
EXPRESS 2004 Preliminary Version

Concurrent Nets

A Study of Prefixing in Process Calculi

Emmanuel Beffara, François Maurel

Équipe PPS, Université Paris 7 & CNRS

Abstract

We introduce the calculus of concurrent nets as an extension of the fusion calculus in
which usual prefixing is replaced by arbitrary monotonic guards. Then we use this
formalism to describe the prefixing policy of standard calculi as a particular form
of communication. By developing a graphical syntax, we sharpen the geometric
intuition and finally we provide an encoding of these guards as causality in the
prefix-free fragment, in the spirit of the encoding of the fusion calculus into solos
by Laneve and Victor, proving that communication by fusion is expressive enough
to implement arbitrary monotonic guards.

1 Introduction

The π-calculus [10] has generated a wide range of calculi on the search for
both a simplification of the syntax and a widening of the expressiveness. Fu’s
χ-calculus [2], Parrow and Victor’s fusion calculus [12] and Gardner and Wis-
chik’s explicit fusions [3] are important examples where name substitution
is replaced by unification, which makes the calculus simpler, more symmetric
and yet more expressive. Most models for concurrent and mobile computation
are geometric in nature, and even term calculi have a strong spatial intuition.
Indeed, every process calculus comes with a handful of structural rules for
commutation and scoping that define appropriate notions of locality. This ge-
ometric flavour of term calculi led to the proposal of several graphical syntaxes
for existing calculi, like π-nets [9] or solo diagrams [7], and to the introduction
of new purely graphical calculi, like Milner’s recent work on bigraphs [5].

In a sense, the evolution from π-calculus to fusion corresponds to the evo-
lution from syntactical communication to a more geometric one; however the
sequentiality imposed by prefixing remains very syntactical. Motivated by
the search for a more general form of prefixing, we introduce and study the
calculus of concurrent nets as a similar evolution towards a geometrical for-
mulation of sequentiality constraints. Each action in a process gets associated
with a semaphore that indicates when the action has been performed, and
subsequently prefixing is replaced by the use of guards that are monotonic

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Beffara and Maurel

functions of those semaphores. We define a graphical syntax for this calculus,
in which guards appear as a new form of communication between actions.

The first contribution of this paper is to show how concurrent nets ex-
tend existing calculi, and notably the π-calculus and the fusion calculus. The
characterisation of these sub-calculi yields a classification of the forms of se-
quentiality in use in process calculi using natural geometric arguments.

With the solos calculus [8], Laneve and Victor simplify the fusion calculus
by removing prefixing and they show by means of an encoding that no expres-
sive power is lost. Our second contribution extends their theorem by encoding
the arbitrary monotonic guards of concurrent nets into pure communications,
using a new and more geometric approach suggested by our graphical syntax.

The authors would like to thank Claudia Faggian, Vincent Danos and
Pierre-Louis Curien for their helpful remarks on this work.

2 Definitions

2.1 Introductory Examples

Informally, a concurrent net is a web of input and output actions related by
channels. Each action has a principal port (the subject) and a set of auxiliary
ports (the objects). For instance, the process ā(cd) | a(xy).b̄(xy) in π-calculus
is represented as

a
b

c

d

x

y

Formally, the set of channels here is C = {a, b, c, d, x, y}, but only a, b, c, d are
considered public, which is represented by the fact that they have dangling
edges while x and y have none. The actions ā(cd) on the left and a(xy) in the
middle form a redex. The reduction of this redex will remove both actions and
connect c with x and d with y. The arrow means that the third action b̄(xy)
is prefixed by a(xy), i.e. it will not be reduced as long as a(xy) is present.

We generalise this prefixing in two ways. Consider the following examples:

a

b
c

x

y

a

b
c

x

y

In both examples, we have two receptions a(x) and b(y) and one emission
c̄(xy). In the process on the left, the two-headed arrow means that the emission
is prefixed by both receptions, i.e. c̄(xy) will be blocked until both a(x) and
b(y) have been reduced, but these may happen in any order. This cannot be
expressed directly in π-calculus, but some calculi (e.g. the join calculus [1])
do provide this kind of synchronisation. In the process on the right, the two
disjoint arrows mean that c̄(xy) will be able to act as soon as either a(x) or
b(y) is consumed. To our knowledge, this too cannot be expressed directly in
other calculi. Note that, if a(x) is consumed, y may be communicated before
anyone writes on b. This phenomenon is typical of fusion calculi.

2

Beffara and Maurel

u
−→

u

Fig. 1. Reduction of a redex.

2.2 Syntax and Semantics

We assume a countable set C of channel names and a disjoint set L of location
names. The elements of L are used to name occurrences of actions, as detailed
below. We write x̃ to represent a finite sequence of channel names x1 . . . x|x̃|.

Definition 2.1 C-terms are defined by the following grammar:

actions α := ū(x̃) | u(x̃)
prefixes π := 0 | 1 | ` | π + π | ππ
terms P := 0 | (P | P) | (x)P | (`)P | ` : α | 〈π〉P

where u, x, xi range over channels and ` ranges over locations.

• The α-equivalence on C-terms is generated by the renaming of bound names.
A channel or location name x is bound by the closest surrounding (x).

• A location ` is defined in P if some ` : α occurs in P with ` unbound. We
denote by loc(P), the set of locations defined in P .

• We require that each location be defined at most once in any subterm (this
condition on terms will be preserved by reduction).

The actions ū(x̃) and u(x̃) correspond to the emission and reception of
some sequence of channels x̃ on a channel u. Prefixes are either blocked (0),
enabled (1), simple (a location `), disjunctive (π1 + π2) or conjunctive (π1π2).
A prefixing 〈`〉P means that P is blocked until the action ` : α is performed.
When this happens, the name ` is replaced by 1 in every prefix. Subsequently,
a process 〈π〉P is blocked until the prefix π is reduced to 1 by the replacement
of some ` by 1 and the application of structural rules. The other constructions
are standard: 0 is the inactive process, P1 | P2 represents two processes in
parallel and (x)P represents the process P with a local name x.

