β̂.(α̂.p | q)

�2 0 + β̂.((νu)α̂.p | q) � β̂.(0 | q) � 0

(νu)α̂.p | β̂.q � 0 | β̂.q � 0

• I3/I3 can be of two kinds: either the linear action is
involved in two reductions, or it is the inaction. For
the first case, we have

α̂.p | β.0 | γ.0 � α̂.(p | β.0) | γ.0 � α̂.(p | β.0 | γ.0)
α̂.p | β.0 | γ.0 � α̂.(p | γ.0) | β.0 � α̂.(p | β.0 | γ.0)

For the second case we have

α̂.p | β̂.q | γ.0 � α̂.(p | γ.0) | β̂.q

� α̂.(p | β̂.q | γ.0) + β̂.(α̂.(p | γ.0) | q)

� α̂.(p | β̂.(q | γ.0)) + β̂.(α̂.(p | γ.0) | q)

α̂.p | β̂.q | γ.0 � β̂.(q | γ.0) | α̂.p

� α̂.(p | β̂.(q | γ.0)) + β̂.(α̂.p | q | γ.0)

� α̂.(p | β̂.(q | γ.0)) + β̂.(α̂.(p | γ.0) | q)

This assumes β , ᾱ, but the case β = ᾱ is similar with
an extra (ν~x)(p | q) | γ.0 in each reduction.

• I3/I4:

α̂.p | β.0 | β.0 � α̂.(p | β.0) | β.0
� α̂.(p | β.0 | β.0) � α̂.(p | β.0)

α̂.p | β.0 | β.0 � α̂.p | β.0 � α̂.(p | β.0)

• I3/I5:

α̂.p | β.0 | β̄.0 � α̂.(p | β.0) | β̄.0
� α̂.(p | β.0 | β̄.0) � α̂.(p | 0) � 0

α̂.p | β.0 | β̄.0 � α̂.p | 0 � 0

• I3/N1: if u < n(α):

(νu)α̂.p | β.0 � (νu)α̂.(p | β.0) � α̂.((νu)p | β.0)
(νu)α̂.p | β.0 � α̂.(νu)p | β.0 � α̂.((νu)p | β.0)

16

• I3/N2: if u is the subject name of α,

(νu)α̂.p | β.0 � (νu)α̂.(p | β.0) � 0
(νu)α̂.p | β.0 � 0 | β.0 � 0

• I3/N3: if u is the subject name of β,

α̂.p | (νu)β.0 � (νu)α̂.(p | β.0)
� α̂.(p | (νu)β.0) � α̂.(p | 1) � α̂.p

α̂.p | (νu)β.0 � α̂.p | 1 � α̂.p

• I4/I4 and I5/I5 are obvious

• I4/I5:

α.0 | α.0 | ᾱ.0 � α.0 | ᾱ.0 � 0
α.0 | α.0 | ᾱ.0 � α.0 | 0 � 0

This solves all the possible conflicts between the rules.

A.4. Termination

Proof of lemma 4. We reason by case analysis on the
rewriting rules. We can assume without loss of generality
that p is a slice. For rule I1 we have p � (ν~x)(α̂.p1 | ˆ̄α.p2 | p3)
and q is the sum of q1 = (ν~x)(α̂.(p1 | ˆ̄α.p2) | p3), q2 =

(ν~x)(ˆ̄α.(α̂.p1 | p2) | p3) and q3 = (ν~x~y).(p1 | p2 | p3), where ~y is
the sequence of bound names of α. Consider a run of q1: if
it consumes α̂, then it begins with (ν~x)(α̂.(p1 | ˆ̄α.p2) | p3)

τ∗
=⇒

(ν~x)(α̂.(p1 | ˆ̄α.p2) | p′3)
τ
=⇒ (ν~x~y)(p1 | ˆ̄α.p2 | p′3), from which we

can deduce a run of the same length in p: (ν~x)(α̂.p1 | ˆ̄α.p2 |

p3)
τ∗
=⇒ (ν~x)(α̂.p1 | ˆ̄α.p2 | p′3)

τ
=⇒ (ν~x~y)(p1 | ˆ̄α.p2 | p′3), which

proves that the considered run has length at most ‖p‖t. If
the considered run does not touch α, it is a run of p3 and we
deduce a run of the same length in p, hence ‖q1‖t 6 ‖p‖t. By
similar arguments we get ‖q2‖t 6 ‖p‖t. If we consider a run
of q3, we can deduce a run of p of the same length plus one
by prefixing it by the transition p � q3, hence ‖q3‖t 6 ‖p‖t,
and finally ‖q‖t 6 ‖p‖t. The result is proved for the other
rules in a similar way. �

