
Concurrent Nets
A Study of Prefixing in Process Calculi

Emmanuel Beffara François Maurel

May 1, 2005

Abstract

We introduce the calculus of concurrent nets as an extension of the fu-
sion calculus in which usual prefixing is replaced by arbitrary monotonic
guards. Then we use this formalism to describe the prefixing policy of
standard calculi as a particular form of communication. By developing a
graphical syntax, we sharpen the geometric intuition and finally we pro-
vide an encoding of these guards as causality in the prefix-free fragment,
in the spirit of the encoding of the fusion calculus into solos by Laneve
and Victor, proving that communication by fusion is expressive enough
to implement arbitrary monotonic guards.

1 Introduction
The π-calculus [1] has generated a wide range of calculi on the search for both
a simplification of the syntax and a widening of the expressiveness. Fu’s χ-
calculus [2], Parrow and Victor’s fusion calculus [3] and Gardner and Wischik’s
explicit fusions [4] are important examples where name substitution is replaced
by unification, which makes the calculus simpler, more symmetric and yet more
expressive. Most models for concurrent and mobile computation are geometric
in nature, and even term calculi have a strong spatial intuition. Indeed, every
process calculus comes with a handful of structural rules for commutation and
scoping that define appropriate notions of locality. This geometric flavour of
term calculi led to the proposal of several graphical syntaxes for existing cal-
culi, like π-nets [5] or solo diagrams [6], and to the introduction of new purely
graphical calculi, like in Milner’s recent work on bigraphs [7].

In a sense, the evolution from name substitution in π-calculus to fusion cor-
responds to the evolution from syntactical communication to a more geometric
one; however the sequentiality imposed by prefixing remains very syntactical,
since it is directly inspired by CCS and synchronization trees. Motivated by the
search for a more general form of prefixing, we introduce and study the calculus
of concurrent nets as a similar evolution towards a geometrical formulation of
sequentiality constraints. Actions in a process get associated with semaphores

1

that indicate when these actions have been performed, and subsequently pre-
fixing is replaced by the use of guards that are monotonic functions of those
semaphores, resulting in a form of sequentiality constraints that is reminiscent
of enabling in event structures. We define a graphical syntax for this calculus,
in which guards appear as a new form of communication between actions.

With the calculus of solos [8], Laneve and Victor simplify the fusion calculus
by removing prefixing and they show by means of encodings that no expres-
sive power is lost. The idea of using the expressiveness of fusion for expressing
scheduling constraints can be generalized to our framework of arbitrary mono-
tonic guards.

The first contribution of this paper is to show how concurrent nets extend
existing calculi, and notably the π-calculus and the fusion calculus. The charac-
terisation of these sub-calculi yields a classification of the forms of sequentiality
in use in process calculi using natural geometric arguments.

Our second contribution is showing the completeness of the expressive power
of communication by fusion with respect to monotonic scheduling, by means
of encodings of the arbitrary monotonic guards of concurrent nets into pure
communications, using a new and more geometric approach suggested by our
graphical syntax.

In section 2, the syntax and semantics of the calculus of concurrent nets
are introduced, both as a term calculus and as a graph reduction formalism.
In section 3 we characterize various existing calculi as restrictions on guarding
and scoping. In section 4, we develop two encodings of monotonic guards into
communications. In section 5, we study how guards, considered as a form of
communication, interact with replication and recursion.

2 Definitions

2.1 Introductory Examples
Informally, a concurrent net is a web of input and output actions related by
channels. Each action has a principal port (the subject) and a set of auxiliary
ports (the objects). For instance, the process ā(cd) | a(xy).b̄(xy) in π-calculus
is represented as

a
b

c

d

x

y

Formally, the set of channels here is C = {a, b, c, d, x, y}, but only a, b, c, d are
considered public, which is represented by the fact that they have dangling edges
while x and y have none. The actions ā(cd) on the left and a(xy) in the middle
form a redex. The reduction of this redex will remove both actions and connect
c with x and d with y. The arrow means that the third action b̄(xy) is prefixed
by a(xy), i.e. it will not be reduced as long as a(xy) is present.

We generalise this prefixing in two ways. Consider the following examples:

2

u
−→

u

Figure 1: Reduction of a redex.

a

b

c

x

y

a

b

c
x

y

In both examples, we have two receptions a(x) and b(y) and one emission c̄(xy).
In the process on the left, the two-headed arrow means that the emission is pre-
fixed by both receptions, i.e. c̄(xy) will be blocked until both a(x) and b(y) have
been reduced, but these may happen in any order. This cannot be expressed
directly in π-calculus, but some calculi (e.g. the join calculus [9]) do provide
this kind of synchronisation. In the process on the right, the two disjoint arrows
mean that c̄(xy) will be able to act as soon as either a(x) or b(y) is consumed.
To our knowledge, this too cannot be expressed directly in other calculi. Note
that, if a(x) is consumed, y may be communicated before anyone writes on b.
This phenomenon is typical of fusion calculi.

2.2 Syntax and Semantics
We assume a countable set C of channel names and a disjoint set L of location
names. The elements of L are used to name occurrences of actions, as detailed
below. We write x̃ to represent a finite sequence of channel names x1 . . . x|x̃|.

Definition 1. C-terms are defined by the following grammar:

actions α := ū(x̃) | u(x̃)
guards π := 0 | 1 | ` | π + π | ππ
terms P := 0 | (P | P) | (νx)P | (ν`)P | ` : α | 〈π〉P

where u, x, xi range over channel names and ` ranges over location names.

• The α-equivalence on C-terms is generated by the renaming of bound
names. A channel or location name x is bound by the closest surround-
ing (νx).

• A location ` is defined in P if some ` : α occurs in P with ` unbound. We
denote by loc(P), the set of locations defined in P .

• We require that each location be defined at most once in any subterm
(this condition on terms will be preserved by reduction).

• A term P is prefix-closed if any location name that occurs in its prefixes
is element of loc(P).

3

The actions ū(x̃) and u(x̃) correspond to the emission and reception of some
sequence of channels x̃ on a channel u. Guards are either blocked (0), enabled
(1), simple (a location `), disjunctive (π1+π2) or conjunctive (π1π2). A prefixing
〈`〉P means that P is blocked until the action ` : α is performed. When this
happens, the name ` is replaced by 1 in every prefix. Subsequently, a process
〈π〉P is blocked until the prefix π is reduced to 1 by the replacement of some ` by
1 and the application of structural rules. The other constructions are standard:
0 is the inactive process, P1 | P2 represents two processes in parallel and (νx)P
represents the process P with a local name x.

We use the notation α for (ν`)(` : α), i.e. when the location ` is not used
in any prefix. The notation uε(x̃) refers to an action with arbitrary polarity,
where ε is + for the action ū(x̃) and − for u(x̃).
Example 1. The process

shared_continuation(a, b, P) := (ν`1)(ν`2)
(
`1 : a() | `2 : b() | 〈`1 + `2〉P

)
is a typical process that does not exist primitively in usual calculi such as fusion
calculus. The process P in shared_continuation(a, b, P) is enabled by the
unblocking of `1 or `2 or both (the location `1 is unblocked when the occurrence
of a() in `1 : a() is used in reduction and similarly for `2 and b()). Even if it
may be encoded in fusion calculus, as shown in section 4, such a mechanism
is not primitive. For instance, a similar process in fusion calculus would be
Q = (νf)(a().f̄() | b().f̄() | f().P) which has the intended meaning: when a
or b has been performed, the flag f is released and P becomes available. The
methodological difference is quite subtle: in this example, the encoding works
because there is only one f̄() that can interact (and the other possible f̄() is not
used and can be garbage collected) whereas in shared_continuation(a, b, P),
both `1 and `2 enable P and no garbage collection rule is necessary.
Example 2. Another more involved example is the process

P = (ν`a`b`c)
(
`a : a1() | `b : b1() | `c : c1()

| 〈`a〉 ā2() | 〈`b〉 b̄2() | 〈`c〉 c̄2() | 〈`a`b〉 d̄() | 〈`a + `b`c〉 ē()
)

The process P listens on three ports a1, b1 and c1. For each of them it answers
respectively on ports a2, b2 and c2. Furthermore, when both a1() and b1() have
been fired, P sends d̄(), and when a1() or both b1() and c1() have been fired ē()
is sent. In fusion calculus, a similar process could be

Q = (νfafb1fb2fcg)
(
a1().

