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Abstract

We build a realizability model for linear logic using a name-passing process calculus.
The construction is based on testing semantics for processes, drawing ideas from
spatial and modal logics, and yields a new type system for process calculi that
ensures termination while allowing significantly concurrent behaviours. Then we
study how embeddings of intuitionistic and classical logics into linear logic induce
typed translations of λ and λµ calculi in which new concurrent instructions can be
introduced, thus sketching the basis for a Curry-Howard interpretation of linear and
classical proofs in terms of concurrent interaction.

1 Introduction

This paper addresses the problem of finding a proper and meaningful connec-
tion between linear logic and concurrency in the tradition of the Curry-Howard
isomorphism. To this end, we develop a logic of behavioural properties of pro-
cesses, using ideas from spatial and modal logics, yielding an interpretation of
the logic as a type system for processes.

Since the inception of linear logic [15], there have been several attempts
at providing it with a canonical computational counterpart, the same way
as λ-calculus is a computational representation of core intuitionistic logic.
Proof-nets, which are canonical proof objects for linear logic, have several
meaningful computational intuitions, notably about parallelism and resource
management, but they are too closely related to logic and proof theory to
be used as a basic computational object by themselves. Nevertheless, those
intuitions promoted the key ideas of computation by interaction, leading no-
tably to the general approach of game semantics, which shares many intuitions
with previously known algebraic formalizations of parallel and concurrent pro-
cesses. Models of linear logic actually based on concurrent processes were also
studied, notably by Abramsky in the context of CCS [1,4], using the very
powerful technique of realizability. A notable contribution in this direction is
Bellin and Scott’s encoding of proof nets into π-calculus [5], which adresses
the question of the dynamics of proofs from a concurrent point of view. In a
much more sequential flavour, Girard’s ludics [17] is a radical approach based
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on similar principles, and the locative issues it unveiled are of importance in
the present work, in the form of the handling of channel names in processes.

Among models of interactive computation, the approach of π-calculus is
well suited to a logical study of concurrency in the Curry-Howard tradition.
Indeed, name-passing communication and mobility have the same kind of pu-
rity and geometrical flavour as λ-calculi, and the geometric intuitions behind
process calculi make them, modulo notational variations, rather pure and
canonical models for this kind of computation. Although the typing of pro-
cesses in the Curry-Howard school of thought is not a widespread approach,
the search for good logics for describing concurrent processes is not a new
topic. Two important kinds of logics have proved to be useful in this respect:
dating back to CCS are modal logics in the style of Hennessy-Milner, which are
meant to describe the temporal behaviour of a system by studying its possible
transitions. In a different perspective, spatial logics have been defined to de-
scribe geometric properties of objects, and they have been used more recently
for the study of the geometric aspects of mobile processes [8]. Those logics
provide standard ways of describing spatial and temporal properties of con-
current behaviours, and as such they should be considered a natural starting
point for bridging the gap with linear logic and its interactive principles.

With these ideas in mind, this paper proceeds as follows: in section 2 we
define an appropriate formulation of a π-calculus-like process algebra, and in
section 3 we define the kind of observational equivalence that we use as the
foundation for our logical construction. In section 4 we define combinators
over sets of processes from semantic properties of interaction, from which we
deduce in section 5 a type system for mobile processes that notably ensures
termination. The type system we obtain is precisely a form of second-order
linear logic, and we use it in section 6 as a tool to investigate the computa-
tional properties of classical logical systems, exploiting previous studies on the
embeddings of classical logic into linear logic.

2 The ~π-calculus

We work with a name-passing process calculus in the family of polyadic π-
calculi, with some important features:
• All input and output actions are binders, while all non-private communi-

cations are explicitly handled by forwarders. This gives finer control over
name unification and ensures good properties of communications.

• We require that all communications occur on bound channels. This gives a
clear distinction between private names, with possible redexes, and public
names with actions of the same polarity.

The first property is provided by the syntactical structure of the calculus, the
second one is obtained by a sorting discipline in the style of i/o types.
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Definition 2.1 We assume a countable set N of channel names, ranged over
by lowercase letters. The actions (written α) and terms (written P, Q . . .) of
the ~π-calculus are generated by the following grammar:

α := uε(x1 . . . xn) elementary actions, with ε ∈ {�, �}
P, Q := α.P | !α.P linear and replicated actions

u�v forwarders
1 | (P |Q) | (νx)P composition and restriction

An action uε(~x) is a binder for the object names ~x, a restriction (νx) is a
binder for x, and terms are considered up to renaming of bound names. By
convention, u�(~x) = u(~x) is called positive (or input) and u�(~x) = ū(~x) is
called negative (or output).

For precision, the primary operational semantics of the ~π-calculus is de-
fined as a labelled transition system (see table 1). This kind of formulation is
somewhat heavy but the intuition behind the semantics is natural: a commu-
nication can occur between a sender ū(x).P and a receiver v(y).Q when the
surrounding process contains forwarders from channel u to channel v, hence
the prototypical reduction rule:

ū(x).P | u�v | v(x).Q → (νx)(P |Q) | u�v

The fact that both agents use the same name x can be guaranteed by renaming
since both actions are binders. Connections are assumed to be permanent
(that is why u�v is present in the right-hand side in the rule above) and
reliable, in the sense that a forwarder cannot trigger a communication unless
there are two compatible actions. In this respect, a forwarder u�v is different
from a π-calculus process like !u(x).v̄〈x〉, at least in a synchronous setting.

Definition 2.2 The forwarding relation of a process P is the relation F(P )
over names defined as follows (where (·)∗ is the reflexive transitive closure and
R \X is defined as (R ∩ (N \X)) ∪ idX for any X ⊆ N ):

F(u�v) = id∪{(u, v)} F(P |Q) = (F(P ) ∪ F(Q))∗

F((νx)P ) = F(P ) \ {x} F(α.P ) = F(!α.P ) = F(1) = id

Transitions are of three kinds: actions uε(~x), conditions [u�v] and τ -actions.
The free names fn(a) of a label a are the subjects (i.e. {u} and {u, v} respec-
tively), the bound names bn(a) are the objects (~x and ∅ respectively), and we
define n(a) = fn(a) ∪ bn(a). Transitions are derived by the rules in table 1.