We use the notation α for (`)(` : α), i.e. when the location ` is not used
in any prefix. The notation uε(x̃) refers to an action with arbitrary polarity,
where ε is + for the action ū(x̃) and − for u(x̃).

Example 2.2 The process

shared continuation(a, b, P) := (`1)(`2)
(
`1 : a() | `2 : b() | 〈`1 + `2〉P

)
is a typical process that does not exist primitively in usual calculi such as fusion
calculus. The process P in shared continuation(a, b, P) is enabled by the
unblocking of `1 or `2 or both (the location `1 is unblocked when the occurrence
of a() in `1 : a() is used in reduction and similarly for `2 and b()). Even if
it may be encoded in fusion calculus, as shown in Sec. 4, such a mechanism

3

Beffara and Maurel

is not primitive. For instance, a similar process in fusion calculus would be
Q = (f)(a().f̄() | b().f̄() | f().P) which has the intended meaning: when a or
b has been performed, the flag f is released and P becomes available. The
methodological difference is quite subtle: in this example, the encoding works
because there is only one f̄() that can interact (and the other possible f̄() is not
used and can be garbage collected) whereas in shared continuation(a, b, P),
both `1 and `2 enable P and no garbage collection rule is necessary.

Example 2.3 Another more involved example is the process

P = (`a`b`c)
(
`a : a1() | `b : b1() | `c : c1()

| 〈`a〉 ā2() | 〈`b〉 b̄2() | 〈`c〉 c̄2() | 〈`a`b〉 d̄() | 〈`a + `b`c〉 ē()
)

The process P listens on three ports a1, b1 and c1. For each of them it answers
respectively on ports a2, b2 and c2. Furthermore, when both a1() and b1() have
been fired, P sends d̄(), and when a1() or both b1() and c1() have been fired
ē() is sent. In fusion calculus, a similar process could be

Q = (fafb1fb2fcg)
(
a1().

(
f̄a() | ḡ() | ā2()

)
| b1().

(
f̄b1() | f̄b2() | b̄2()

)
| c1().

(
f̄c() | c̄2()

)
| fa().fb1().d̄() | fb2().fc().ḡ() | g().ē()

)
but this is more complex: one must be cautious when programming such a
process to check that the flags fa, fb1, fb2, fc and g are sufficient for the
intended purpose. Moreover, the encoding is too sequential: in the encoding,
we write fa().fb1().d̄() but could as well write fb1().fa().d̄() in this case. This
asymmetry prevents an easy and natural understanding of such a process.

These processes exemplify a situation where one has simple processes in
C-terms and tricky encodings in fusion. This situation is typical as shown by
encodings (in solos) developed in Sec. 4. Therefore, we see C-terms as a plain
process calculus with important properties but also as some kind of macro
language giving new design patterns for process calculi such as π or solos.

Definition 2.4 The structural equivalence on terms is the smallest congru-
ence ≡ containing α-equivalence and such that

• the set of terms is a commutative monoid with | as the composition and 0
as the neutral element,

• let Π be the set of prefixes, then (Π, 0,+) and (Π, 1, .) are commutative
monoids, mutually distributive, with 1 + x ≡ 1 and 0x ≡ 0,

• prefixing obeys the following rules, where ` does not occur in π:

〈0〉P ≡ 0 〈1〉P ≡ P 〈π1〉 〈π2〉P ≡ 〈π1π2〉P
〈π〉 (P1 | P2) ≡ 〈π〉P1 | 〈π〉P2 〈π〉 (x)P ≡ (x) 〈π〉P 〈π〉 (`)P ≡ (`) 〈π〉P

4

Beffara and Maurel

• channel and location scoping obeys the following standard equivalences,
where z is not free in P , and n is neither defined nor used in P :

(x)(y)P ≡ (y)(x)P (z)P ≡ P P | (z)Q ≡ (z)(P |Q)

(`)(m)P ≡ (m)(`)P (n)P ≡ P P | (n)Q ≡ (n)(P |Q)

The operational semantics of C-terms is defined as a labelled transition
system (LTS). The choice of an LTS instead of a simple reduction system
comes from fusion effects and prefix updates. When a process P reduces into
P ′, the process P | Q reduces into P ′ | Q′ where Q′ is Q with some unified
variables and some reduced prefixes (the reduction in P may have unblocked
some locations that appear as prefixes in Q). Hence, for compositionality, we
use an LTS which can properly deal with parallel composition.

Transitions are labelled either (ϕ,L) or ((x̃)α,L) where ϕ is an equivalence
over C, L is a subset of L, x̃ is a subset of C and α is an action. (ϕ,L) means
that a unification ϕ is performed, and ((x̃)α,L) means that the action α is
fired and some variables x̃ are extruded. In both cases, some locations L are
unblocked (the actions in the locations L have been fired).

Definition 2.5 We write {x̃ = ỹ} to denote the smallest equivalence that
unifies x̃ with ỹ, x 6∈ ϕ if the equivalence class of x is {x}, ϕ \ x for ϕ ∩ (C \
{x})2 ∪ {(x, x)}, and [1/L] for the substitution of each name in L by 1 in
prefixes. A substitution σ implements a relation ϕ if x ϕ y iff σ(x) = σ(y).
The transition rules for C-terms, up to structural equivalence, are

` : α
α,{`}−−−→ 0

P1
(x̃1)ā(ỹ1),L1−−−−−−−→ P ′

1 P2
(x̃2)a(ỹ2),L2−−−−−−−→ P ′

2 |ỹ1| = |ỹ2|

P1 | P2
{ỹ1=ỹ2}\x̃1x̃2,L1∪L2−−−−−−−−−−−−→ (x̃1x̃2)(P

′
1 | P ′

2)σ[1/L1, L2]

where σ implements {ỹ1 = ỹ2} and z /∈ x̃1x̃2 ⇒ σ(z) /∈ x̃1x̃2, and

P
(x̃)aε(ỹ),L−−−−−−→ P ′ z /∈ aỹ

(z)P
(x̃)aε(ỹ),L−−−−−−→ (z)P ′

P
ϕ,L−−→ P ′ z /∈ ϕ

(z)P
ϕ,L−−→ (z)P ′

P
(x̃)aε(ỹ),L−−−−−−→ P ′ z ∈ ỹ, z 6= a

(z)P
(zx̃)aε(ỹ),L−−−−−−→ P ′

P
ϕ,L−−→ P ′ z ϕ y, z 6= y

(z)P
ϕ\{z},L−−−−→ P ′[y/z]