(
f̄a() | ḡ() | ā2()

)
| b1().

(
f̄b1() | f̄b2() | b̄2()

)
| c1().

(
f̄c() | c̄2()

)
| fa().fb1().d̄() | fb2().fc().ḡ() | g().ē()

)
but this is more complex: one must be cautious when programming such a
process to check that the flags fa, fb1, fb2, fc and g are sufficient for the intended
purpose. Moreover, the encoding is too sequential: in the encoding, we write
fa().fb1().d̄() but could as well write fb1().fa().d̄() in this case. This asymmetry
prevents an easy and natural understanding of such a process.

4

These processes exemplify the situation where one has simple processes in
C-terms and tricky encodings in fusion. This situation is typical as shown by
the encodings (in solos) developed in section 4. Therefore, we see C-terms as a
plain process calculus with important properties but also as some kind of macro
language giving new design patterns for process calculi such as π or solos.

Definition 2. The structural equivalence on terms is the smallest congruence
≡ containing α-equivalence and such that

• the set of terms is a commutative monoid with | as the composition and
0 as the neutral element,

• let Π be the set of guards, then (Π, 0,+) and (Π, 1, .) are commutative
monoids, mutually distributive, with 1 + x ≡ 1 and 0x ≡ 0,

• prefixing obeys the following rules, where ` does not occur in π:

〈0〉P ≡ 0 nullity
〈1〉P ≡ P neutrality

〈π1〉 〈π2〉P ≡ 〈π1π2〉P composition
〈π〉 (P1 | P2) ≡ 〈π〉P1 | 〈π〉P2 distribution
〈π〉 (νx)P ≡ (νx) 〈π〉P channel scoping
〈π〉 (ν`)P ≡ (ν`) 〈π〉P location scoping, when ` 6∈ fv(π)

• channel and location scoping obeys the following standard equivalence
rules, where z is not free in P , and n is neither defined nor used in P :

(νx)(νy)P ≡ (νy)(νx)P (νz)P ≡ P P | (νz)Q ≡ (νz)(P |Q)
(ν`)(νm)P ≡ (νm)(ν`)P (νn)P ≡ P P | (νn)Q ≡ (νn)(P |Q)

The operational semantics of C-terms is defined as a labelled transition sys-
tem (LTS). The choice of an LTS instead of a simple reduction system comes
from fusion effects and prefix updates. When a process P reduces into P ′, the
process P |Q reduces into P ′ |Q′ where Q′ is Q with some unified variables and
some reduced prefixes (the reduction in P may have unblocked some locations
that appear as prefixes in Q). Hence, for compositionality, we use an LTS which
can properly deal with parallel composition.

Transitions are labelled either (ϕ,L) or ((νx̃)α,L) where ϕ is an equivalence
over C, L is a subset of L, x̃ is a subset of C and α is an action. (ϕ,L) means
that a unification ϕ is performed, and ((νx̃)α,L) means that the action α is
fired and the scopes of some variables x̃ are extended. In both cases, L is the
set of locations that are unblocked (the actions in the locations L have been
fired).

Definition 3. We write {x̃ = ỹ} to denote the smallest equivalence that unifies
x̃ with ỹ, x 6∈ ϕ if the equivalence class of x is {x}, ϕ\x for ϕ∩(C\{x})2∪{(x, x)},

5

` : α
α,{`}−−−→ 0

P1
(νx̃1)ā(ỹ1),L1−−−−−−−−−→ P ′

1 P2
(νx̃2)a(ỹ2),L2−−−−−−−−−→ P ′

2 |ỹ1| = |ỹ2|

P1 | P2
{ỹ1=ỹ2}\x̃1x̃2,L1∪L2−−−−−−−−−−−−−−→ (νx̃1x̃2)(P ′

1 | P ′
2)σ[1/L1, L2]

where σ implements {ỹ1 = ỹ2} and z /∈ x̃1x̃2 ⇒ σ(z) /∈ x̃1x̃2

P
(νx̃)aε(ỹ),L−−−−−−−→ P ′ z /∈ aỹ

(νz)P
(νx̃)aε(ỹ),L−−−−−−−→ (νz)P ′

P
ϕ,L−−→ P ′ z /∈ ϕ

(νz)P
ϕ,L−−→ (νz)P ′

P
(νx̃)aε(ỹ),L−−−−−−−→ P ′ z ∈ ỹ, z 6= a

(νz)P
(νzx̃)aε(ỹ),L−−−−−−−−→ P ′

P
ϕ,L−−→ P ′ z ϕ y, z 6= y

(νz)P
ϕ\{z},L−−−−−→ P ′[y/z]

P
(νx̃)aε(ỹ),L−−−−−−−→ P ′

(ν`)P
(νx̃)aε(ỹ),L\{`}−−−−−−−−−−→ (ν`)P ′

P
ϕ,L−−→ P ′

(ν`)P
ϕ,L\{`}−−−−−→ (ν`)P ′

P
(νx̃)α,L−−−−−→ P ′

P |Q (νx̃)α,L−−−−−→ P ′ |Q[1/L]

P
ϕ,L−−→ P ′

P |Q ϕ,L−−→ P ′ |Q[1/L]

Table 1: Labelled transition system for C-terms

and [1/L] for the substitution of each name in L by 1 in prefixes. A substitution
σ implements a relation ϕ if σ is idempotent and x ϕ y iff σ(x) = σ(y). The
transition rules for C-terms, up to structural equivalence, are given in table 1.

When an action ` : α is performed, the name ` is replaced by 1 in the rest
of the process. The name ` can be interpreted as that of a global variable (or
a semaphore) with a monotonic value, initially set to 0, which gets the value 1
on activation of α. Then a prefix is a monotonic combination of semaphores.

Definition 4. Bisimilarity on C-terms is defined as follows:

• A bisimulation is a symmetric binary relation S over processes such that
P S Q implies that for all transition P

e,L−−→ P ′ there is a process Q′ such
that Q e,L−−→ Q′ and P ′ S Q′.

• A relation S is stable if it is closed under arbitrary name substitution and
if P S Q implies P [1/L] S Q[1/L] for all L ⊂ L \ (loc(P) ∪ loc(Q)).

Two processes are (stably) bisimilar if they are related by a (stable) bisimulation.

Without the stability clause, our definition is standard bisimulation. Stable
bisimilarity is more pertinent, because bisimilarity is not preserved under the
effects of the context. For instance, let

P = `1 : ā() Q = `1 : ā() | 〈m〉 `2 : a() R = m : c̄() | c()

6

P and Q are bisimilar since they have the same transition labelled (ā(), {`1}),
leading to the trivially bisimilar processes 0 and 〈m〉 `2 : a() respectively. How-
ever, P |R andQ|R are not bisimilar: both have one transition labelled (id, {m}),
which leads to P in the case of P |R and to `1 : ā() | `2 : a() in the case of Q |R,
and these reducts cannot be bisimilar since the former has no transition while
the latter has one. So a stable bisimulation is a bisimulation that is preserved
under the effects that the context may produce. Note that the condition above
restricts L to be composed of locations that are not defined in P or Q: these
locations may occur in the guards in P and Q, and they may be substituted by 1
because of transitions in the context, as illustrated in the previous example.

Our encodings of guards in section 4 are not bisimulations, they require the
weaker equivalence of barbed bisimulation:

Definition 5. Barbed bisimilarity on C-terms is defined as follows:

• A process P has a barb on (u, L) if there is a transition P
(νx̃)uε(ỹ),L−−−−−−−−→ P ′

for some x̃, ỹ, ε, and P ′. We denote it P ↓ (u, L).