The implementation of forwarding in the transition rules is very similar to
the approach of explicit fusions [14]: the interaction rule derives transitions la-
belled [u�v], which represent τ -transitions modulo the existence of forwarders
from u to v, and the forwarding rules can turn a transition [u�v] into a proper
τ -transition when this forwarding actually exists in the term. Remark that if
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Emission of actions and interaction (with the symmetric interaction rule):

α.P
α−→ P !α.P

α−→ !α.P | P

P
ū(~x)−−→ P ′ Q

v(~x)−−→ Q′

P |Q [u�v]−−−→ (ν~x)(P ′ |Q′)

Forwarding rules:

P
[u�v]−−−→ P ′

(u, u′), (v′, v) ∈ F(P )

P
[u′�v′]−−−−→ P ′

P
[u�v]−−−→ P ′

(u, v) ∈ F(P )
P

τ−→ P ′

P
ū(~x)−−→ P ′

(u, v) ∈ F(P )

P
v̄(~x)−−→ P ′

P
v(~x)−−→ P ′

(u, v) ∈ F(P )

P
u(~x)−−→ P ′

Contextual rules (where a is any label):

P
a−→ P ′

P |Q a−→ P ′ |Q
P

a−→ P ′

Q | P a−→ Q | P ′
P

a−→ P ′
x 6∈ n(a)

(νx)P
a−→ (νx)P ′

Table 1
The labelled transition system.

the actions involved in a communication are on the same channel, then a silent
interaction between them is always possible, since F(P ) is always reflexive.
Note that all four forwarding rules are required since the transition system is
defined strictly on the syntax of terms, with no scope extrusion.

Definition 2.3 A bisimulation is a symmetric relation S over processes such
that P S Q implies F(P ) = F(Q) and for any transition P

a−→ P ′ there is a
transition Q

a−→ Q′ with P ′ S Q′. Bisimilarity is the union of all bisimulations.

The interaction rule requires that two opposite actions have the same arity
in order to interact. In order to avoid problems with arities, we will require
the channels of each process to have a specified type (not to be confused with
process types as defined later). This type system can be seen as a fragment
of the usual i/o types of the π-calculus [23], with a strong restriction: we
forbid the “input and output” capability, instead all situations where opposite
actions can interact are created on private channels using the restriction rule.

Definition 2.4 Channel types and interfaces are defined as follows:

channel types s := ε(s1 . . . sn) | ∗ with ε ∈ {�, �}
interfaces I := x1 : s1, . . . , xn : sn

Let (·) be the involution defined inductively as �(s1 . . . sn) = �(s̄1 . . . s̄n), nat-
urally extended to interfaces. A typing judgement has the form P :: I, a term
P respects an interface I if P :: I is derivable using the rules in table 2.
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u�v :: I, u : �(s1, . . . , sn), v : �(s̄1, . . . , s̄n)

P :: I, u : ε(s1 . . . sn), x1 : s1, . . . , xn : sn

uε(~x).P :: I, u : ε(s1 . . . sn)

1 :: I

P :: I Q :: I

P |Q :: I
P :: I
!P :: I

P :: I, x1 : s, x2 : s̄

(νx)P [x/x1, x/x2] :: I

Table 2
Typing rules for channels.

The formulation of the restriction rule assures that a name with capabilities
of both polarities always occurs under a restriction: in the typing derivation, a
distinct name is used for each polarity, and these names are unified only when
inserting the binder. The type ∗ is used when typing is unnecessary (and to
make channel types finite). The language of channel types could be extended
with variables and fixed points, but this is not needed for the present work.

Proposition 2.5 If P :: I is derivable, then all reducts of P by τ or [u�v]
transitions respect I, and for each transition P

α−→ P ′ with α = uε(x1 . . . xn)
there is u : ε(s1 . . . sn) in I and P ′ :: I, x1 : s1, . . . , xn : sn is derivable.

Proposition 2.6 The congruence ≡ generated by the abelian monoid laws for
(|, 1), the standard scoping laws and the following rules is a bisimulation:

(νx)(P | x�y) ≡ P [y/x] if P has no input on x

(νx)(y�x | P ) ≡ P [y/x] if P has no output on x

If P ≡ Q then P :: I is derivable if and only if Q :: I is derivable.

The substitution rule in this proposition gives a translation of process
calculi with communication of free names, including π-calculus and fusion
calculi [22,14], for processes that respect our strict channel typing constraints.
Indeed, an action uε〈~x〉.P that communicates the free names ~x can be encoded
as a process uε(~y).(P |

∏
i xi�yi |

∏
j yj�xj), where xi ranges over names in ~x

that should have input capabilities and xj ranges over those that should have
output capabilities. In the sequel, we sometimes use this notation to make
expressions lighter, for instance u(x).v̄〈x〉 stands for u(x).v̄(y).(x�y) if the
environment is expected to send actions ū(x) with output capabilities on x.

In the sequel, we use the notation A : I to denote a set A of terms that all
respect an interface I. As an alternative notation, if I and J are two disjoint
interfaces, we write I → J for the interface Ī ∪ J (so in particular we have
I → J = J → I). This simple notational device will make some definitions
cleaner, as it splits the interfaces into arbitrary inputs and outputs (unrelated
to capabilities), in a way similar to Abramsky’s approach in interaction cate-
gories [2]. The primary application is indeed the associativity of composition:
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Definition 2.7 Let I, J, K be three pairwise disjoint interfaces. For any pro-
cesses P :: I → J and Q :: J → K, the composition P ·Q :: I → K is defined
as P ·Q = (ν~x)(P |Q) where ~x is the domain of J .