P
(x̃)aε(ỹ),L−−−−−−→ P ′

(`)P
(x̃)aε(ỹ),L\{`}−−−−−−−−→ (`)P ′

P
ϕ,L−−→ P ′

(`)P
ϕ,L\{`}−−−−→ (`)P ′

P
(x̃)α,L−−−→ P ′

P |Q (x̃)α,L−−−→ P ′ |Q[1/L]

P
ϕ,L−−→ P ′

P |Q ϕ,L−−→ P ′ |Q[1/L]

When an action ` : α is performed, the name ` is replaced by 1 in the rest
of the process. The name ` can be interpreted as that of a global variable (or

5

Beffara and Maurel

a semaphore) with a monotonic value, initially set to 0, which gets the value 1
on activation of α. Then a prefix is a monotonic combination of semaphores.

Definition 2.6 Bisimilarity on C-terms is defined as follows:

• A process P has a barb on (u, L) if there is a transition P
(x̃)uε(ỹ),L−−−−−−→ P ′ for

some x̃, ỹ, ε, and P ′. We denote it P ↓ (u, L).

• A bisimulation is a symmetric binary relation S such that P S Q implies
· for all u, L, if P ↓ (u, L) then Q ↓ (u, L),
· for any transition P

ϕ,L−−→ P ′ there is a Q′ such that Q
ϕ,L−−→ Q′ and P ′σ S

Q′σ for some substitution σ that implements ϕ.

• A bisimulation S is stable if it is closed under arbitrary name substitution
and if P S Q implies P [1/L] S Q[1/L] for all L ⊂ L \ (loc(P) ∪ loc(Q)).

Two processes are bisimilar if they are related by a bisimulation.

Without the last clause, our definition is a standard barbed bisimulation,
except that the observation relation ↓makes location names observable. Stable
bisimilarity is more pertinent, because bisimilarity is not preserved under the
effects of the context. For instance, let P = `1 : ā(), Q = `1 : ā() | 〈m〉 `2 : a()
and R = m : c̄() | c(). P and Q are bisimilar since they have the same barbs
and have no transition. However, P |R and Q |R are not: they have the same
barbs and both have one transition labelled (id, {m}), which leads to P in the
case of P | R and to `1 : ā() | `2 : a() in the case of Q | R, and these reducts
cannot be bisimilar since the former has no transition while the latter has one.
So a stable bisimulation is a bisimulation that is preserved under the effects
that the context may produce. Note that the condition above restricts L to
be composed of locations that are not defined in P or Q: these locations may
occur in the guards in P and Q, and they may be substituted by 1 because of
transitions in the context, as illustrated in the previous example.

It also makes sense to define an associated notion of weak bisimulation,
in which only observable transitions are considered. Observability here refers
both to name fusion and location freeing, i.e. a transition

ϕ,L−−→ is observable
as soon as ϕ is not the identity or L is not empty.

Definition 2.7 Weak bisimilarity on C-terms is defined as follows:

• The τ -reduction relation → is defined as P → P ′ iff P
id,∅−−→ P ′ where id

stands for the identity relation {(x, x) | x ∈ C}. The relation →∗ is the
reflexive transitive closure of →.

• A weak bisimulation is a symmetric relation S such that P S Q implies
· for all u, L, if P ↓ (u, L) then Q→∗↓ (u, L),

· for any P
ϕ,L−−→ P ′ with (ϕ,L) 6= (id, ∅), there is a Q′ such that Q→∗ ϕ,L−−→ Q′

and P ′σ S Q′σ for some substitution σ that implements ϕ.

Two processes are weakly bisimilar if they are related by a weak bisimulation.

6

Beffara and Maurel

2.3 Graphical Syntax

The calculus of C-terms has a large number of structural rules to define appro-
priate notions of locality and scope in processes. The following canonical form
property yields a graphical formulation that avoids the need for such rules.

Proposition 2.8 Any C-term P is structurally equivalent to a term with the
following shape, where the product stands for parallel composition:

P ≡ (w̃)(m̃)
n∏
i=1

〈πi〉 `i : uεi
i (x̃i) with πi ≡

pi∑
j=1

`i,j,1 · · · `i,j,qi,j

for some n > 0, pi > 0 and qi,j > 0, where the `i,j,k are elements of {`i |
1 6 i 6 n}. The sets w̃ and m̃ represent respectively private channels and
locations. Such a formulation is called an enumeration of P .

Proof. By scope extrusion, all binders may be moved to the top level of the
syntax tree, and the distribution and composition rules for prefixes lead to the
expression of P as a composition of elementary guarded actions. The standard
form of guards is obtained by distributivity of conjunction over disjunction.2

Hence, a process can be described as a set of locations, each with an as-
sociated action and prefix. Actions are built on a set of channel names, some
of which are bound. Unbound channels form a set called the interface. The
prefix of an action is either 1 or a disjunction of non-empty sets of locations.
Prefixes define a relation: the enabling relation between non empty sets of
locations (i.e. occurrences of actions) and actions, in the spirit of event struc-
tures. This leads to the following algebraic definition, where C∗ stands for the
set of finite sequences over C and P0(A) is the set of non-empty subsets of A
(the non-emptiness condition is justified after Defintion 2.10).

Definition 2.9 A concurrent net consists of

• a set C of channels,

• a subset I of C called the interface,

• a set A of actions labelled by elements of {+,−} × C × C∗,
• an enabling relation ` between P0(A) and A.

In the sequel, channels are ranged over by Latin letters and actions are
ranged over by Greek letters. A positive action (+, u, x̃) is written ū(x̃) and a
negative action (−, u, x̃) is written u(x̃). In such an action, u is the principal
channel and the elements of x̃ are the auxiliary channels.