• A barbed bisimulation is a symmetric binary relation S over processes
such that P S Q implies

– for all u, L, if P ↓ (u, L) then Q ↓ (u, L),

– for any transition P
ϕ,L−−→ P ′ there is a Q′ such that Q ϕ,L−−→ Q′ and

P ′σ S Q′σ for some substitution σ that implements ϕ.

Two processes are (stably) barb-bisimilar if they are related by a (stable) barbed
bisimulation.

It also makes sense to define associated notions of weak bisimulation, in
which only observable transitions are considered. Observability here refers both
to name fusion and location freeing, i.e. a transition ϕ,L−−→ is observable as soon
as ϕ is not the identity or L is not empty.

Definition 6. Weak bisimilarity on C-terms is defined as follows:

• The τ -reduction relation → is defined as P → P ′ iff P
id,∅−−→ P ′ where id

stands for the identity relation {(x, x) | x ∈ C}. The relation →∗ is the
reflexive transitive closure of →.

• A weak bisimulation is a symmetric relation S over processes such that
P S Q implies that for any P e,L−−→ P ′ with e 6= (id, ∅), there is a Q′ such
that Q→∗ e,L−−→ Q′ and P ′ S Q′.

Two processes are (stably) weakly bisimilar if they are related by a (stable)
weak bisimulation.

Definition 7. A weak barbed bisimulation is a symmetric relation S over pro-
cesses such that P S Q implies

7

• for all u, L, if P ↓ (u, L) then Q→∗↓ (u, L),

• for any P ϕ,L−−→ P ′ with (ϕ,L) 6= (id, ∅), there is a Q′ such that Q→∗ ϕ,L−−→
Q′ and P ′σ S Q′σ for some substitution σ that implements ϕ.

Two processes are (stably) weakly barb-bisimilar if they are related by a (stable)
weak barbed bisimulation.

2.3 Graphical Syntax
The calculus of C-terms has a large number of structural rules to define appro-
priate notions of locality and scope in processes. The following canonical form
property yields a graphical formulation that avoids the need for such rules.

Proposition 1. Any prefix-closed C-term P is structurally equivalent to a term
with the following shape, where the product stands for parallel composition:

P ≡ (νw̃)(νm̃)
n∏
i=1

〈πi〉 `i : uεi
i (x̃i) with πi ≡

pi∑
j=1

`i,j,1 · · · `i,j,qi,j

for some n > 0, pi > 0 and qi,j > 0, where the `i,j,k are elements of {`i | 1 6
i 6 n}. The sets w̃ and m̃ represent respectively private channels and locations.
Such a formulation is called an enumeration of P .

Proof. By scope extrusion, all binders may be moved to the top level of the
syntax tree, and the distribution and composition rules for prefixes lead to the
expression of P as a composition of elementary guarded actions. The standard
form of guards is obtained by distributivity of conjunction over disjunction.

Hence, a process can be described as a set of locations, each with an as-
sociated action and prefix. Actions are built on a set of channel names, some
of which are bound. Unbound channels form a set called the interface. The
prefix of an action is either 1 or a disjunction of non-empty sets of locations.
Prefixes define a relation: the enabling relation between non empty sets of loca-
tions (i.e. occurrences of actions) and actions, in the spirit of event structures.
This leads to the following algebraic definition, where C∗ stands for the set of
finite sequences over C and P0(A) is the set of non-empty subsets of A (the
non-emptiness condition is justified after defintion 9).

Definition 8. A concurrent net consists of

• a set C of channels,

• a subset I of C called the interface,

• a set A of actions labelled by elements of {+,−} × C × C∗,

• an enabling relation ` between P0(A) and A.

8

u

u

x1

x2
x3

u

x3

x2
x1

αβ

γ

δ

channel u input output enabling arrows
u(x1x2x3) ū(x1x2x3) β ` α ; γ, δ ` α

Figure 2: Graphical syntax for concurrent nets.

In the sequel, channels are ranged over by Latin letters and actions are
ranged over by Greek letters. A positive action (+, u, x̃) is written ū(x̃) and a
negative action (−, u, x̃) is written u(x̃). In such an action, u is the principal
channel and the elements of x̃ are the auxiliary channels.

Figure 2 shows the graphical conventions we use to represent concurrent
nets: the channels are the edges in a hypergraph over actions, the channels in
the interface are those with dangling edges. Actions are represented by triangles
with the polarity in the middle, the principal channel (the subject) is connected
to a vertex of the triangle and the auxiliary channels are connected to the
opposite side. By convention, the auxiliary ports of negative actions are ordered
from left to right (when looking from the principal channel) while those of
positive actions are ordered from right to left, which leads to cleaner figures.
The enabling relation is represented by arrows: for each element β1, . . . , βn ` α,
we draw a multi-headed arrow from α to each of the βi. Different elements of
` are represented by disjoint arrows. The arrows represent guards, so an action
is enabled when there is no arrow leaving its node, and communication only
occurs between enabled actions.

Definition 9. Let P = (C, I,A,`) be a concurrent net.

• An action α is enabled if there is no set X such that X ` α.

• A redex is a pair {α, β} of enabled actions of opposite polarities with the
same subject and arity.

• P reduces along the redex {α, β} into the net P ′ obtained by removing α
and β from the quotient of P by {x̃ = ỹ}. If there is an arrow X ` γ in P
with X ⊆ {α, β}, then any arrow Y ` γ is removed in P ′. Otherwise, any
arrow X ` γ in P is replaced by X \ {α, β} ` γ.

If an arrow ∅ ` α appears in the reduction, then α gets enabled and all arrows
Y ` α are removed, which corresponds to the axiom 1 + x = 1. This axiom
is precisely what is needed in definition 10 to make the graphical formulation
equivalent to C-terms. An equivalent approach would be to allow empty sets on
the left of ` and to define that α is enabled when ∅ ` α.

As illustrated by figure 1, the reduction of a redex consists in removing the
redex and connecting the auxiliary channels of the positive action with those

9

of the negative action. The principal channel of the actions (u in the figure) is
still present in the net, minus two actions. Any arrow that points to an action
in the redex is removed, which possibly enables other actions.

Definition 10. The equivalence ≡ over concurrent nets is the smallest equiv-
alence such that a net with an arrow X ` α is equivalent to the same net plus
an arrow Y ` α for any set of actions Y such that X ⊆ Y .

This equivalence is characterised by the operation that removes every arrow
Y ` α for which there exists X ` α with X ⊆ Y . Two nets are structurally
equivalent if their images by this transformation are isomorphic graphs.

Proposition 2. There is an isomorphism, up to structural equivalence and
injective renaming, between concurrent nets and prefix-closed C-terms with their
respective reductions.

Proof. The canonical form property from proposition 1 provides the translation
between both formalisms: for a C-term P , the associated net JP K is (C, I,A,`)
where C is the set of channels (bound or free), I is the set of free channels,
A is the set of locations {`i | 1 6 i 6 n} with `i labelled by (εi, ui, x̃i). The
enabling relation is defined as `i,j,1, . . . , `i,j,qi,j ` `i for each pair (i, j). One
easily checks that this translation is a bĳection (up to structural equivalence)
and that it commutes with reduction, in the sense that there is a translation
labelled P

ϕ,L−−→ P ′ if and only if JP K reduces into JP ′K with equivalence ϕ.

As a consequence, in the sequel we use the name concurrent nets both for
nets in the sense of definition 8 and for prefix-closed C-terms, and we refer to
processes indifferently using the notations for terms or for nets, whichever is the
more suitable.

3 Sub-calculi
Several process calculi can be considered as fragments of concurrent nets.

Definition 11. A calculus S is a sub-calculus of C-terms if there is a translation
map t : S → C, modulo the structural equivalences of S and C, that is full and
faithful (t is injective on processes and bĳective on transitions). A correctness
criterion is a characterisation of the image of t.

3.1 Restrictions on the guards
The solos calculus [8] without replication is a sub-calculus of C-terms by the
trivial translation α 7→ (ν`)(` : α). It is the fragment of C-terms with no
prefixes. Incidentally, solo diagrams [6] as defined by Laneve, Parrow and Victor
are very similar to our graphical syntax, since the diagram for a term in the
solos calculus is exactly the dual graph of the concurrent net for its translation,
in the sense that the vertices and the edges in the diagram are, respectively, the
edges and the nodes in the concurrent net.