Proposition 2.8 For any interfaces I, J , K, L pairwise disjoint and any
processes P :: I → J , Q :: J → K, R :: K → L we have (P ·Q)·R ≡ P ·(Q·R).

Proof. Write ·J the composition with restriction on interface J , then the
composition is (P ·J Q) ·K R. The restrictions introduced by P ·Q affect the
names of dom(J) and those introduced by Q ·R affect the names of dom(K),
so these restrictions commute because they are on disjoint sets of names. 2

3 Observational equivalence

The kind of behavioural equivalence we are interested in is the traditional
notion of testing, i.e. we only observe the outcome of interactions instead of the
actual transitions. The basic ingredient is to choose a set of processes that are
considered to act well (for a parametrized notion of well), and to consider that
two processes interact well whenever their composition is element of this set.
In the sequel we will focus on termination, by defining well-behavedness as the
absence of infinite reduction and observing only the possibility of divergence.
Of course this is one choice among many, but we consider it to be meaningful
both from the logical and concurrent points of view.

3.1 Orthogonality

Definition 3.1 The observation is the set ⊥ of all terms that have no infinite
reduction.

Note that by “reduction” we refer to τ -transitions, so termination guaran-
tees that a system cannot go into an infinite loop without interacting with its
environment. This property is a reasonable expectation, while the existence
of infinite sequences of observable transitions is not a problem, and it is even
required for server-like processes, which are supposed to answer any arbitrary
number of requests. So we consider that two processes interact correctly if
their composition cannot create a divergence:

Definition 3.2 Orthogonality is defined between processes of opposite inter-
faces. Two process P :: I and Q :: Ī are orthogonal, written P ⊥ Q, if
P | Q ∈ ⊥. Two sets of terms A : I and B : Ī are orthogonal when P ⊥ Q
for every P ∈ A and Q ∈ B. The orthogonal of a set A : I is the set
A⊥ = {Q | ∀P ∈ A, P |Q ∈ ⊥}.

The constraint that interfaces of orthogonal processes should be opposed is
not as strong a restriction as it may look. Indeed, if a process P has more free
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names than Q, then P |Q terminates if and only if (ν~x)P |Q terminates, where
~x is the set of public names known by P but not by Q, and then (ν~x)P and
Q do have opposed interfaces. In other words, interfaces can be considered as
annotations that indicate the names involved in interactions, while the other
names are not shared by interacting processes.

Other similar observations could be used, like the related ideas of may-
and must-testing [7,9], using other definitions of ⊥. Then the interpretation
of modal connectives in section 4.2 would have to be adapted, but the general
technique, and most importantly the type system, would be exactly the same.

Proposition 3.3 Let A, (Ai) and B be sets of terms that respect a common
interface I. We have the following properties:

A⊥⊥⊥ = A⊥ (
⋃

iAi)
⊥ =

⋂
iA⊥

i

if A ⊆ B then B⊥ ⊆ A⊥ (
⋃

iAi)
⊥⊥ = (

⋃
iA⊥⊥

i )⊥⊥

Proof. Those properties are immediate, they hold for any pair of sets (here
the sets of processes of interface I and Ī) linked by a binary relation ⊥. 2

Therefore the bi-orthogonal is a closure operator, and the orthogonal of
any set is closed. A closed set A : I will be called a behaviour, since the bi-
orthogonal is a closure by behavioural equivalence. The lemma above states
that the orthogonal is a decreasing operator, involutive on behaviours, and
that the set of behaviours, ordered by inclusion, has arbitrary lower bounds
(the intersections) and upper bounds (the closures of unions).

3.2 Pre-orders and subtyping

The standard notion of testing pre-order can be rephrased here, and this rela-
tion yields a natural order (actually the inverse of inclusion) over behaviours.
We leave the interfaces implicit when they are clear from the context.

Definition 3.4 The behavioural pre-order over processes is defined as P v Q
if {P}⊥ ⊆ {Q}⊥. The associated equivalence is written P ' Q.

Proposition 3.5 Behaviours are closed under reduction. They are closed
under bisimulation among terms that respect their interface.

Proof. For any processes P and Q, assuming a reduction P → P ′, if P | Q
cannot diverge then P ′ | Q cannot diverge either since it is a reduct of the
latter, so Q ⊥ P implies Q ⊥ P ′, hence {P}⊥ ⊆ {P ′}⊥ and P ′ ∈ {P}⊥⊥. If
two processes are bisimilar, then they have exactly the same transitions, so
they diverge in the same contexts. 2

This fact derives directly from the same properties of the observation, and
it allows us in the sequel to consider terms up to bisimulation (only checking
the channel typing constraint). The closure by reduction can be rephrased
by saying that P →∗ Q implies {P}⊥ ⊆ {Q}⊥. One can interpret reduction
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steps that make the orthogonal strictly increase as those that make a choice
in some situation of non-determinism, while the reduction steps that leave the
orthogonal unchanged are concerned with the deterministic part of reduction.

Definition 3.6 Let I be an interface, define

0I = (∅ : I)⊥⊥ >I = all processes of interface I

1I = ({1} : I)⊥⊥ ⊥I = {P | P ∈ ⊥, P :: I}

This defines a subtyping structure among behaviours of a given interface.
From proposition 3.3 we easily deduce the commutative monoid structure of
behaviours for (∨,0) and (∧,>) and the duality between those structures.

Since the observation is termination, no process can be orthogonal to a
process that may diverge, so any behaviour that contains a diverging process
is equal to >I , and 0I is always empty (since there are diverging processes).
Subsequently ⊥I is the second largest behaviour after >I and its orthogonal 1I

is the smallest non-empty behaviour. At interface ∅ we have 1 = ⊥, so there
are three behaviours with empty interface, ordered as 0∅ ⊂ 1∅ = ⊥∅ ⊂ >∅.