Proof of lemma 5. We define a measure N(p) on
terms. A term p, up to �, can always be written∑

i∈I(ν~xi)
∏

j∈Ji
α̊i j.pi j, in a unique way up to permutation,

assuming ~xi is minimal. Then let N(p) be the multiset{
|~xi | +

∑
j∈Ji

]s(pi j) + ki j

∣∣∣ i ∈ I
}
, where ki j = 1 if α̊i j is

affine and pi j � 0 and ki j = 0 otherwise. Then each rule
except I1 makes N decrease strictly, for the multiset order,
when applied at top level: Rule A is α.p �t α̂.p + α.0
if p � 0, so it replaces {a +]s(p) + 1}, where a is
the contribution of the context, with {a +]s(p), a + 1},
and this is strictly decreasing since]s(p) > 1 for any
term p. Rule L2 is α̂.(p + q) �t α̂.p + α̂.q, it replaces

{a +]s(p) +]s(q)} with {a +]s(p), a +]s(q)}. Rule I2 is
α̂.p|β̂.q �t α̂.(p|β̂.q)+β̂.(α̂.p|q), it replaces {a+]s(p)+]s(q)}
with {a +]s(p), a +]s(q)}. Rule I3 is α̂.p | β.0 �t α̂.(p | β.0),
it replaces {a +]s(p) + 1 with {a +]s(p)}. Rules I4, N2 and
N3 remove an action in a slice so the decrease a value in
N. Rules S, L1 and I5 removes a term of the sum so they
remove an element of N. Rule N1 removes a bound name
from the top level of a slice, so it decreases a value in N.
Since the multiset order is well founded, this proves that
there is no infinite sequence of �t without the rule I1. �

Proof of lemma 6. It is clear that a slice p has a τ transition
if and only if the rule I1 can be applied at top level in p, so
if p has an infinite run then there is an infinite sequence of
I1 reductions, hence an infinite sequence of �t.

Now assume p has an infinite sequence of �t reductions.
If rule S is used at some point, we can remove it from the
reduction and still get a valid infinite reduction, with extra
summands at each step, so we assume the sequence does
not use S. Let p0 = p. Let i be an integer, assume pi has an
infinite reduction. Then some slice si of pi has an infinite
reduction. Define ri and pi+1 such that pi = si +ri, si �t pi+1
and pi+1 has an infinite reduction. For all i, let qi = pi +∑

j<i r j, then q0 �t q1 �t q2 . . . is an infinite reduction of p.
Assume that p has no infinite run, i.e. that ‖p‖t is finite.

Let i be an integer. As in lemma 5, if a rule other than I1 is
used to define si �t pi+1, then ‖pi+1‖t 6 ‖si‖t and N(pi+1) <
N(si), and since si+1 is a slice of pi+1 we have ‖si+1‖t 6 ‖si‖t
and N(si+1) < N(si). If I1 is used but si+1 is not the slice
where the (ν~x)(p |q) occurs, we also have ‖si+1‖t 6 ‖si‖t and
N(si+1) < N(si). If I1 is used and si+1 is the slice where the
(ν~x)(p | q) occurs, then we have si

τ
=⇒ si+1, so the maximal

runs of si+1 are strictly shorter than those of si, i.e. ‖si+1‖t <
‖si‖t. Therefore the pair (‖si‖t ,N(si)) is strictly decreasing,
thus finite, which is contradictory. �

Proof of lemma 7. It is easy to prove that ‖α̊.p‖ = ‖p‖ + 1,
‖p + q‖ = max(‖p‖ , ‖q‖), ‖p | q‖ = ‖p‖+ ‖q‖, ‖(νx)p‖ = ‖p‖
and ‖0‖ = ‖1‖ = 0, from which we deduce that, for any
affine context C, if ‖p‖ > ‖q‖ then ‖C[p]‖ > ‖C[q]‖. So
it is enough to prove the result for p �t q. This derives
from the fact that all sequences of transitions in slices of q
are also present in some slice of p. The only exception is
when p �t q uses rule I1, in which case for a sequence of
transitions of q there is the same sequence in p, possibly
with an extra τ at the beginning. �

Proof of proposition 3. Suppose p has an infinite sequence
of reductions. As above, we assume without loss of gener-
ality that rule S is not used. For any reductions p � q �t r
where p � q is not at top level, there is a term q′ such that
p �t q′ �∗ r, with no reduction at top level in q′ �∗ r
(this is proved by case analysis on the reduction q �t r, we
have to use q′ �∗ r and not q′ � r because several rules

17

duplicate or erase subterms using sums). Therefore p also
has an infinite sequence of reductions where all reductions
at top level are done first. Since ‖p‖ is finite, ‖p‖t is finite,
and by lemma 6 we know that it has no infinite sequence
of top-level reductions. Therefore we have p �∗t p′ where
p′ has an infinite sequence of reductions not at top level,
so there is a slice s ∈ s(p) that has this property. If we
write s = (ν~x)

∏
i∈I α̊i.pi, since there the considered infinite

sequence has no reduction at top level, all reduction steps
occur in one of the pi, and reductions in different pi’s are
independent. Therefore there is a pi that has an infinite se-
quence of reductions. We have ‖pi‖ = ‖α̊i.pi‖−1 6 ‖p′‖−1,
and by lemma 7 we have ‖p′‖ 6 ‖p‖, hence ‖pi‖ < ‖p‖. We
conclude by induction on ‖p‖. �

A.5. Trace semantics

Proof of proposition 4. Up to structural equivalence, every
term can be written

∑a
i=1(ν~xi)