10

The solos calculus is a fragment of the fusion calculus [3]. Fusion terms
(without replication or sums) are defined by the grammar

P := 0 | (P | P) | (νx)P | ū(x̃).P | u(x̃).P

Define the translation J_Kπ by Jα.P Kπ = (ν`)(〈π〉 ` : α | JP K`) where ` is a fresh
location, and by homomorphism on all other constructs. The translation J_K1
makes the fusion calculus a sub-calculus of C-terms. The characterisation of the
image of this translation requires the formal definition of prefixing:

Definition 12. Let P be a concurrent net.

• the prefix of an action α is the set (_ ` α) := {X | X ` α},

• P has a simple prefixing if for all α, either (_ ` α) = ∅ or there is a β
such that (_ ` α) = {{β}},

• if P has a simple prefixing, the prefixing relation of P is the relation ←
over the actions defined by β ← α when β ` α.

Proposition 3. The image of the translation of fusion calculus is the set of
processes with simple prefixing in which the prefixing relation is acyclic.

Proof. In this case the arrows form a directed acyclic graph, with nodes of
degree at most 1 by hypothesis, i.e. a forest, which corresponds to the syntactical
structure of the prefixes in the fusion term.

A further restriction of prefixing that is found in the litterature is that of
asynchrony: in ansychronous π-calculus, emissions never act as prefixes, and
the translation of this condition in concurrent nets simply states that positive
actions never occur on the left of the enabling relation.

3.2 Restrictions on scoping
The π-calculus may be seen as the sub-calculus of the fusion calculus where
receptions always appear in the form (νx̃)u(x̃).P where the xi are distinct,
i.e. where receptions are binders. Hence our translation of π-calculus is that
of fusion calculus except that restrictions are added before every reception.
The characterisation of translations of π-terms requires a formal definition of
causality which means that one cannot interact on an unknown channel:

Definition 13. The causality relation is the binary relation ⇐ over actions
defined by β ⇐ α if the action β is negative and the principal channel of α or
any of its auxiliary channels is an auxiliary channel of β.

Proposition 4. The image of the translation of π-calculus is the set of processes
with a simple prefixing such that the relation ← is acyclic, the relation ⇐ is
included in the transitive closure of ←, and the auxiliary channels of negative
actions are pairwise distinct.

11

Proof. The condition on⇐ imposes that the auxiliary channels of receptions are
used only in actions prefixed (possibly indirectly) by this reception, therefore
the scope of received channels can always be written (νx̃)u(x̃).P .

In the definition of ⇐, the left action is supposed to be negative, since only
negative actions impose scoping in π-calculus. If the definition was extended
to a causality W between actions of arbitrary polarity, then the statement of
proposition 4 would capture the fragment known as private π-calculus [10].

As the relation ⇐ is defined with no reference to prefixing, this privacy
condition can be formulated independently, by requiring⇐ to be acyclic, which
indeed associates a scope to each negative action; the resulting fragment is to
π-calculus what concurrent nets are to fusion calculus, in particular it allows
communication to be formulated as name substitution instead of unification,
while allowing arbitrary monotonic guards. Requiring W to be acyclic further
restricts the calculus into a kind of “private” concurrent nets.

4 Encoding Guards
Our notion of guard provides a flexible extension of prefixing that extends fu-
sion calculi with expressive scheduling features. Nevertheless, concurrent nets
are still reasonable from the point of view of implementation and algebraic
study, since they can be encoded into its fragment without guards, i.e. the solos
calculus, as we will see in this section.

The purpose of the enabling relation is to enforce some ordering between the
actions of a process, i.e. to restrict the reduction strategy of a C-term. A useful
analogy can be drawn with λ-calculus: there are several standard reduction
strategies for normalizing λ-terms, but the technique of continuation-passing-
style transformation provides a way to enforce a particular strategy, modulo
a slight modification of the term’s interface: each term gets a continuation
as an extra argument. The approach we use is similar in that we introduce
extra arguments to each action so that commmunications have the side-effect
of connecting other actions that could not interact before.

The idea is to use the properties of fusion to translate explicit delaying of
actions into delayed unification of names. The same kind of idea was used
by Laneve and Victor to encode fusion calculus into solos [8], but their actual
encoding depended on the structure of prefixes. The ones we provide here take
a more geometric approach.

4.1 Expansive Translation
In this section we define a translation that we call expansive because it intro-
duces a pair of auxiliary ports at each node in the net for each enabling arrow.
It implies that the translation fails to be fully compositional: the translation of
a parallel composition is not exactly the parallel composition of the translations.
As an example, illustrated by figure 3, consider we have a concurrent net P of
the form

12

`1

`2

`3
a

b

c

d

`3
a

b

c

dd′

d1

a

b

c

dd′

d1

Figure 3: Expansive translation.

P := `1 : ā(x̃) | `2 : b̄(ỹ) | `3 : c(z̃) | 〈`1`2 + `3〉 d(w̃) |Q

This expresses that d(w̃) is blocked until either c(z̃) or both ā(x̃) and b(ỹ) are
performed. Thus the way of delaying d(w̃) is to replace d with a fresh channel
d′ that will be unified with d when this condition is fulfilled. This is achieved
by extending the arity of each action, passing a pair of channels to be unified to
the actions at locations `1, `2 and `3 and assuming all other actions will perform
this unification. Translating the arrow a(x̃), b̄(ỹ) ` d(w̃) leads to

P1 := (νd′d1)
(
ā(d1d

′x̃) | b̄(dd1ỹ) | (νx)`3 : c(xxz̃) | 〈`3〉 (νx)d′(xxw̃)
)
|Q1

where Q1 is Q where each action ` : uε(ṽ) is replaced by (νx)` : uε(xxṽ).
Translating the second arrow leads to

P2 := (νd′d1)
(
(νy)ā(yyd1d

′x̃) | (νx)b̄(xxdd1ỹ)

| (νx)c(dd′xxz̃) | (νxy)d′(xxyyw̃)
)
|Q2

where Q2 is Q1 transformed in the same way as Q is transformed into Q1.

Definition 14. Let P be a concurrent net. Assume a particular enumeration
of P is chosen. For all i, let u′i be ui if πi ≡ 1 and a fresh name otherwise. Let
(ui,j,k) be a family of channel names such that ui,j,0 = ui and ui,j,qi,j = u′i and
all other ui,j,k are fresh. The translation of P for this enumeration is

(νw̃′)
n∏
I=1

(νz̃I)u′I(ỹI x̃I) where yI,(i,j,η) =

{
ui,j,k−η if `I = `i,j,k for some k
zI,(i,j) otherwise

w̃′ = w̃ ∪ {ui,j,k | k 6= 0}

where z̃I is a family of fresh channels indexed over {(i, j) | 1 6 i 6 n, 1 6 j 6 pi}
and ỹI is a family of channels indexed over {(i, j, η) | 1 6 i 6 n, 1 6 j 6 pi, η ∈
{1, 0}}. The expansive translation of P is the set JP Ke of expansive translations
of P for all possible enumerations (thus it should be understood as a relation
between processes rather than a function).

13

Figure 4: The two steps of duo translation.

Note that, in this definition, the extra arguments ỹI of the actions are in-
dexed on a set of triples, without specifying a precise ordering. It is understood
that the ordering is unimportant as long as the same one is used for all actions
in a given process.

Theorem 1. Every process P is stably barb-bisimilar to each Q ∈ JP Ke.

Sketch of proof. The main idea is that the translation commutes with the tran-
sition relation, up to the introduction of dummy pairs of arguments in each
action, with a few technical details explained in the appendix.

4.2 Duo Translation
The translation above has the advantage that it keeps constant the number
of nodes and that the translated process is strongly bisimilar to the original
one. The major drawback is that the translation is not compositional. We
now introduce a translation that addresses this problem by first translating an
arbitrary process into one with simpler prefixing, namely a prefixing of depth 1,
similar to Parrow’s duos [11], and then providing a specific translation of this
simple prefixing.