Figure 2 shows the graphical conventions we use to represent concurrent
nets: the channels are the edges in a hypergraph over actions, the channels
in the interface are those with dangling edges. Actions are represented by
triangles with the polarity in the middle, the principal channel (the subject)
is connected to a vertex of the triangle and the auxiliary channels are con-

7

Beffara and Maurel

u

u

x1
x2

x3

u

x3
x2

x1

αβ

γ

δ

channel u input output enabling arrows

u(x1x2x3) ū(x1x2x3) β ` α ; γ, δ ` α

Fig. 2. Graphical syntax for concurrent nets.

nected to the opposite side. By convention, the auxiliary ports of negative
actions are ordered from left to right (when looking from the principal chan-
nel) while those of positive actions are ordered from right to left, which leads
to cleaner figures. The enabling relation is represented by arrows: for each
element β1, . . . , βn ` α, we draw a multi-headed arrow from α to each of the
βi. Different elements of ` are represented by disjoint arrows. The arrows
represent guards, so an action is enabled when there is no arrow leaving its
node, and communication only occurs between enabled actions.

Definition 2.10 Let P = (C, I,A,`) be a concurrent net.

• An action α is enabled if there is no set X such that X ` α.

• A redex is a pair {α, β} of enabled actions of opposite polarities with the
same subject and arity.

• P reduces along the redex {α, β} into the net P ′ obtained by removing α
and β from the quotient of P by {x̃ = ỹ}. If there is an arrow X ` γ in P
with X ⊆ {α, β}, then any arrow Y ` γ is removed in P ′. Otherwise, any
arrow X ` γ in P is replaced by X \ {α, β} ` γ.

If an arrow ∅ ` α appears in the reduction, then α gets enabled and all
arrows Y ` α are removed, which corresponds to the axiom 1 + x = 1. This
axiom is precisely what is needed in Definition 2.11 to make the graphical
formulation equivalent to C-terms. An equivalent approach would be to allow
empty sets on the left of ` and to define that α is enabled when ∅ ` α.

As illustrated by Fig. 1, the reduction of a redex consists in removing the
redex and connecting the auxiliary channels of the positive action with those
of the negative action. The principal channel of the actions (u in the figure) is
still present in the net, minus two actions. Any arrow that points to an action
in the redex is removed, which possibly enables other actions.

Definition 2.11 The equivalence≡ over concurrent nets is the smallest equiv-
alence such that a net with an arrow X ` α is equivalent to the same net plus
an arrow Y ` α for any set of actions Y such that X ⊆ Y .

This equivalence is characterised by the operation that removes every arrow
Y ` α for which there exists X ` α with X ⊆ Y . Two nets are structurally
equivalent if their images by this transformation are isomorphic graphs.

8

Beffara and Maurel

Proposition 2.12 There is an isomorphism, up to structural equivalence and
renaming, between concurrent nets and C-terms with no free location names,
with their respective reductions.

Proof. The canonical form property from Proposition 2.8 provides the trans-
lation between both formalisms: for a C-term P , the associated net JP K is
(C, I,A,`) where C is the set of channels (bound or free), I is the set of free
channels, A is the set of locations {`i |1 6 i 6 n} with `i labelled by (εi, ui, x̃i).
The enabling relation is defined as `i,j,1, . . . , `i,j,qi,j ` `i for each pair (i, j). One
easily checks that this translation is a bijection (up to structural equivalence)
and that it commutes with reduction, in the sense that there is a translation
labelled P

ϕ,L−−→ P ′ if and only if JP K reduces into JP ′K with equivalence ϕ. 2

As a consequence, in the sequel we refer to processes indifferently using
the notations for terms or for nets, whichever is the more suitable.

3 Sub-calculi

Several process calculi can be considered as fragments of concurrent nets.

Definition 3.1 A calculus S is a sub-calculus of C-terms if there is a trans-
lation map t : S → C, modulo the structural equivalences of S and C, that is
full and faithful (t is injective on processes and bijective on transitions). A
correctness criterion is a characterisation of the image of t.

The solos calculus [8] without replication is a sub-calculus of C-terms by
the trivial translation α 7→ (`)(` : α). It is the fragment of C-terms with
no prefixes. Incidentally, solo diagrams [7] as defined by Laneve, Parrow and
Victor are very similar to our graphical syntax, since the diagram for a term
in the solos calculus is exactly the dual graph of the concurrent net for its
translation, in the sense that the vertices and the edges in the diagram are,
respectively, the edges and the nodes in the concurrent net.

The solos calculus is a fragment of the fusion calculus [12]. Fusion terms
(without replication or sums) are defined by the grammar

P := 0 | (P | P) | (x)P | ū(x̃).P | u(x̃).P

Define the translation J Kπ by Jα.P Kπ = (`)(〈π〉 ` : α | JP K`) where ` is a fresh
location, and by homomorphism on all other constructs. The translation J K1

makes the fusion calculus a sub-calculus of C-terms. The characterisation of
the image of this translation requires the formal definition of prefixing:

Definition 3.2 Let P be a concurrent net.

• the prefix of an action α is the set (` α) := {X | X ` α},
• P has a simple prefixing if for all α, either (` α) = ∅ or there is a β such

that (` α) = {{β}},
9

Beffara and Maurel

• if P has a simple prefixing, the prefixing relation of P is the relation← over
the actions defined by β ← α when β ` α.

Proposition 3.3 The image of the translation of fusion calculus is the set of
processes with simple prefixing in which the prefixing relation is acyclic.

Proof. In this case the arrows form a directed acyclic graph, with nodes
of degree at most 1 by hypothesis, i.e. a forest, which corresponds to the
syntactical structure of the prefixes in the fusion term. 2

The π-calculus may be seen as the sub-calculus of the fusion calculus where
receptions always appear in the form (x̃)u(x̃).P where the xi are distinct,
i.e. where receptions are binders. Hence our translation of π-calculus is that
of fusion calculus except that restrictions are added before every reception.
The characterisation of translations of π-terms requires a formal definition of
causality which means that one cannot interact on an unknown channel:

Definition 3.4 The causality relation is the binary relation ⇐ over actions
defined by β ⇐ α if the action β is negative and the principal channel of α or
any of its auxiliary channels is an auxiliary channel of β.