∏bi
j=1 si j where the si j have the

form α.p, α̂.p or 0 (the product stands for parallel composi-
tion). Assume an irreducible term t is a parallel composition∏b

j=1 s j of such terms. None of the s j is an affine action with
a continuation other than 0, otherwise the A rule would ap-
ply. If j = 0 then s = 1 and it is the trace of length 0 with
the empty inaction part. If j > 2, then none of the s j is a
linear action, otherwise one of the I rules could apply. Thus
t is either one linear action with an irreducible continuation
p, in this case p is not a sum or 0 because of the L rules,
or t is a parallel composition of inactions. This shows that
irreducible terms are sums of terms of the form (ν~x)t. All
terms of the form (νv)ûε(~x).p are reducible by one of the
N rules, therefore an irreducible term without sums has the
form α̂1 . . . α̂k.(ν~x)n where n is an irreducible parallel com-
position of inactions. If n contains several occurrences of
a given α.0 then it is reducible by I4, and if it contains an
α.0 and the dual ᾱ.0 then it is reducible by I5, therefore n is
actually an inaction set. If u < fn(n) then (νu)n � n, and if
u ∈ fn(n), then all inactions uε(~x).0 reduce to 0 by N3, after
what (νu) can be removed. Therefore ~x is empty if the term
is irreducible. The fact that S does not apply proves that the
terms in an irreducible sum are pairwise distinct. �

Proof of proposition 6. Assume t and u are two traces that
are not orthogonal. We show by induction on min(|t|, |u|)
that |t| = |u|. If the minimum length is 0, if t or u has not
length 0 (say it is t, without loss of generality), then t | u has
the form α̂.t′ | n where n is an inaction set. Then a maximal
run of t |u either consumes α̂ using an inaction, which makes
0 appear at top level, or it does not consume α̂ and it is
inconsistent, so t ⊥ u. Therefore |t| = |u| = 0. By hypothesis
t | u has a consistent maximal run, so it has no execution,
since consuming any action in it would make 0 appear at top
level. Therefore t | u does not contain dual actions, which is
the expected property.

If min(|t|, |u|) > 1, then t|u has the form α̂.t′ |β̂.u′. If β , ᾱ
then t | u has no execution, so it is inconsistent since the
linear actions at top level cannot be consumed. Therefore
β = ᾱ, and every maximal run starts with the execution step
α̂.t′ | ˆ̄α.u′

τ
=⇒ (ν~x)(t′ | u′), with ~x = bn(α). This implies that

t′ and u′ are not orthogonal, and we conclude by induction
hypothesis.

Reciprocally, it is clear that two traces t = α̂1 . . . α̂k.m
and u = ˆ̄α1 . . . ˆ̄αk.n with m∩ n̄ = ∅ are not orthogonal, since
t |u has a run of length k that leads to m |n which is consistent
and irreducible.

Now let t = α̂1 . . . α̂k.m and u = β̂1 . . . β̂`.n be traces such
that t v u, i.e. {t}⊥ ⊆ {u}⊥. Let γ be an action such that
γ.0 < n. Let v = ˆ̄β1 . . . β̂`.γ̄.0, then by the characterisation
above we get u 6⊥ v, hence t 6⊥ v, so we have |t| = |ū| = |u|,
ᾱi = β̄i for all i, and γ.0 < m. So t and u have the same
action part, and an inaction that is not in n cannot be in m,
hence m ⊆ n.

Finally, assume u = α̂1 . . . α̂k.n with m ⊆ n. A trace that
is not in {u}⊥ has the form ˆ̄α1 . . . ˆ̄αk.n′ with n′∩ n̄ = ∅, so by
inclusion n′ ∩ m̄ = ∅ and this trace is also not orthogonal to
t, hence {t}⊥ ⊆ {u}⊥, i.e. t v u. �

Proof of lemma 8. For any term q define [q]0 as the term
obtained by replacing each occurrence of the action ω̄ in
q by 0. First assume p is successful, and consider a run
[p]ω ⇒∗ q. By hypothesis ω < fn(p) so an occurrence
of ω̄ in [p]ω can never be consumed, so we can deduce a
run p ⇒∗ [q]0. Since p is successful we can deduce a run
[q]0 ⇒

∗ r such that r is inconsistent. Quasi-standard terms
are stable under slicing execution, so r is quasi-standard, so
the only way for r to be inconsistent is to have an occurrence
of 0 at top level: r ≡ 0 | r′. From this we deduce a run
q⇒∗ [r]ω ≡ ω̄ | [r′]ω.

Now assume that for any run [p]ω ⇒∗ q there is a run
q ⇒∗ ω̄ | r, and consider a run p ⇒∗ q. Then the run
[p]ω ⇒∗ [q]ω holds, thus there is a run [q]ω ⇒∗ ω̄ | r. By
the same argument as above, an occurrence of ω̄ can never
be consumed in a run of [q]ω therefore replacing ω̄ by 0
preserves the run, and we can deduce a run q ⇒∗ [ω̄ | r]0 =

0 | [r]0. Thus p is successful. �

18