As illustrated in the first part of figure 4, the first step consists in associating
a forwarder (νu)(u(x̃) | ū(ỹ)) to each node ` : α that appears in another action’s
prefix. This forwarder is the one that will delay a fusion, so it is enough to
prefix it with 〈`〉 to ensure that the concerned nodes are blocked.

Definition 15. Let P be a concurrent net. Assume a particular enumeration
of P is chosen. For all i, let u′i be ui if πi ≡ 1 and a fresh name otherwise. Let
(ui,j,k) be a family of channel names such that ui,j,0 = ui and ui,j,qi,j = u′i and
all other ui,j,k are fresh. The duo translation of P for this enumeration is

(νw̃′)
n∏
I=1

(νv)
(
`I : u′εI

I (x̃I) | 〈`I〉 v(ỹI) | v̄(z̃I)
)

with w̃′ = w̃ ∪ {ui,j,k | k 6= 0}

14

where ỹI and z̃I are families indexed over {(i, j, k) | `i,j,k = `I} defined as

yI,(i,j,k) = ui,j,k−1 and zI,(i,j,k) = ui,j,k

The duo translation of P is the set JP Kd1 of duo translations of P for all possible
enumerations, thus duo translation should be understood as a relation between
processes rather than a function.

Theorem 2. Every process P is weakly stably bisimilar to each Q ∈ JP Kd1.

Sketch of proof. The simulation is achieved by reducing all the forwarders in-
troduced by the translation when necessary. These redexes cannot interfere
with any other communication, which ensures bisimilarity. The proof is mostly
technical, it can be found in the appendix.

Remark that if two processes P and Q are prefix-closed, then JP | QKd1 =
JP Kd1 | JQKd1, which was false for the expansive translation. The advantage of
this intermediate form is that it uses a very restricted form of prefixing:

Definition 16. A process P has a duo prefixing if there is a partial injection p
over {1 . . . n} such that P can be written

P ≡ (νw̃)
n∏
i=1

〈πi〉 `i : uεi
i (x̃i) with πi =

{
`p(i) if i ∈ dom(p)
1 otherwise

Lemma 1. For every process P , every Q ∈ JP Kd1 has a duo prefixing.

The second step of the translation, as illustrated in figure 4, consists in
encoding the remaining prefixes using the same technique as for the expansive
translation from definition 14. The key difference is that all prefixing arrows
are now independent, so we do not need to introduce a pair of extra argument
for every arrow: one pair for each polarity is enough.

Definition 17. Let P be a process with a duo prefixing. Assume an enumera-
tion of P with the notations of definition 16. Let (u′i) be a family of fresh names
indexed over the domain of p. The duo encoding of P for this enumeration is
(νw̃ũ′)

∏n
i=1(νyz)`i : αi where

αi =


uεi(yyzzx̃i) if i 6∈ rng(p)
ū(yyup−1(i)u

′
p−1(i)x̃i) if εi = +

u(up−1(i)u
′
p−1(i)zzx̃i) if εi = −

with u =

{
u′i if i ∈ dom(p)
ui otherwise

The duo encoding JP Kd2 is the set of duo encodings of P for all enumerations.

Theorem 3. Duo encoding is a stable barbed bisimulation.

Sketch of proof. The actions in a process and in any of its encodings are in
one-to-one correspondence. The four extra arguments of each action in the
translation simulate precisely the unblocking of locations. The technical details
of the proof can be found in the appendix.

15

Remark again that by construction, for any prefix-closed processes P and Q
with duo prefixing, we have JP |QKd2 = JP Kd2 |JQKd2. As a corollary of theorems
2 and 3, any process is weakly stably barb-bisimilar to a process without guards,
by composition of the encodings, and the composed encoding J−Kd commutes
with parallel composition of prefix-closed processes.

5 Replication
The calculus we have presented so far does not provide replication nor recursion.
In this section, we first extend the definitions with a replication operator, then
we show how the results extend to the non-finite case.

The proper way to implement potentially infinite behaviours in a process
calculus is lazy replication (or recursion). Replication consists in introducing
terms of the form !P that act like as many copies of P as needed by the context.
By lazy we mean that duplication is actually performed only on interaction,
rather than using a congruence rule like !P ≡ !P | P .

Be it lazy or not, duplication in concurrent nets requires some discipline
with respect to location names. Indeed, our definition of C-terms requires each
location to be defined at most once, and this constraint cannot be preserved by
reduction in a replicated process like !(` : α), since the name ` would occur in
every copy of ` : α. One can think of two ways to get around this problem:

• Remove the uniqueness constraint on location names. This would lead
to a slightly different theory for the calculus, with a new construct ` : P
that sets the name ` to 1 as soon as any action in P is performed. The
drawback of this approach is that we loose the very compact algebraic
formulation of definition 8 and the formulation of the encoding theorems
gets even more tricky.

• Make the !P construct a binder for all location names. This stresses the
fact that a replicated process is a kind of server that waits for commu-
nications to be actually activated. In this context, referring to locations
inside P from outside !P does not make sense.

The approach we take is the second one: in !P , a copy of P is produced whenever
an interaction happens, and no locations defined in P are public. This leads to
the following rule:

P
(νx̃)α,L−−−−−→ P ′

!P
(νx̃)α,∅−−−−−→ !P | P ′

In order to keep a normal form property in the style of proposition 1, we need
two extra structural equivalence rules. The first one represents the fact that
! is a binder for location names and the second one accounts for distribution of
prefixes over all copies of a replicated process:

!(ν`)P ≡ !P for each ` ∈ loc(P)
〈π〉 !P ≡ ! 〈π〉P if no location occurring in π is defined in P

16

With these rules, we get the following normalization lemma:

Proposition 5. Any prefix-closed C-term P with replication is structurally
equivalent to a term with the following shape, where the product stands for par-
allel composition:

P ≡ (νw̃)(νm̃)
(n∏
i=1

〈πi〉 `i : uεi
i (x̃i)

∣∣∣ b∏
i=1

!Pi
)

with πi ≡
pi∑
j=1

`i,j,1 · · · `i,j,qi,j

for some b > 0, n > 0, pi > 0 and qi,j > 0, where the `i,j,k are elements of
{`i | 1 6 i 6 n}. The sets w̃ and m̃ represent respectively private channels and
locations. Such a formulation is called an enumeration of P .

When the Pi are also prefix-closed, they may in turn be enumerated the
same way. In that case, we can extend the duo translation to processes with
replication by simply translating the replicated processes:

Definition 18. The duo translation of a prefix-closed process with prefix-closed
replications is defined inductively as

r
P0

∣∣∣ b∏
i=0

!Pi
z

d
:= JP0Kd

∣∣∣ b∏
i=0

!JPiKd

where JP0Kd is the translation as specified in definitions 15 and 17.

Theorem 4. Any prefix-closed process P with prefix-closed replications is weakly
stably barb-bisimilar to each Q ∈ JP Kd.

Sketch of proof. We use the notations of definition 18. Since each Pi is prefix-
closed, for any integer ki we have JP ki

i Kd = JPiKki

d by compositionality, so if we
denote by P0 the non replicated part, we have

r
P0

∣∣∣ b∏
i=1

P ki
i

z

d
= JP0Kd

∣∣∣ b∏
i=1

JPiKki

d

from which we can deduce that

P0

∣∣∣ b∏
i=0

!Pi and JP0Kd
∣∣∣ b∏
i=0

!JPiKd

are weakly stably barb-bisimilar. The precise proof of this fact consists in
building a bisimulation that relates each process of the form P0 |

∏b
i=1 !Pi | P ki

i

with ki ∈ N to all the processes of the form Q0 |
∏b
i=1(!Qi,0 |Qi,1 | · · · |Qi,k′i) with

Q0 ∈ JP0Kd and Qi,j ∈ JPiKd for each i and j. This way copies of the replicated
sub-processes can be introduced while remaining inside the bisimulation.