Proposition 3.5 The image of the translation of π-calculus is the set of pro-
cesses with a simple prefixing such that the relation ← is acyclic, the relation
⇐ is included in the transitive closure of ←, and the auxiliary channels of
negative actions are pairwise distinct.

Proof. The condition on ⇐ imposes that the auxiliary channels of recep-
tions are used only in actions prefixed (possibly indirectly) by this reception,
therefore the scope of received channels can always be written (x̃)u(x̃).P . 2

4 Encoding Guards

Our notion of guard provides a flexible extension of prefixing that extends
fusion calculi with expressive scheduling features. Nevertheless, concurrent
nets are still reasonable from an implementation point of view since they can
be encoded into its fragment without guards, i.e. the solos calculus. The idea
is to use the properties of fusion to translate explicit delaying of actions into
delayed unification of names. The same kind of idea was used to encode fusion
calculus into solos [8] but the actual encoding depended on the structure of
prefixes. The one we provide here takes a more geometric approach.

Our encoding is composed of two steps, as illustrated in Fig. 3. The first
step encodes an arbitrary process into a weakly bisimilar one with a prefixing
of depth 1, similar to Parrow’s duos [11]. The second step encodes a process
with this simple prefixing into a strongly bisimilar one with no prefix.

The first step consists in associating a forwarder (u)(u(x̃) | ū(ỹ)) to each
node ` : α that appears in another action’s prefix. This forwarder is the one

10

Beffara and Maurel

Fig. 3. The two steps of duo translation.

that will delay a fusion, so it is enough to prefix it with 〈`〉 to ensure that the
concerned nodes are blocked.

Definition 4.1 Let P be a process. Assume a particular enumeration of P
is chosen. For all i, let u′i be ui if πi ≡ 1 and a fresh name otherwise. Let
(ui,j,k) be a family of channel names such that ui,j,0 = ui and ui,j,qi,j = u′i and
all other ui,j,k are fresh. The duo translation of P for this enumeration is

(w̃′)
n∏
I=1

(v)
(
`I : u′

εI

I (x̃I) | 〈`I〉 v(ỹI) | v̄(z̃I)
)

with w̃′ = w̃ ∪ {ui,j,k | k 6= 0}

where ỹI and z̃I are families indexed over {(i, j, k) | `i,j,k = `I} defined as

yI,(i,j,k) = ui,j,k−1 and zI,(i,j,k) = ui,j,k

The duo translation of P is the set JP Kd of duo translations of P for all possible
enumerations, thus duo translation should be understood as a relation between
processes rather than a function.

Theorem 4.2 Every process P is weakly stably bisimilar to each Q ∈ JP Kd.

Sketch of proof. The simulation is achieved by reducing all the forwarders
introduced by the translation when necessary. These redexes cannot interfere
with any other communication, which ensures bisimilarity. 2

Remark that if two processes P and Q have no public locations, then
JP |QKd = JP Kd | JQKd. The advantage of this intermediate form is that it uses
a very restricted form of prefixing:

Definition 4.3 A process P has a duo prefixing if there is a partial injection
p over {1 . . . n} such that P can be written

P ≡ (w̃)
n∏
i=1

〈πi〉 `i : uεi
i (x̃i) with πi =

{
`p(i) if i ∈ dom(p)

1 otherwise

Lemma 4.4 For every process P , every Q ∈ JP Kd has a duo prefixing.

11

Beffara and Maurel

Definition 4.5 Let P be a process with a duo prefixing. Assume an enu-
meration of P with the notations of definition 4.3. Let (u′i) be a family of
fresh names indexed over the domain of p. The duo encoding of P for this
enumeration is (w̃ũ′)

∏n
i=1(yz)`i : αi where

αi =

uεi(yyzzx̃i) if i 6∈ rng(p)

ū(yyup−1(i)u
′
p−1(i)x̃i) if εi = +

u(up−1(i)u
′
p−1(i)zzx̃i) if εi = −

with u =

{
u′i if i ∈ dom(p)

ui otherwise

The duo encoding JP Kp is the set of duo encodings of P for all enumerations.

Theorem 4.6 Duo encoding is a strong stable bisimulation.

Sketch of proof. The actions in a process and in any of its encodings are
in one-to-one correspondence. The four extra arguments of each action in the
translation simulate precisely the unblocking of locations. 2

As a corollary of theorems 4.2 and 4.6, any process is weakly stably bisim-
ilar to a process without guards, by composition of the encodings.

5 Conclusions

The calculus of concurrent nets extends the family of π-like calculi by intro-
ducing a new and more expressive form of sequentiality constraints. Prefixing
is seen as the evolution of a shared state, in a way that recalls synchronisation
mechanisms like semaphores. In its graphical form, the calculus makes clear
the notions of locality and scoping and expresses prefixing as a form of inter-
action with a geometric intuition. We show, by means of an encoding, that in
a sense the calculus without guards has the same expressive power as the cal-
culus with guards. Hence, while keeping the same theoretical expressiveness,
concurrent nets provide new programming features for concurrent calculi.

Interaction nets [6] are a notable example of a concurrent graphical calcu-
lus, and several features make them a quite different model, notably the fact
that edges always have two vertices and the way replication is performed. An-
other interesting comparison could be made with proof-nets in linear logic [4],
and these objects were a source of inspiration in this work. Using appro-
priate encodings, proof-nets may actually be considered as a very particular
sub-calculus of concurrent nets. This will be detailed in a future paper.

The prefixes in the term calculus are arbitrary monotonic functions, built
by conjunction and disjunction on monotonic variables. What makes their en-
coding possible is the fact that communication by fusion has the same mono-
tonic flavour. The extension to non-monotonic guards, for instance by intro-
ducing negation, would strictly extend the expressiveness, actually it would
be equivalent to introducing external sums in the calculus. The calculus can
also be extended with a replication operator, and the encoding theorems still
hold in this case. These extensions will be detailed in a full paper.