Definition 3.7 A behaviour is non-degenerate if it is distinct from 0 and >.

In other words, a non-degenerate behaviour A is not empty and contains
only terminating processes, or equivalently 1 ⊆ A ⊆ ⊥, which shows that
the set of non-degenerate behaviours is closed by arbitrary upper and lower
bounds.

4 Behavioural connectives

In this section, we define operators on behaviours from the semantic properties
of processes, from which we deduce the type system in the next section.

4.1 Interaction and composition

Definition 4.1 Let I, J and K be three pairwise disjoint interfaces, let ~x
be an arbitrary enumeration of dom(J). For any behaviours A : I → J and
B : J → K, define the composition as

A · B : I → K =
{
(ν~x)(P |Q) | P ∈ A, Q ∈ B

}⊥⊥

Proposition 4.2 Behaviour composition is associative, commutative, mono-
tonic and distributive over upper bounds.

Proof. The key is to prove A · B = A⊥⊥ · B⊥⊥ for all A,B, from which
everything follows. For this, remark that for any P, Q, R it holds that P ·Q ⊥ R
if and only if P ⊥ Q ·R. Then P ⊥ A·B implies P ⊥ Q ·R for any Q ∈ A and
R ∈ B, hence P ·Q ⊥ R and P ·Q ⊥ B⊥⊥, so P ⊥ A·B⊥⊥, and P ⊥ A⊥⊥ ·B⊥⊥

is proved similarly, so A⊥⊥ · B⊥⊥ ⊆ A · B, and the reverse is trivial. 2
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An important special case of composition is when it is applied to behaviours
of opposite interfaces A : I → J and B : J → I, in this case the composed
behaviour has an empty interface. This gives a characterization of the orthog-
onality of behaviours: A ⊥ B if and only if A·B ⊆ ⊥∅, with equality if A and
B are not empty, so in particular A · A⊥ = ⊥∅ in the non-degenerate case.

Another important case of this composition is when applied to behaviours
of disjoint interfaces, i.e. when J = ∅. Then the composition of A : I and
B : K has interface I ∪ K, no restriction is introduced and the composed
process is generated by parallel composition.

Definition 4.3 The composition operator · applied to disjoint interfaces is
noted ⊗. By duality define A

&

B = (A⊥ ⊗ B⊥)⊥ and A ( B = A⊥ &

B.

Clearly the operators ⊗ and

&

are commutative and associative, and they
have neutral elements 1∅ and ⊥∅ respectively. From proposition 4.2, ⊗ dis-
tributes over upper bounds and

&

distributes over intersections. Moreover,
the following rules are easy to check, for any A with interface I:

A⊗ 0J = 0I∪J A⊗>J = >I∪J if A 6= 0I

A

&

>J = >I∪J A

&

0J = 0I∪J if A 6= >I

Proposition 4.4 The operator ⊗ is injective on non-degenerate behaviours
and distributive over arbitrary intersections

Proof (sketch). Injectivity is easily checked by constructing appropriate
tests. For the distribution, the idea is to consider interaction traces (essentially
sequences of transition labels), remarking that behaviours are characterised
by their sets of traces, when observing termination. Then show that for any
pair of behaviours A : I and B : J , any trace of A ⊗ B can be decomposed
uniquely as a trace of A and a trace of B. This decomposition is what ensures
the distribution of ⊗ over intersections. 2

The tensor product ⊗ can be seen as a form of separating spatial conjunc-
tion, as can be found in spatial logics, and the operator

&

is a symmetric
form of spatial implication. In particular, its oriented form A ( B = A⊥ &

B
defines the behaviour of processes that, when composed with processes of A,
are in behaviour B. This makes

&

the right operator for expressing contextual
properties, indeed we have the following rule:

Proposition 4.5 For any behaviours A : I, B : J → K, C : K → L and
D : M with I, J, K, L, M pairwise disjoint, (A

&

B) · (C

&

D) ⊆ A

&

(B ·C)

&

D.

Proof. Let P ∈ A

&

B and Q ∈ C

&

D. For any R ∈ A⊥ and T ∈ B⊥ we
have P · (R · T ) ∈ ⊥, with P : I ∪ (J → K), R : Ī and T : K → J so
the restrictions are independent and composition is associative, so P ·R ⊥ T ,
therefore P ·R ∈ B. The same way, we get that for every S ∈ D⊥, Q · S ∈ C,
so (P · R) · (Q · S) ∈ B · C. In these compositions, the restrictions are placed
on disjoint interfaces I, K, M respectively, so the composition is associative
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and we obtain by congruence (P · Q) · (R · S) ∈ B · C for any R ∈ A⊥ and
S ∈ D⊥, from which we deduce P ·Q ∈ A

&

D

&

(B · C). 2

Since ⊥∅ is the neutral element of

&

, the previous proposition gives the
rule (A ( B) · (B ( C) ⊆ (A ( C) for any behaviours A, B, C with
disjoint interfaces. As another example, we have the following specification of
forwarders:

Proposition 4.6 Let A be a behaviour of interface {u : �(~s)}. For any name
v 6= u we have u�v ∈ A⊥ &

A[v/u].

Proof. First note that u�v does respect the expected interface. By definition,
any term P ∈ A only has output capabilities on u, so P · (u�v) ≡ P [v/u] ∈
A[v/u], and for any Q ∈ A[v/u]⊥ we have (u�v) · (P |Q) ∈ ⊥. 2

4.2 Modalities

In order to describe the dynamic properties of behaviours, we now introduce
modalities in the style of Hennessy-Milner logic [19]. An important point
about the modalities we use here is their effect on interfaces: given an action
α of the form uε(~x), we consider processes whose interface contains only u and
whose only transitions lead into a given behaviour, the interface of which is
defined on u and ~x. In particular the modality [α] acts as a binder for the
names ~x.