17

The natural question then is to ask whether the result still holds when the
replicated sub-processes are not prefix-closed, that is when a replicated action
may be prefixed by a non replicated one. It is interesting to remark that the
translations defined above actually fail in this case. As an example, consider
the following process:

P := ` : ā(b) | !(νx)
(
c(x) | 〈`〉 x̄(y)

)
The duo translation as defined in definition 15 cannot be applied here, since it
would require extending the scope of x to `, and of course no scope extrusion
allows extending a scope from inside a replication. This stresses the fact that
prefixing is actually a form of communication, with the same notions of privacy
and scoping as those well known for channel names in communications. Never-
theless, the process P above can be translated into a weakly bisimilar process
where the prefixing of ` moves to an action on a public channel:

P ′ := (νuv)
(
` : ā(b) | 〈`〉 {u = v} | !Q

)
with Q := (νxx′)

(
m : c(x) | x̄′(y) | 〈m〉 ū(xx′) | (νz)v(zz)

)
where {u = v} is a process that fuses u and v, for instance (νx)(x̄(u) | x(v)).
The point here is that the names x and x′ remain private, and their fusion
is done by a communication between the public channels u and v once they
are unified. The role of the prefixing in 〈m〉 ū(xx′) is to forbid communication
between copies of Q and !Q, because such communications would trigger new
copies of Q, making the process diverge, which would break bisimilarity. The
guard is m because this is the only public action in Q (apart from the ones on u
and v of course), the point is that it is unblocked when the copy of Q is made.
Communications on u between different copies of Q is not a problem since they
cannot create interference, by construction.

The previous example illustrates how processes with replication and arbi-
trary prefixing may be translated into prefix-less ones. We will not embark in
the definition of a precise translation of arbitrary processes into processes with
prefix-closed replications, because a formal definition would provide hardly any
new insight with respect to the example above.

6 Conclusions and future works
The calculus of concurrent nets extends the family of π-like calculi by introduc-
ing a new and more expressive form of sequentiality constraints. Prefixing is
seen as the evolution of a shared state, in a way that recalls synchronisation
mechanisms like semaphores. In its graphical form, the calculus makes clear the
notions of locality and scoping and expresses prefixing as a form of interaction
with a geometric intuition. The graphical presentation distinguishes connec-
tivity (of communication channels) and scheduling, which can be considered as
locality. This distinction is similar to that at the origin of the approach of bi-
graphs [7], a more precise study of the relationships between both formalisms
could provide interesting insights.

18

We show, by means of encodings, that in a sense the calculus without guards
has the same expressive power as the calculus with guards. Hence, while keeping
the same theoretical expressiveness, concurrent nets provide new programming
features for concurrent calculi, as well as a clearer separation between the geo-
metric part of communication and the scheduling.

The graphical presentation of the calculus, apart from providing strong vi-
sual intuitions on the structure of processes, has the advantage of being alge-
braically simpler and needing almost no structural congruence. The equality
(or graph isomorphism) of algebraic definitions of processes seems close to cap-
turing strong bisimulation, hence it is an interesting step towards the definition
of a proper semantics for concurrent nets. The structural rules we have for pre-
fixes suggest a semantics that would make guards and scheduling constraints a
first-order notion with interesting properties.

While the use of an enabling relation is a departure from syntactical prefix-
ing, the treatment of replication is still directly inherited from term syntaxes.
A similar method could be applied to this feature of the calculus, for instance
by developing a graphical formalism for shared copying, possibly in the style of
interaction nets [12]. Those are a notable example of a concurrent (or at least
parallel) graphical calculus, with some similar intuitions and several features
that make them a quite different model. They are related to the formalism of
proof-nets in linear logic [13], and these objects were actually a source of inspi-
ration in this work. Using appropriate interpretations, proof-nets may indeed
be considered as a very particular sub-calculus of concurrent nets. This will be
detailed in a future paper.

The prefixes in the term calculus are arbitrary monotonic functions, built by
conjunction and disjunction on monotonic variables. What makes their encod-
ing possible is the fact that communication by fusion has the same monotonic
flavour. The extension to non-monotonic guards, for instance by introducing
negation, would strictly extend the expressiveness, actually it seems to be re-
lated to the introduction of external choice in the calculus. Searching further,
the mechanism of guards seems general enough to introduce other forms of con-
trol, like timed transitions or probablilistic choice, although these ideas remain
to be explored.

References
[1] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes (Parts I

and II), Information and Computation 100 (1992) 1–77.

[2] Y. Fu, A proof-theoretical approach to communication, in: P. Degano,
R. Gorrieri, A. Marchetti-Spaccamela (Eds.), Proceedings of ICALP’97,
Vol. 1256 of Lecture Notes in Computer Science, Springer Verlag, 1997,
pp. 325–335.

[3] J. Parrow, B. Victor, The fusion calculus: Expressiveness and symmetry
in mobile processes, in: Proceedings of LICS’98, 1998, pp. 176–185.

19

[4] P. Gardner, L. Wischik, Explicit fusions, in: M. Nielsen, B. Rovan (Eds.),
Proceedings of MFCS 2000, Vol. 1893 of Lecture Notes in Computer Sci-
ence, Springer Verlag, 2000, pp. 373–382.

[5] R. Milner, Pi-nets: A graphical form of pi-calculus, in: D. Sannella (Ed.),
Proceedings of ESOP’94, Vol. 788 of Lecture Notes in Computer Science,
Springer Verlag, 1994, pp. 26–42.

[6] C. Laneve, J. Parrow, B. Victor, Solo diagrams, in: N. Kobayashi, B. C.
Pierce (Eds.), Proceedings of TACS’01, Vol. 2215 of Lecture Notes in Com-
puter Science, Springer Verlag, 2001, pp. 127–144.

[7] O. H. Jensen, R. Milner, Bigraphs and transitions, ACM SIGPLAN Notices
38 (1) (2003) 38–49.

[8] C. Laneve, B. Victor, Solos in concert, in: J. Wiederman, P. van
Emde Boas, M. Nielsen (Eds.), Proceedings of ICALP’99, Vol. 1644 of
Lecture Notes in Computer Science, Springer Verlag, 1999, pp. 513–523.

[9] C. Fournet, G. Gonthier, The reflexive CHAM and the join-calculus, in:
Proceedings of POPL’96, ACM Press, 1996, pp. 372–385.

[10] D. Sangiorgi, D. Walker, Pi-Calculus: A Theory of Mobile Processes, Cam-
bridge University Press, 2001.

[11] J. Parrow, Trios in concert, in: G. Plotkin, C. Stirling, M. Tofte (Eds.),
Proof, Language and Interaction: Essays in Honour of Robin Milner, MIT
Press, 1998, pp. 621–637.

[12] Y. Lafont, Interaction nets, in: Proceedings of POPL’90, ACM Press, 1990,
pp. 95–108.

[13] J.-Y. Girard, Proof-nets: The parallel syntax for proof-theory, in:
P. Agliano, A. Ursini (Eds.), Logic and Algebra, M. Dekker, New York,
1996.

A Appendix: Proofs
In this appendix, we detail the technical proofs that we did not include in
the main text. We do not provide a complete proof for theorem 1 (strong
barbed bisimulation of the expansive translation) as it is essentially the same as
theorem 3 (strong barbed bisimulation for duo encoding). The differences are
explained in section A.3 at the end.

A.1 Duo Translation
Note that many enumerations of a given process exist, since these depend on
the order of the actions and the formulation of the guards. In particular, a

20

guard π = 1 may as well be formulated π = 1+π′ though these are structurally
equivalent.

Definition 19. Let x̃ and ỹ be two sequences of channel names with |x̃| = |ỹ|.
The delayed fusion of x̃ and ỹ is Fx̃=ỹ := (νu)(u(x̃) | ū(ỹ)). A set of delayed
fusions of type ϕ is a parallel composition of delayed fusions Fϕ = Fx̃1=ỹ1 | · · · |
Fx̃n=ỹn such that ϕ is the equivalence x̃1 · · · x̃n = ỹ1 · · · ỹn.

Lemma 2. For any delayed fusion, Fx̃=ỹ
{x̃=ỹ},∅−−−−−→ 0.

Proof. Obvious from the definition of the transition system.