12

Beffara and Maurel

References

[1] Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-
calculus. In Proceedings of POPL’96, pages 372–385. ACM Press, 1996.

[2] Yuxi Fu. A proof-theoretical approach to communication. In P. Degano,
R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proceedings of ICALP’97,
volume 1256 of Lecture Notes in Computer Science, pages 325–335. Springer
Verlag, 1997.

[3] Philippa Gardner and Lucian Wischik. Explicit fusions. In Mogens Nielsen and
Branislav Rovan, editors, Proceedings of MFCS 2000, volume 1893 of Lecture
Notes in Computer Science, pages 373–382. Springer Verlag, 2000.

[4] Jean-Yves Girard. Proof-nets: The parallel syntax for proof-theory. In Paolo
Agliano and Aldo Ursini, editors, Logic and Algebra. M. Dekker, New York,
1996.

[5] Ole Høgh Jensen and Robin Milner. Bigraphs and transitions. ACM SIGPLAN
Notices, 38(1):38–49, 2003.

[6] Yves Lafont. Interaction nets. In Proceedings of POPL’90, pages 95–108. ACM
Press, 1990.

[7] Cosimo Laneve, Joachim Parrow, and Björn Victor. Solo diagrams. In Naoki
Kobayashi and Benjamin C. Pierce, editors, Proceedings of TACS’01, volume
2215 of Lecture Notes in Computer Science, pages 127–144. Springer Verlag,
2001.

[8] Cosimo Laneve and Björn Victor. Solos in concert. In Jǐŕı Wiederman, Peter
van Emde Boas, and Mogens Nielsen, editors, Proceedings of ICALP’99, volume
1644 of Lecture Notes in Computer Science, pages 513–523. Springer Verlag,
July 1999.

[9] Robin Milner. Pi-nets: A graphical form of pi-calculus. In Donald Sannella,
editor, Proceedings of ESOP’94, volume 788 of Lecture Notes in Computer
Science. Springer Verlag, 1994.

[10] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes (Parts I and II). Information and Computation, 100:1–77, 1992.

[11] Joachim Parrow. Trios in concert. In Gordon Plotkin, Colin Stirling, and Mads
Tofte, editors, Proof, Language and Interaction: Essays in Honour of Robin
Milner, pages 621–637. MIT Press, 1998.

[12] Joachim Parrow and Björn Victor. The fusion calculus: Expressiveness and
symmetry in mobile processes. In Proceedings of LICS’98, pages 176–185, 1998.

13

Beffara and Maurel

A Appendix: Proofs

In this appendix, we detail the technical proofs that we did not include in the
main text for lack of space.

A.1 Duo Translation

Note that many enumerations of a given process exist, since these depend on
the order of the actions and the formulation of the guards. In particular, a
guard π = 1 may as well be formulated π = 1+π′ though these are structurally
equivalent.

Definition A.1 Let x̃ and ỹ be two sequences of channel names with |x̃| = |ỹ|.
The delayed fusion of x̃ and ỹ is Fx̃=ỹ := (u)(u(x̃) | ū(ỹ)). A set of delayed
fusions of type ϕ is a parallel composition of delayed fusions Fϕ = Fx̃1=ỹ1 | · · · |
Fx̃n=ỹn such that ϕ is the equivalence x̃1 · · · x̃n = ỹ1 · · · ỹn.

Lemma A.2 For any delayed fusion, Fx̃=ỹ
{x̃=ỹ},∅−−−−→ 0.

Proof. Obvious from the definition of the transition system. 2

Definition A.3 Let A be a set of processes. The fusion expansion of A is
the set Aexp =

{
(x̃)(Fϕ | P ′)

∣∣ dom(ϕ) ⊂ x̃, ∀σ : ϕ, ∃P ∈ A, (x̃)(P ′σ) ≡ P
}
,

where ∀σ : ϕ means “for all substitution σ that implements ϕ.”

Lemma A.4 For any process P , for all P ′ ∈ {P}exp, P ′ →∗ P .

Proof. By lemma A.2, the transitions of Fϕ produce the effect of ϕ within
the scope of x̃, and they are τ -transitions since all names that are affected
by ϕ are hidden in P ′ by hypothesis. 2

Proof of theorem 4.2. Let S be the relation over processes that relates
each P to all the fusion expansions of its duo translations, i.e. P S Q for each
Q ∈ JP Kexp

d . We prove that S and S−1 are weak simulations.

Let (P,Q) be a pair of processes related by S. By definition, we have
Q = (w̃′)(Fχ | R) and for any substitution σ that implements χ, (w̃′)Rσ is
structurally equivalent to some duo translation of P . Pick such a substitu-
tion σ. Using the notations of proposition 2.8 and definition 4.1, there is an
enumeration of P such that

(w̃′)Rσ ≡
n∏
i=1

Ai with Ai = (v)
(
`i : u′

εi

i (x̃i) | 〈`i〉 v(ỹi) | v̄(z̃i)
)
.

In the following, for all i we write αi = uεi
i (x̃i) in order to simplify the expres-

sion of the enumeration of P .

If a transition P
ϕ,L−−→ P ′ exists, then there are two indices a and b such

that ϕ = {x̃a = x̃b} \ w̃ and L = {`a, `b} and the derivation of the transition

14

Beffara and Maurel

can be written

`a : αa
αa,{`a}−−−−→ 0 `b : αb

αb,{`b}−−−−→ 0

`a : αa | `b : αb
{x̃a=x̃b},L−−−−−−→ 0∏n

i=1 〈πi〉 `i : αi
{x̃a=x̃b},L−−−−−−→

∏
i6∈{a,b} 〈πi[1/L]〉 `i : αi

P
ϕ,L−−→ (w̃)

∏
i6∈{a,b} 〈πi[1/L]〉 `i : αi

and the right-hand side of the last rule is structurally equivalent to P ′. After
the substitution 1/L, the family (`i,j,k) can be reindexed as (mi,j,k) with 1 6
i 6 n, 1 6 j 6 pi and 1 6 k 6 q′i,j where q′i,j is qi,j minus the number of
occurrences of `a or `b in `i,j,1 . . . `i,j,qi,j . This way we have for each i:

πi[1/L] =
(pi∑
j=1

`i,j,1 · · · `i,j,qi,j
)
[1/L] =

pi∑
j=1

mi,j,1 · · ·mi,j,q′i,j

which yields an enumeration of P ′.