Definition 4.7 Let α = uε(~x) be an action. For any behaviour A : I with
I = {u : ε(~s), x1 : s1, . . . , xn : sn}, define [α]A as the set of all processes P
that respect the interface {u : ε(~s)} such that P has no infinite reduction and
for all transitions P →∗ α−→ Q, one has Q ∈ A.

This is mostly a standard “must” modality, except that it forbids any other
name than its subject to be present in the interface of the processes that satisfy
it. This is very restrictive at first sight, but significant behaviours can still
be expressed by combining such behaviours with the spatial connectives, as
illustrated below. A consequence of this constraint is the duality between
modalities with opposite polarities:

Proposition 4.8 For any action α and any behaviour A with appropriate
interface, ([α]A)⊥ = [ᾱ](A⊥).

This proves in particular that [α]A does not need a bi-orthogonal to be a
behaviour. These modalities also behave well with respect to subtyping:

Proposition 4.9 Let α be an action and (Ai) a non-empty family of be-
haviours of the same interface, appropriate for α. Then [α]

∧
iAi =

∧
i[α]Ai

and [α]
∨

iAi =
∨

i[α]Ai. Moreover, [α]0 = 1 and [α]> = ⊥.

Proposition 4.10 Let α be an action, let A and B be two behaviour with
appropriate interfaces, then for all P ∈ A ( B, α.P ∈ A ( [α]B.

10



Beffara

4.3 Replicated actions

Neither the spatial operators nor the modalities defined above allow for di-
rectly expressing properties of potentially infinite behaviours. We now define
a new kind modality, using the previous operators, in order to capture se-
mantically the behaviour of guarded replications. Informally, the behaviour
of a process !α.P is that of processes that, after a transition labelled α, re-
turn to the same behaviour and produce an fresh instance of P . This can be
formalized as the greatest fixed point of an appropriate operator, as follows:

Definition 4.11 Let A be a behaviour of interface I and α be an action with
object ~x = dom(I). Define the iteration operator E(X) = [α](X ⊗A) and let
[!α]A =

⋂
k∈N Ek(>). Define the dual [?α]A = ([!ᾱ]A⊥)⊥.

The idea is that a process in P ∈ [!w(~x)]A is a server located at w that
serves mutually independent processes of typeA. Then if we duplicate the port
where P listens, by writing (νw)(u�w | v�w | P ), the result serves mutually
independent processes of type A on the chanels u and v, which is indistin-
guishable from two independent servers providing processes of the same type
at u and v. That is the meaning of the following contraction lemma:

Lemma 4.12 For any distinct channels u, v, w and any behaviour A : I with
dom(I) = ~x, u�w | v�w ∈ [!w(~x)]A ( [!u(~x)]A⊗ [!v(~x)]A.

Proof (sketch). With the notations of definition 4.11, consider the behaviour
Ci,j = E i

u(>)⊥

&

E j
v(>)⊥, and let F = u�w | v�w. Then show by recurrence

that Ci,j ·F ⊆ E i+j
w (>)⊥ for all integers i, j. Computing the upper bound over

all i, j, deduce ([?ū(~x)]A⊥ &

[?v̄(~x)]A⊥) · F ⊆ [?w̄(~x)]A⊥. 2

This lemma proves the adequacy of contraction, from which we deduce
the adequacy of the promotion rule of linear logic, with the usual constraint
that the context is supposed to consist explicitly of non-linear actions, i.e.
[?α] modalities. The adequacy of the weakening and dereliction rules derive
directly from the definition of replicated modalities.

Proposition 4.13 Let A and (Bi)16i6n be behaviours with disjoint interfaces
and α, βi be appropriate actions for those behaviours. Let C = [?β1]B1

&

· · ·

&

[?βn]Bn. For each P ∈ A

&

C, we have !α.P ∈ [!α]A

&

C.

Proof. The behaviour C⊥ is generated by the Q = Q1 | · · · | Qn with Qi ∈
[?βi]Bi. Let P ∈ A

&

C, using the notations of definition 4.11, we prove by
recurrence that for each k, !α.P ∈ Ek(>)

&

C. The case k = 0 is trivial since >
is absorbing for

&

. Now assume the result holds for k; the only transition of
!α.P is labelled α and leads to !α.P | P , with !α.P ∈ Ek(>)

&

C by induction
hypothesis and P ∈ A

&

C. Let σ be a renaming that maps the subjects of
the βi to fresh names, then we have !α.P |Pσ ∈ (Ek(>)

&

C)⊗ (A

&

Cσ) which
is included in (Ek(>)⊗A)

&

C

&

Cσ by lemma 4.5. Applying the contraction
lemma to each pair Bi

&

Biσ in C

&

Cσ we obtain that (C

&

Cσ)σ−1 ⊆ C,

11
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which proves !α.P | P ∈ (Ek(>)⊗A)

&

C. For each Q ∈ C⊥, there can be no
interaction between !α.P and Q before a transition on α; after such a transition
from !α.P ·Q, the reduct is (!α.P |P ) ·Q′ for some Q →∗ Q′ ∈ C⊥, so this term
is in [α](Ek(>)⊗A) = Ek+1(>), as a consequence we get !α.P ∈ Ek+1(>)

&

C.
So this holds for each k and we have !α.P ∈

⋂
k Ek(>)

&

C = [!α]A

&

C since

&

distributes over intersections. 2

5 Linear type system

The behavioural connectives from the previous section are defined from se-
mantic observations on processes. Their interactions and contextual proper-
ties make them a proper basis for defining a logic over processes, i.e. a proper
type system, in which formulas are defined as anonymous versions of the be-
havioural connectives, and types are sequents made of named (or localized)
formulas.

Definition 5.1 An anonymous interface is a finite sequence i of channel
types, as of definition 2.4. The concatenation of anonymous interfaces i and j
is noted i; j. Given an anonymous interface i and a vector ~x of distinct names
of the same length, the instance of i at ~x is the interface ~x : i = {xk : ik}16k6|i|.