Definition 20. Let A be a set of processes. The fusion expansion of A is the
set Aexp =

{
(νx̃)(Fϕ | P ′)

∣∣ dom(ϕ) ⊂ x̃,∀σ : ϕ,∃P ∈ A, (νx̃)(P ′σ) ≡ P
}

,
where ∀σ : ϕ means “for all substitution σ that implements ϕ.”

Lemma 3. For any process P , for all P ′ ∈ {P}exp, P ′ →∗ P .

Proof. By lemma 2, the transitions of Fϕ produce the effect of ϕ within the
scope of x̃, and they are τ -transitions since all names that are affected by ϕ are
hidden in P ′ by hypothesis.

Proof of theorem 2. Let S be the relation over processes that relates each P to
all the fusion expansions of its duo translations, i.e. P S Q for each Q ∈ JP Kexp

d1 .
We prove that S and S−1 are weak simulations.

Let (P,Q) be a pair of processes related by S. By definition, we have
Q = (νw̃′)(Fχ | R) and for any substitution σ that implements χ, (νw̃′)Rσ
is structurally equivalent to some duo translation of P . Pick such a substi-
tution σ. Using the notations of proposition 1 and definition 15, there is an
enumeration of P such that

(νw̃′)Rσ ≡
n∏
i=1

Ai with Ai = (νv)
(
`i : u′εi

i (x̃i) | 〈`i〉 v(ỹi) | v̄(z̃i)
)
.

In the following, for all i we write αi = uεi
i (x̃i) in order to simplify the expression

of the enumeration of P .
If a transition P ϕ,L−−→ P ′ exists, then there are two indices a and b such that

ϕ = {x̃a = x̃b} \ w̃ and L = {`a, `b} and the derivation of the transition can be
written

`a : αa
αa,{`a}−−−−−→ 0 `b : αb

αb,{`b}−−−−−→ 0

`a : αa | `b : αb
{x̃a=x̃b},L−−−−−−−→ 0∏n

i=1 〈πi〉 `i : αi
{x̃a=x̃b},L−−−−−−−→

∏
i 6∈{a,b} 〈πi[1/L]〉 `i : αi

P
ϕ,L−−→ (νw̃)

∏
i 6∈{a,b} 〈πi[1/L]〉 `i : αi

and the right-hand side of the last rule is structurally equivalent to P ′. After the
substitution 1/L, the family (`i,j,k) can be reindexed as (mi,j,k) with 1 6 i 6 n,

21

1 6 j 6 pi and 1 6 k 6 q′i,j where q′i,j is qi,j minus the number of occurrences
of `a or `b in `i,j,1 . . . `i,j,qi,j . This way we have for each i:

πi[1/L] =
(pi∑
j=1

`i,j,1 · · · `i,j,qi,j

)
[1/L] =

pi∑
j=1

mi,j,1 · · ·mi,j,q′i,j

which yields an enumeration of P ′.
Since the actions at `a and `b are enabled, for i ∈ {a, b} we have u′i = ui and

the following holds:

`i : αi.v(ỹi)
αi,{`i}−−−−→ v(ỹi)

`i : αi | 〈`i〉 v(ỹi) | v̄(z̃i)
αi,{`i}−−−−→ v(ỹi) | v̄(z̃i)

Ai
αi,{`i}−−−−→ (νv)(v(ỹi) | v̄(z̃i))

and using the notation of definition 19, with ψ = {ỹa = z̃a, ỹb = z̃b} and
Fψ = Fỹa=z̃a | Fỹb=z̃b

:

Aa
αa,{`a}−−−−−→ Fỹa=z̃a Ab

αb,{`b}−−−−−→ Fỹb=z̃b

Aa |Ab
{x̃a=x̃b},L−−−−−−−→ Fψ

Rσ ≡
∏n
j=1Aj

{x̃a=x̃b},L−−−−−−−→ Fψ
∣∣ ∏

i 6∈{a,b}Ai

(νw̃′)Rσ
ϕ,L−−→ (νw̃′)

(
Fψ

∣∣ ∏
i 6∈{a,b}Ai

)
Note that the substitution 1/L is not necessary in the right-hand sides since
the locations `a and `b do not occur in Fψ nor in any Ai with i 6∈ {a, b}, by
construction. Call R′ = (νw̃′)(Fψ |Q′) the reduct in the last line. By definition,
ỹa and z̃a are families indexed over {(i, j, k) | `i,j,k = `a} defined as

ya,(i,j,k) = ui,j,k−1 and za,(i,j,k) = ui,j,k

so the fusion ỹa = z̃a unifies each pair (ui,j,k−1, ui,j,k) such that `i,j,k = `a. The
same goes for ỹb and z̃b. By lemma 3, if τ is a substitution that implements
ψ = {ỹa = z̃a, ỹb = z̃b}, we have

R′ = (νw̃′)
(
Fψ

∣∣ ∏
i 6∈{a,b}

Ai

)
→∗ (νw̃′)

∏
i 6∈{a,b}

Aiτ (1)

Besides, (ui,j,kτ) can be reindexed as (vi,j,k) with the same index transfor-
mation that transformed (`i,j,k) into (mi,j,k). Define v′i to be ui if πi[1/L] ≡ 1
and u′i otherwise. With these notations we get for each i 6∈ {a, b}:

Aiτ = (νw)
(
`i : v′εi

i (x̃iτ) | 〈`i〉w(ỹ′i) | w̄(z̃′i)
)

Then the process (νw̃′)
∏
i 6∈{a,b}Aiτ is the duo translation of P ′ for the enu-

meration we get by reindexing. By equation 1, we deduce that R′ ∈ JP ′Kexp
d1 ,

and since Q→∗ Rσ → R′ we have that S is a weak simulation.

22

We now have to prove that S−1 is also a weak simulation. Again, consider
a pair (P,Q) in S, with Q = (νw̃′)(Fχ |R), and where R is decomposed as

R ≡
n∏
i=1

Ai with Ai = (νv)
(
`i : u′εi

i (x̃i) | 〈`i〉 v(ỹi) | v̄(z̃i)
)

If a reduction Q
ϕ,L−−→ Q′ exists, it affects either a redex in Fχ or a redex in R,

since the subjects of actions in Fχ are each shared between exactly two opposite
actions.

If the reduction happens in Fχ, it concerns a delayed fusion Fx̃=ỹ and we
have Q′ = (νw̃′)(Fχ′ |R)σ where σ is a substitution that implements x̃ = ỹ and
χ′ is the equivalence generated by what remains of Fχ. Therefore both Q and
Q′ are in the fusion expansion of JP Kd1, which means that P S Q′.

If the reduction happens in R, there exist a and b such that u′a and u′b are the
same channel u, εa = +, εb = − and thus ϕ = {x̃a = x̃b} \ w̃′ and L = {`a, `b}.
Then if we write ψ = {ỹa = z̃a, ỹb = z̃b} and Fψ = Fỹa=z̃a |Fỹb=z̃b

, the derivation
of the reduction can be written

Aa
u(x̃a),{`a}−−−−−−−→ Fỹa=z̃a Ab

ū(x̃b),{`b}−−−−−−→ Fỹb=z̃b

Aa |Ab
{x̃a=x̃b},L−−−−−−−→ Fψ

R
{x̃a=x̃b},L−−−−−−−→ Fψ

∣∣ ∏
i 6∈{a,b}Ai

Q
ϕ,L−−→ (νw̃′)

(
Fχ

∣∣ Fψ ∣∣ ∏
i 6∈{a,b}Ai

)
τ ≡ Q′

for some substitution τ that implements {x̃a = x̃b} \ w̃′. By definition of the
translation, the names u′i in a duo translation are fresh and pairwise distinct
except for those that are equal to some ui, i.e. those for which πi ≡ 1. If
σ is a substitution that implements χ, (νw̃′)Rσ is a duo translation of P , so
u′aσ = u′bσ does imply that πa ≡ πb ≡ 1, and the actions at locations `a and `b
in P are enabled. As a consequence, the following reduction holds:

`a : ua(x̃a)
u(x̃a),{`a}−−−−−−−→ 0 `b : ūb(x̃b)

ū(x̃b),{`b}−−−−−−→ 0

`a : αa | `b : αb
{x̃a=x̃b},{`a,`b}−−−−−−−−−−→ 0∏n

i=1 〈πi〉 `i : αi
{x̃a=x̃b},{`a,`b}−−−−−−−−−−→

∏
i 6∈{a,b} 〈πi[1/`a, `b]〉 `i : αi

P
ϕ,L−−→

∏
i 6∈{a,b} 〈πi[1/L]〉 `i : αiτ ≡ P ′

with the same substitution τ as above. It can be verified, with the same argu-
ments as in the first part, that Q′ is a fusion expansion of a duo translation of
the reduct P ′, and therefore we have P → P ′ and P ′ S Q′.