Since the actions at `a and `b are enabled, for i ∈ {a, b} we have u′i = ui
and the following holds:

`i : αi.v(ỹi)
α,{`i}−−−→ v(ỹi)

`i : αi | 〈`i〉 v(ỹi) | v̄(z̃i)
αi,{`i}−−−−→ v(ỹi) | v̄(z̃i)

Ai
αi,{`i}−−−−→ (v)(v(ỹi) | v̄(z̃i))

and using the notation of definition A.1, with ψ = {ỹa = z̃a, ỹb = z̃b} and
Fψ = Fỹa=z̃a | Fỹb=z̃b

:

Aa
αa,{`a}−−−−→ Fỹa=z̃a Ab

αb,{`b}−−−−→ Fỹb=z̃b

Aa | Ab
{x̃a=x̃b},L−−−−−−→ Fψ

Rσ ≡
∏n

j=1Aj
{x̃a=x̃b},L−−−−−−→ Fψ

∣∣ ∏
i6∈{a,b}Ai

(w̃′)Rσ
ϕ,L−−→ (w̃′)

(
Fψ

∣∣ ∏
i6∈{a,b}Ai

)
Note that the substitution 1/L is not necessary in the right-hand sides since
the locations `a and `b do not occur in Fψ nor in any Ai with i 6∈ {a, b}, by
construction. Call R′ = (w̃′)(Fψ |Q′) the reduct in the last line. By definition,
ỹa and z̃a are families indexed over {(i, j, k) | `i,j,k = `a} defined as

ya,(i,j,k) = ui,j,k−1 and za,(i,j,k) = ui,j,k

so the fusion ỹa = z̃a unifies each pair (ui,j,k−1, ui,j,k) such that `i,j,k = `a. The
same goes for ỹb and z̃b. By lemma A.4, if τ is a substitution that implements

15

Beffara and Maurel

ψ = {ỹa = z̃a, ỹb = z̃b}, we have

R′ = (w̃′)
(
Fψ

∣∣ ∏
i6∈{a,b}

Ai

)
→∗ (w̃′)

∏
i6∈{a,b}

Aiτ (A.1)

Besides, (ui,j,kτ) can be reindexed as (vi,j,k) with the same index trans-
formation that transformed (`i,j,k) into (mi,j,k). Define v′i to be vi = ui if
πi[1/L] ≡ 1 and u′i otherwise. With these notations we get for each i 6∈ {a, b}:

Aiτ = (w)
(
`i : v′

εi

i (x̃iτ) | 〈`i〉w(ỹ′i) | w̄(z̃′i)
)

Then the process (w̃′)
∏

i6∈{a,b}Aiτ is the duo translation of P ′ for the enumer-

ation we get by reindexing. By equation A.1, we deduce that R′ ∈ JP ′Kexp
d ,

and since Q→∗ Rσ → R′ we have that S is a weak simulation.

We now have to prove that S−1 is also a weak simulation. Again, consider
a pair (P,Q) in S, with Q = (w̃′)(Fχ |R), and where R is decomposed as

R ≡
n∏
i=1

Ai with Ai = (v)
(
`i : u′

εi

i (x̃i) | 〈`i〉 v(ỹi) | v̄(z̃i)
)

If a reduction Q
ϕ,L−−→ Q′ exists, it affects either a redex in Fχ or a redex in

R, since the subjects of actions in Fχ are each shared between exactly two
opposite actions.

If the reduction happens in Fχ, it concerns a delayed fusion Fx̃=ỹ and we
have Q′ = (w̃′)(Fχ′ |R)σ where σ is a substitution that implements x̃ = ỹ and
χ′ is the equivalence generated by what remains of Fχ. Therefore both Q and
Q′ are in the fusion expansion of JP Kd, which means that P S Q′.

If the reduction happens in R, there exist a and b such that u′a and u′b
are the same channel u, εa = +, εb = − and thus ϕ = {x̃a = x̃b} \ w̃′ and
L = {`a, `b}. Then if we write ψ = {ỹa = z̃a, ỹb = z̃b} and Fψ = Fỹa=z̃a |Fỹb=z̃b

,
the derivation of the reduction can be written

Aa
u(x̃a),{`a}−−−−−−→ Fỹa=z̃a Ab

ū(x̃b),{`b}−−−−−→ Fỹb=z̃b

Aa | Ab
{x̃a=x̃b},L−−−−−−→ Fψ

R
{x̃a=x̃b},L−−−−−−→ Fψ

∣∣ ∏
i6∈{a,b}Ai

Q
ϕ,L−−→ (w̃′)

(
Fχ

∣∣ Fψ ∣∣ ∏
i6∈{a,b}Ai

)
τ ≡ Q′

for some substitution τ that implements {x̃a = x̃b} \ w̃′. By definition of the
translation, the names u′i in a duo translation are fresh and pairwise distinct
except for those that are equal to some ui, i.e. those for which πi ≡ 1. If
σ is a substitution that implements χ, (w̃′)Rσ is a duo translation of P , so
u′aσ = u′bσ does imply that πa ≡ πb ≡ 1, and the actions at locations `a and

16

Beffara and Maurel

`b in P are enabled. As a consequence, the following reduction holds:

`a : ua(x̃a)
u(x̃a),{`a}−−−−−−→ 0 `b : ūb(x̃b)

ū(x̃b),{`b}−−−−−→ 0

`a : αa | `b : αb
{x̃a=x̃b},{`a,`b}−−−−−−−−−→ 0∏n

i=1 〈πi〉 `i : αi
{x̃a=x̃b},{`a,`b}−−−−−−−−−→

∏
i6∈{a,b} 〈πi[1/`a, `b]〉 `i : αi

P
ϕ,L−−→

∏
i6∈{a,b} 〈πi[1/L]〉 `i : αiτ ≡ P ′

with the same substitution τ as above. It can be verified, with the same
arguments as in the first part, that Q′ is a fusion expansion of a duo translation
of the reduct P ′, and therefore we have P → P ′ and P ′ S Q′.