Definition 5.2 For each anonymous interface i, we assume a countable set of
type variables, ranged over by X i. Formulas are built on the following syntax:

A, B := A⊗B | 1i | �A | !A | ∃X i.A | X i

A

&

B | ⊥i | �A | ?A | ∀X i.A | X i⊥

Each formula has an anonymous interface defined as

I(X i) = i I(ci) = i for c ∈ {1,⊥}
I(†A) = �I(A) for † ∈ {�, !} I(A�B) = I(A); I(B) for � ∈ {⊗,

&

}
I(†A) = �I(A) for † ∈ {�, ?} I(∇X i.A) = I(A) for ∇ ∈ {∃,∀}

A type Γ is a sequence ~x1 : A1, . . . , ~xn : An where each ~xi has the length of
I(Ai) and a typing judgement has the form P ` Γ.

Thus types are named sequents of second-order multiplicative exponential
linear logic, with two extra “shifting” modalities � and �, dual to each other.
Negation (·)⊥ is defined syntactically in the usual way, the operators on the
first line being dual to those on the second line.

Definition 5.3 A process P has type Γ if the typing judgement P ` Γ is
derivable by the rules of table 3 and the exchange rule.

Definition 5.4 A valuation is a function V that associates each type variable
X i, for each vector ~x of |i| distinct names, to a behaviour V(X i)~x of interface
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Actions:
u�v ` u : �A⊥, v : �A u�v ` u : !A⊥, v : ?A

P ` Γ, ~x : A

u(~x).P ` Γ, u : �A

P ` Γ, ~x : A

ū(~x).P ` Γ, u : �A

Multiplicatives:

P ` Γ, ~x : A Q ` ~y : B, ∆

P |Q ` Γ, ~x~y : A⊗B, ∆

P ` Γ, ~x : A, ~y : B

P ` Γ, ~x~y : A

&

B

Exponentials:
P ` ?Γ, ~x : A

!u(~x).P ` ?Γ, u : !A

P ` Γ, u : �A

P ` Γ, u : ?A

P ` Γ, u : ?A, v : ?A

P [u/v] ` Γ, u : ?A
P ` Γ
P ` Γ, u : ?A

Quantifiers:

P ` Γ, ~u : A
I(B) = i

P ` Γ, ~u : ∃X i.A[X i/B]

P ` Γ, ~u : A
Xi 6∈ fv(Γ)

P ` Γ, ~u : ∀X i.A

Constants:

1 ` 1i
P ` Γ
P ` Γ,⊥i

Cut:
P ` Γ, ~x : A Q ` ~x : A⊥, ∆

(ν~x)(P |Q) ` Γ, ∆

Table 3
The typing rules.

~x : i, with the natural constraint V(X i)~y = V(X i)~x[~y/~x] for all ~x and ~y. For
such a valuation, the interpretation JAK~x of a type A, parametrized by a vector
~x of length |I(A)| consisting of distinct names, is defined inductively as

JX iK~x = V(X i)~x JX i⊥K~x = V(X i)⊥~x
J1iK~x = 1~x:i J⊥iK~x = ⊥~x:i

J�AKu = [u(~x)]JAK~x J�AKu = [ū(~x)]JAK~x

J!AKu = [!u(~x)]JAK~x J?AKu = [?ū(~x)]JAK~x

JA⊗BK~x~y = JAK~x ⊗ JBK~y JA

&

BK~x~y = JAK~x

&

JBK~y

J∃X i.AK~x =
∨

V(Xi):iJAK~x J∀X i.AK~x =
∧

V(Xi):iJAK~x

The interpretations of ∃X i.A and ∀X i.A are the upper and lower bounds of
the interpretations of A in valuations obtained from V by replacing V(X i) by
arbitrary behaviours. A process P is said to realize a type Γ = ~x1 : A1, . . . , xn :
An, written P  Γ, if P ∈ JA1K~x1

&

· · ·

&

JAnK~xn .

It can be easily checked that any derivable type is non-degenerate, notably

13
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because behaviours [α]A always are, and from this and the propositions of
section 4 we get adequacy and termination of typed terms:

Theorem 5.5 For any valuation of the type variables, P ` Γ implies P  Γ.

Proof. Adequacy is proved by induction on the typing rules, using the various
propositions of the previous section. 2

Theorem 5.6 All typable terms terminate.

Proof. An equivalent formulation is that all types derivable by the rules of
table 3 are non-degenerate. This is guaranteed by the fact that the interpre-
tation of any �A is non-degenerate (by definition) and that this property is
clearly preserved by all connectives. 2

This type system also enjoys a “weak” subject reduction, in the sense that
P ` Γ and P → P ′ imply the existence of a process P ′′ ≡ P ′ such that P ′′ ` Γ.
The proof requires a handful of lemmas to describe the type of processes after
observable transitions, and we have to leave it out for lack of space.

Subtyping
This type system is a rather restrictive fragment of what we can get from

our behavioural operators. For instance, the only form of subtyping we have
in the rules of table 3 is quantification, but the type system can be enriched
with intersection and union types. The language of formulas gets extended
with the dual constructs A∧B and A∨B, with the constraint that A and B
have the same interface in well-formed types, and the following rules apply:

P ` Γ, ~u : A
I(A) = I(B)

P ` Γ, ~u : A ∨B

P ` Γ, ~u : A P ` Γ, ~u : B
I(A) = I(B)

P ` Γ, ~u : A ∧B

Concurrent realizers
Because of the constraints our typing imposes on communication schemes

(each channel has at most one input capability, channels with multiple output
capabilities have one replicable input capability), typable terms are always
confluent. Nevertheless, derivable behaviours may contain processes that are
not confluent, and those may be equally interesting from the point of view of
concurrency. A simple example is the type of co-contraction:

Proposition 5.7 w�u | w�v  (u : !A⊗ v : !A) ( (w : !A).