This proves that S−1 is also a weak simulation, therefore the symmetric
closure S ∪ S−1 is a weak bisimulation.

The set of barbs (u, L) such that P ↓ (u, L) is the set of all (ui, {`i}) such
that πi ≡ 1 and ui 6∈ w̃. The set of (u, L) such that (νw̃′)Rσ ↓ (u, L) is the set of

23

(u′i, {`i}) where u′i does not appear in w̃′, that is by definition when u′i is some uj
that does not appear in w̃. Therefore P ↓ (u, L) if and only if (νw̃′)Rσ ↓ (u, L).
Moreover, by definition of the fusion expansion, the free channels in Q are those
in (νw̃′)Rσ, so (νw̃′)Rσ ↓ (u, L) if and only if Q →∗↓ (u, L). Therefore S is a
weak barbed simulation.

Moreover, it is clear from the definition of the translation that it commutes
with arbitrary name substitution since the free names in a process and its trans-
lations are the same. Since all locations are supposed private in the definition
of the duo translation, the condition on substitution of free locations by 1 in the
definition of stable bisimulation is empty, so we have a weak stable bisimulation,
which concludes the proof of theorem 2.

A.2 Duo Encoding
Proof of theorem 3. Let S be the relation over processes that relates each P to
every element of JP Kd2. Let (P,Q) be an element of S. We use the notations of
definitions 16 and 17.

If a transition P ϕ,L−−→ P ′ exists, then there are two indices a and b such that
ua and ub are the same channel u, ϕ = {x̃a = x̃b} \ w̃ and L = {`a, `b} and the
derivation of the transition can be written

`a : u(x̃a)
u(x̃a),{`a}−−−−−−−→ 0 `b : ū(x̃b)

ū(x̃b),{`b}−−−−−−→ 0

`a : u(x̃a) | `b : ū(x̃b)
{x̃a=x̃b},L−−−−−−−→ 0∏n

i=1 〈πi〉 `i : αi
{x̃a=x̃b},L−−−−−−−→

∏
i 6∈{a,b} 〈πi[1/L]〉 `i : αi

P
ϕ,L−−→ (νw̃)

∏
i 6∈{a,b} 〈πi[1/L]〉 `i : αi

and the right-hand side of the last rule is structurally equivalent to P ′. Because
of the form of the guards πi, the substitution 1/L may affect at most two guards
by replacing them by 1.

The form of the corresponding transition in Q depends on whether a and b
are in the range of the partial injection p, which means that four cases have to
be considered. The symptomatic case is when both a and b are in the range of
p, the other cases are just simpler.

Let a′ and b′ be the indices such that a = p(a′) and b = p(b′). Since the
actions at `a and `b are enabled in P , πa = πb = 1 so a′ and b′ are distinct from
a and b. Therefore Q can be written

Q ≡ (νw̃ũ′)
(
(νz)`a : u(ua′u′a′zzx̃a)

∣∣∣ (νy)`b : u(yyub′u′b′ x̃b)
∣∣∣ ∏
i 6∈{a,b}

Ai

)

24

Writing Aa and Ab for the first two actions, the following reduction holds:

Aa
(νz)u(ua′u

′
a′zzx̃a),{`a}−−−−−−−−−−−−−−−→ 0 Ab

(νy)u(yyub′u
′
b′ x̃b),{`b}−−−−−−−−−−−−−−−→ 0

Aa |Ab
{ua′=u

′
a′ ,ub′=u

′
b′ ,x̃a=x̃b},L−−−−−−−−−−−−−−−−−−→ 0∏n

i=1Ai
{ua′=u

′
a′ ,ub′=u

′
b′ ,x̃a=x̃b},L−−−−−−−−−−−−−−−−−−→

∏
i 6∈{a,b}Ai

(νũ′)
∏n
i=1Ai

{x̃a=x̃b},L−−−−−−−→ (νũ′)
∏
i 6∈{a,b}Aiσ

Q
ϕ,L−−→ (νw̃ũ′)

∏
i 6∈{a,b}Aiσ

with σ = [ua′/u′a′ , ub′/u
′
b′]. Call Q′ the reduct in the last rule. The substitution

σ affects only the actions at indices a′ and b′ since the channels u′a′ and u′b′
appear only in these as subjects, and appear only in Aa and Ab as objects, by
injectivity of p. Substituting ua′ for u′a′ in the encoding of P corresponds to
substituting 1 for πa′ in P , i.e. the effect of σ in Q′ is exactly the encoding of
the effect of 1/L in P ′, therefore we have Q ϕ,L−−→ Q′ with P ′ S Q′.

In the other cases, where at most one of a and b is in the range of p, the
proof of simulation is similar, and as a consequence S is a simulation.

If a transition Q ϕ,L−−→ Q′ exists, it affects a pair of actions of indices a and b
with the same subject. By construction, this means that this subject is ua = ub
since all u′i are fresh and used exactly once as subjects, and thus a and b are
not in the domain of p, so the actions at indices a and b in P are enabled. Then
it is easy to check that the reduction of this redex in P leads to a transition
P

ϕ,L−−→ P ′ with the same label, and by the same arguments as above Q′ is a duo
encoding of P ′, so P ′ S Q′. This proves that S−1 is also a strong bisimulation,
so the reflexive closure S ∪ S−1 is a strong bisimulation.

Since the public names and enabled actions in P and Q are the same, it
is clear that P ↓ (u, L) if and only if Q ↓ (u, L) and that S is closed under
arbitrary name substitution, so we have a strong stable bisimulation.

A.3 Expansive Translation
The definition of expansive translation is similar to that of duo encoding. The
main difference is that the expansive translation adds a pair of arguments to
each action for each arrow, while the duo encoding adds four arguments in any
case.

The relation that is used to prove bisimulation in this case is the S that
relates each process P with the set of all its possible expansive translations (for
all enumerations) closed under argument expansion. What we call argument
expansion is the following: consider a process P with an enumeration as

P =
n∏
i=1

〈πi〉 `i : ui(x̃i)

25

and assume there is a k such that |x̃i| > k for all i. Then the argument expansion
at position k for this enumeration is the process

n∏
i=1

〈πi〉 (νy)`i : ui(xi,1 . . . xi,k yy xi,k+1 . . . xi,|x̃i|)

that is we add a fresh name twice at the same position in each action. This
accounts for the extra arguments in the expansive translation that may be pro-
duced during the reduction of a translated process. It is clear that any argument
expansion of a process P is strongly barbed-bisimilar to P .

Up to this argument expansion, the bisimulation proof is mostly the same
as for duo encoding, so we do not write it in detail. The main difference is that
two actions that occur in the same prefix may interact. For instance, consider
the process

P = ` : a(x) |m : ā(y) | n : b(z) | 〈`mn〉 c(t)

A possible expansive translation of P is

P ′ = (νc1c2c3)
(
a(cc1x) | ā(c1c2y) | b(c2c3z) | (νx)c3(xxt)

)
In P there is a possible interaction between the actions at locations ` and m,
which is written in P ′ as

P ′ {x=y},∅−−−−−→ (νc3)
(
b(cc3z) | (νx)c3(xxt)

)
with the internal fusion c = c1 = c2. As expected, the reduct is a translation of
n : b(z)|〈n〉 c(t), which is a reduct of P by the same transition. One easily checks
that such a situation is always correctly handled in the expansive translation.

26