This proves that S−1 is also a weak simulation, therefore the symmetric
closure S ∪ S−1 is a weak bisimulation.

The set of barbs (u, L) such that P ↓ (u, L) is the set of all (ui, {`i})
such that πi ≡ 1 and ui 6∈ w̃. The set of (u, L) such that (w̃′)Rσ ↓ (u, L)
is the set of (u′i, {`i}) where u′i does not appear in w̃′, that is by definition
when u′i is some uj that does not appear in w̃. Therefore P ↓ (u, L) if and
only if (w̃′)Rσ ↓ (u, L). Moreover, by definition of the fusion expansion, the
free channels in Q are those in (w̃′)Rσ, so (w̃′)Rσ ↓ (u, L) if and only if
Q→∗↓ (u, L). Therefore S is a weak barbed simulation.

Moreover, it is clear from the definition of the translation that it commutes
with arbitrary name substitution since the free names in a process and its
translations are the same. Since all locations are supposed private in the
definition of the duo translation, the condition on substitution of free locations
by 1 in the definition of stable bisimulation is empty, so we have a weak stable
bisimulation, which concludes the proof of Theorem 4.2. 2

A.2 Duo Encoding

Proof of theorem 4.6. Let S be the relation over processes that relates
each P to every element of JP Kp. Let (P,Q) be an element of S. We use the
notations of definitions 4.3 and 4.5.

If a transition P
ϕ,L−−→ P ′ exists, then there are two indices a and b such

that ua and ub are the same channel u, ϕ = {x̃a = x̃b} \ w̃ and L = {`a, `b}
and the derivation of the transition can be written

`a : u(x̃a)
u(x̃a),{`a}−−−−−−→ 0 `b : ū(x̃b)

ū(x̃b),{`b}−−−−−→ 0

`a : u(x̃a) | `b : ū(x̃b)
{x̃a=x̃b},L−−−−−−→ 0∏n

i=1 〈πi〉 `i : αi
{x̃a=x̃b},L−−−−−−→

∏
i6∈{a,b} 〈πi[1/L]〉 `i : αi

P
ϕ,L−−→ (w̃)

∏
i6∈{a,b} 〈πi[1/L]〉 `i : αi

and the right-hand side of the last rule is structurally equivalent to P ′. Because

17

Beffara and Maurel

of the form of the guards πi, the substitution 1/L may affect at most two
guards by replacing them by 1.

The form of the corresponding transition in Q depends on whether a and
b are in the range of the partial injection p, which means that four cases have
to be considered. The symptomatic case is when both a and b are in the range
of p, the other cases are just simpler.

Let a′ and b′ be the indices such that a = p(a′) and b = p(b′). Since the
actions at `a and `b are enabled in P , πa = πb = 1 so a′ and b′ are distinct
from a and b. Therefore Q can be written

Q ≡ (w̃ũ′)
(
(z)`a : u(ua′u

′
a′zzx̃a)

∣∣∣ (y)`b : u(yyub′u
′
b′x̃b)

∣∣∣ ∏
i6∈{a,b}

Ai

)
Writing Aa and Ab for the first two actions, the following reduction holds:

Aa
(z)u(ua′u

′
a′zzx̃a),{`a}

−−−−−−−−−−−−→ 0 Ab
(y)u(yyub′u

′
b′ x̃b),{`b}−−−−−−−−−−−−→ 0

Aa | Ab
{ua′=u

′
a′ ,ub′=u

′
b′ ,x̃a=x̃b},L−−−−−−−−−−−−−−−−→ 0∏n

i=1Ai
{ua′=u

′
a′ ,ub′=u

′
b′ ,x̃a=x̃b},L−−−−−−−−−−−−−−−−→

∏
i6∈{a,b}Ai

(ũ′)
∏n

i=1Ai
{x̃a=x̃b},L−−−−−−→ (ũ′)

∏
i6∈{a,b}Aiσ

Q
ϕ,L−−→ (w̃ũ′)

∏
i6∈{a,b}Aiσ

with σ = [ua′/u
′
a′ , ub′/u

′
b′]. Call Q′ the reduct in the last rule. The substitution

σ affects only the actions at indices a′ and b′ since the channels u′a′ and u′b′
appear only in these as subjects, and appear only in Aa and Ab as objects, by
injectivity of p. Substituting ua′ for u′a′ in the encoding of P corresponds to
substituting 1 for πa′ in P , i.e. the effect of σ in Q′ is exactly the encoding of
the effect of 1/L in P ′, therefore we have Q

ϕ,L−−→ Q′ with P ′ S Q′.

In the other cases, where at most one of a and b is in the range of p, the
proof of simulation is similar, and as a consequence S is a simulation.

If a transition Q
ϕ,L−−→ Q′ exists, it affects a pair of actions of indices a

and b with the same subject. By construction, this means that this subject
is ua = ub since all u′i are fresh and used exactly once as subjects, and thus a
and b are not in the domain of p, so the actions at indices a and b in P are
enabled. Then it is easy to check that the reduction of this redex in P leads
to a transition P

ϕ,L−−→ P ′ with the same label, and by the same arguments as
above Q′ is a duo encoding of P ′, so P ′ S Q. This proves that S−1 is also a
strong bisimulation, so the reflexive closure S ∪ S−1 is a strong bisimulation.

Since the public names and enabled actions in P and Q are the same, it
is clear that P ↓ (u, L) if and only if Q ↓ (u, L) and that S is closed under
arbitrary name substitution, so we have a strong stable bisimulation. 2

18

	Introduction
	Definitions
	Introductory Examples
	Syntax and Semantics
	Graphical Syntax

	Sub-calculi
	Encoding Guards
	Conclusions
	References
	Appendix: Proofs
	Duo Translation
	Duo Encoding