Proof. The proof uses mostly the same technique as that of lemma 4.12. 2

This gives a symmetric (and non-deterministic) implementation of the type
!A⊗ !A ( !A that takes two servers of the same type !A on channels u and v
and lets them listen on the same channel w. Although the typing judgement
w�u | w�v ` (u : !A ⊗ v : !A) ( (w : !A) is not derivable with the rules
of table 3, the type itself is actually provable, but the only way is to forget
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one side of the tensor (by weakening) and keeping the other unchanged. In
other words, standard proofs remove the non-determinism by making always
the same choice. This non-deterministic implementation can be rephrased by
the following rule:

P ` Γ, u : !A Q ` ∆, u : !A

P |Q ` Γ, ∆, u : !A

Non-determinism is indeed built in our construction, in the sense that if
P  Γ and Q  Γ we always have P ⊕ Q  Γ, where P ⊕ Q is an internal
choice, for instance defined as (u)(u.P | u.Q | ū).

6 Embedding classical systems

The type system we get for processes is a variant of linear logic. As such, it is
a tool of choice for the study of intuitionistic and classical logical systems. We
now describe a generic way of embedding those logics into our type system,
leading to canonical typed embeddings of λ and λµ-calculi into processes. We
will focus on sequent calculi using only implication and quantification, with
associated term calculi. The formulas and the sequents are thus generated by
the following grammar:

formulas: A, B := X | A → B | ∀X.A

sequents: x1 : A1, . . . , xn : An ` α1 : B1, . . . , αp : Bp

We use the standard deductions rules in multiplicative form:

X ` X

Γ, A ` B, ∆

Γ ` A → B, ∆

Γ1 ` A → B, ∆1 Γ2 ` A, ∆2

Γ1, Γ2 ` B, ∆1, ∆2

Γ ` A, ∆
X 6∈ fv(Γ,∆)

Γ ` ∀X.A, ∆

Γ ` ∀X.A, ∆

Γ ` A[B/X], ∆

Contractions and weakenings are allowed on both sides of the sequents. Those
naturally correspond to typing rules for λµ-calculus, assuming some formula
on the right-hand side is chosen as the active one, or for λ-calculus for intu-
itionistic systems where right-hand sides always have just one formula.

Definition 6.1 A modality is a non-empty word on {�, �, !, ?}. A modal trans-
lation (·)∗ is a pair of modalities (µ, ν) such that formulas are translated as

(X)∗ = X (A → B)∗ = µA∗ ( νB∗ (∀X.A)∗ = ∀X.A∗

and a sequent x1 : A1, . . . , xn : An ` α1 : B1, . . . , αp : Bp is translated as

` x1 : (µA∗
1)

⊥, . . . , xn : (µA∗
n)⊥, α1 : νB∗

1 , . . . , αp : νB∗
p

together with a translation of deduction rules.
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Such translations of classical systems into linear logic have been studied
from the logical side by Danos, Joinet and Schellinx [12], leading to the identifi-
cation of dual translations that were later formalized as the logical counterpart
of call-by-name and call-by-value reduction strategies [10]. We now adapt this
study to get associated embeddings of the underlying calculi into processes.

Our axiom rules imply the introduction of at least one modality, so µ and
ν must have a non-empty common suffix for any valid translation. Moreover,
since left-hand sides of sequents allow contractions and weakenings, µ must
always begin with !, and in classical systems ν must begin with ? since con-
traction and weakening are also allowed on the right. In the sequel we will
focus on the representative case where one of µ, ν is a suffix of the other.

Definition 6.2 Given a modality µ, and names u and ~x, define the proto-
col uµ(~x).P as u�(~x).P = u(~x).P , u!(~x).P = !u(~x).P , u�(~x).P = u?(~x).P =
ū(~x).P , and inductively uµ†(~x).P = uµ(v).v†(~x).P for a fresh name v.

Observe that this translation of modalities into interaction protocols is
typed, since P ` ?Γ, ~x : A always implies uµ(~x)P ` ?Γ, u : µA. Subsequently,
since modalities are the only rules that introduce actions, translating a proof
system into processes simply means placing the right protocols at the right
places, between forwarders (as axioms) and compositions (as cuts).

For the computational part of proof systems, we use the notations of λµ-
calculus [21]. A term t : C with free λ-variables xi : Ai and µ-variables αj : Bj

will be translated into a process JtKβ with an interface composed of channels
xi : (µA∗

i )
⊥, αj : νB∗

j and β : νC∗. The active output β is purely arbitrary,
indeed the first notable property of the translations is the following:

Jµα[β]tKγ = JtKβ[γ/α]

From the typing of protocols by modalities, we also deduce the translation of
the λ-abstraction rule, which deduces α : ν(µA ( νB) from x : (µA)⊥, β : νB:

Jλx.tKα = αν(xβ).JtKβ

Call-by-name
The translation of the other rules depends on the modalities. The first

case is when ν is a suffix of µ, with the symptomatic example µ = !? and
ν = ?, which corresponds to the system LKT in Danos-Joinet-Schellinx, or
call-by-name in λ-calculus parlance. Writing µ = ξν, the axiom rule becomes

y�α ` y : (νA)⊥, α : νA

xξ̄(y).(y�α) ` x : (µA)⊥, α : νA

which can be rewritten as xξ̄〈α〉 using the simplified notation from proposi-
tion 2.6. The application rule is translated with the first proof in table 4, and
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Call-by-name (with µ = ξν):

P ` ?Γ, β : ν(µA ( νB)

Q ` ?∆, γ : νA

xξ(γ).Q ` ?∆, x : µA y�α ` y : ν̄B⊥, α : νB

xξ(γ).Q | y�α ` ?∆, xy : µA⊗ ν̄B⊥, α : νB

βν̄(xy).(xξ(γ).Q | y�α) ` ?∆, β : ν̄(µA⊗ ν̄B⊥), α : νB

(νβ)(P | βν̄(xy).(xξ(γ).Q | y�α)) ` ?Γ, ?∆, α : νB

Call-by-value (with ν = ξµ):

P ` ?Γ, β : ν(µA ( νB)

x�y ` x : µA, y : µ̄A⊥ z�α ` z : ν̄B⊥, α : νB

x�y | z�α ` xz : µA⊗ νB⊥, y : µ̄A⊥, α : νB

βν̄〈yα〉 ` β : ν̄(µA⊗ νB⊥), y : µ̄A⊥, α : νB

(νβ)(P | βν̄〈yα〉) ` ?Γ, y : µ̄A⊥, α : νB

γ ξ̄(y).(νβ)(P | βν̄〈yα〉) ` ?Γ, γ : ν̄A⊥, α : νB Q ` ?∆, γ : νA

(νγ)(γ ξ̄(y).(νβ)(P | βν̄〈yα〉) |Q) ` ?Γ, ?∆, α : νB

Table 4
Call-by-name and call-by-value translations of application.

with µ = !? and ν = ?, we get the translation of call-by-name λµ-calculus:

JxKn
α = x̄〈α〉

Jλx.tKn
α = ᾱ(xβ).JtKn

β

Jt uKn
α = (νβ)

(
JtKn

β | !β(xy).(!x(γ).JuKn
γ | y�α)

)
By choosing for ν a linear modality, we can get a simplified variant for in-
tuitionistic logic. Indeed, with µ = !� and ν = �, we get exactly Milner’s
translation of pure λ-calculus into polyadic π-calculus:

JxKin
α = x̄〈α〉

Jλx.tKin
α = α(xβ).JtKin

β

Jt uKin
α = (νβx)

(
JtKin

β | !x(γ).JuKin
γ | β̄〈xα〉

)

Call-by-value
The dual case is when the modality µ is a suffix of ν. Now we write ν = ξµ,

where µ begins with !, and we get the axiom by the rule

y�x ` x : (µA)⊥, y : µA

αξ(y).(y�x) ` x : (µA)⊥, α : νA

which simplifies into αξ〈x〉, the reverse of the previous case. The generic
application rule is the second proof in table 4. The symptomatic instance now
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is µ = ! and ν = ?!, which corresponds to LKQ in Danos-Joinet-Schellinx and
to call-by-value in λ-calculus parlance, leads to the following:

JxKv
α = ᾱ〈x〉

Jλx.tKv
α = ᾱ(y).!y(xβ).JtKv

β

Jt uKv
α = (νγ)

(
!γ(x).(νβ)

(
JtKv

β | !β(w).w̄〈xα〉
) ∣∣∣ JuKv

γ

)
Not surprisingly, this is exactly the translation of call-by-value λµ-calculus
into π-calculus formulated by Honda, Yoshida and Berger in their recent
work [6,18]. The simplest intuitionistic version is obtained by taking for ξ
the empty modality (which is linear), and thus µ = ν = !, which gives:

JxKiv
α = α�x

Jλx.tKiv
α = !α(xβ).JtKiv

β

Jt uKiv
α = (νβγ)

(
JtKiv

β | JuKiv
γ | β̄〈γα〉

)
For all those translations, the rules for quantifiers are translated unchanged

from classical types into linear types, thus we get soundness by construction:

Proposition 6.3 For any translation (·)∗ with modalities (µ, ν), for any typed
λµ-term Γ ` t : A, ∆, the translation of t is typed JtK∗α ` (µΓ∗)⊥, α : νA∗, ν∆∗.

As a by-product, this gives a general normalization result for typed λµ-
terms for the reduction strategies induced by the translations. The precise
description of those strategies is beyond the scope of this paper, but previ-
ous work on the topic shows that they are strongly related to evaluation by
abstract machines.

7 Conclusions and future works

Int this paper, we develop a powerful approach to testing semantics using
realizability techniques. At the core is the notion of orthogonality, here de-
fined as non-divergence of the interaction between processes. From this we
get a meaningful model of multiplicative-exponential linear logic, with con-
nectives defined by spatial and temporal observations, and a type system that
ensures termination. This sketches the foundation of a Curry-Howard con-
nection between linear logic and process calculi (with a rather restricted form
of concurrency at present), and this connection integrates well with similar
interpretations of intuitionistic and classical logics, notably by generalising
previoulsy known embeddings of λ-calculi into π-calculus.

The technique can be painlessly extended to a calculus with guarded choice,
whose typing will naturally extend the Curry-Howard interpretation to addi-
tive connectives, and thus full second order linear logic. Other observations
can be handled with the same methods, notably may- and must-testing. Al-
though the calculus we use here is formulated in order to get appropriate
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properties, the type system can be applied to other similar name-passing cal-
culi, like variants of polyadic π and fusion calculi. A challenging direction,
although largely speculative, would then be to extend the rules and connec-
tives of logic in order to capture behaviours that are too concurrent for pure
linear logic, as suggested at the end of section 5.

Although the construction of behavioural connectives has intuitions from
modal and spatial logics, precise links with those formalisms are yet to be
made. Interesting comparisons are expected with previous work on the se-
mantic links between relevant logics and intuitionsitic linear logic [11], and
with proof systems like the logic of bunched implication [20]. In a different
perspective, the typing rules induce translations of proof-nets into processes
that are expected to be closely related to previous encodings, as developped
by Ambramsky [3] and Bellin and Scott [5].

The algebraic structure of behaviours suggests many directions in which
the semantics of concurrent processes can be studied, in relation with linear
logic and its models. Links with game semantics could be fruitfully studied,
probably by studying interaction traces with the same techniques as here. The
approach of the Geometry of Interaction [16] seems applicable to the present
case, and could provide new kinds of semantics for concurrent processes. The
model could also provide intuitions on recent developments in linear logic,
notably about differential λ-calculus [13] and its concurrent flavour.
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