
Disjunctive Normal Forms and Local Exceptions

Emmanuel Beffara
Université Paris 7, Équipe PPS

2 place Jussieu
75251 Paris Cedex 05, France

beffara@pps.jussieu.fr

Vincent Danos
Université Paris 7, Équipe PPS

2 place Jussieu
75251 Paris Cedex 05, France

danos@pps.jussieu.fr

Abstract

All classical λ-terms typable with disjunctive normal forms are
shown to share a common computational behavior: they implement
a local exception handling mechanism whose exact workings de-
pend on the tautology. Equivalent and more efficient control com-
binators are described through a specialized sequent calculus and
shown to be correct.

Categories and Subject Descriptors

D.1.1 [Programming Techniques]: Functional Programming;
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—control structures; F.3.3 [Logics and Meanings of Pro-
grams]: Studies of Program Constructs—control primitives; F.4.1
[Mathematical Logic and Formal Languages]: Mathematical
Logic—lambda calculus and related systems

General Terms

Theory, Languages

Keywords

Control structures, disjunctive normal forms, classical realizability

1 Introduction

We show in this paper that to each disjunctive normal form Γ corre-
sponds a computational behavior shared by all terms of type Γ. An
indication that disjunctive normal forms (DNFs) might be inhab-
ited by interesting computational behaviors comes from previous
work by the second author and Krivine [4] where some disjunctive
tautologies are set in correspondence with a family of synchroniza-
tion schemes. As a consequence of the intuitionistic disjunction
property, none of the non trivial formulas of that class is intuition-
istically valid. DNFs are actually the next simplest class with this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’03, August 25–29, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-756-7/03/0008 ...$5.00

anti-intuitionistic feature, so it seems natural to investigate these as
well.

Nevertheless, one could fear that such a vast set of types as DNFs
would be too loose to actually provide an interesting specification
problem. But it is not so. They all do specify a quite distinc-
tive control mechanism, and more sophisticated than with disjunc-
tive tautologies. Proving this is the first contribution of the pa-
per. We go beyond giving mere descriptions of those behaviors,
by actually extending our basic language, a call-by-name typed
λ-calculus with control, with primitive instructions directly imple-
menting these. Proving these are correct is the second contribution.
We use Krivine’s classical realizability (as documented in his recent
papers [9, 10]) to do this.

The new computation rules are, we believe, simple enough to un-
derstand, even though they use a tamed form of dynamic binding,
and can be rendered in graphic notation as control charts. Notation
is an issue here, in that to have the new instructions actually used by
a programmer, one has to accompany the formal operational seman-
tics with an intuitive notation that will help in building a working
representation of whatever control scheme is described. We also
develop a proof-theoretic description via a specialized sequent cal-
culus, as well as an ordinary programming-language-like syntax to
suggest how our new control combinators would fit in the real pic-
ture. This last piece of syntax is smoothly extending the CAML [2]
notation for exception handling.

It must be made clear that the control structures we consider here
are not exceptions in the ML sense of the word. For one thing, all
the structures we manipulate are local, in the sense that they are
defined at the point where they are used and that a given exception
is always associated to one specific handler. Besides, the ambient
language being call-by-name, control is of quite a different and sim-
pler nature than it is in ordinary call-by-value programming. Yet it
should be possible to rerun our methods in the call-by-value world.
This is an important question which we leave for future exploration.

Another point which might need some clarification is the follow-
ing: of course any propositional formula is classically equivalent to
a DNF, but this does not mean we are giving all formulas a computa-
tional interpretation! What this says is that the equivalence between
generic propositional formulas and DNFs has to be a compilation
into our multi-exception handling combinators. We intend to ex-
plore the matter further.

1

2 Preliminaries

We first state the definitions of our calculus and the logic that types
it. We also state the notion of realizability that we use later on.

2.1 The Calculus

Our computational framework is λκ-calculus, a variant on Fel-
leisen’s λC-calculus, with a deterministic call-by-name evaluation
strategy. We define Λ, the set of terms (or λκ-terms), and Π, the set
of stacks, as well as the set Λ×Π of executables, by

terms t,u ::= x | t u | λx.t | κx.t | kπ

stacks π ::= ε | t ·π
executables e ::= t ∗π

Stacks should be understood as evaluation contexts in call-by-name
strategy: an executable t ∗ t1 · · ·tn is seen as the term t applied to
arguments t1 · · ·tn, with the next reduction step occurring at the po-
sition of t. The evaluation relation � over executables is defined as
the reflexive transitive closure of the following set of rules:

push t u∗π � t ∗u ·π
pop λx.t ∗u ·π � t[u/x]∗π

save κx.t ∗π � t[kπ/x]∗π
restore kπ ∗ t ·π′ � t ∗π

The “push” and “pop” rules implement usual β-reduction while
“save” and “restore” provide the control mechanism. The term κx.t
captures the current evaluation context π as a term kπ, and applying
the latter restores this context. Binders λx and κx are thus dual in the
sense that one substitutes terms while the other substitutes stacks,
in the form of the terms kπ which can also be called continuations.

2.2 The Typing System

Types are second order propositional formulas. Given a set Var of
propositional variables, the typing rules are the following:

Γ,x : A ` x : A
[axiom]

Γ,x : A ` t : B
Γ ` λx.t : A → B

[→ intro]
Γ ` t : A → B Γ ` u : A

Γ ` t u : B
[→elim]

Γ ` t : A X 6∈ FV (Γ)

Γ ` t : ∀X A
[∀ intro]

Γ ` t : ∀X A
Γ ` t : A[B/X]

[∀elim]

These first five rules give a standard presentation, known as natural
deduction, for second order propositional intuitionistic logic. The
typing rule for the κ binder is

Γ,x : A → B ` t : A
Γ ` κx.t : A

[Peirce]

With this sixth rule, known as Peirce’s law, we get one possible nat-
ural deduction presentation of second order propositional classical
logic, as it was first noted by Griffin [6] in the context of Scheme
with a call/cc operator.

Note that we do not provide any typing rule for continuations kπ. A
reason for this is that it would require giving types to stacks. This
would be possible but it would lead to unnecessary complication
here. Another deeper reason is that typable terms are seen as proofs
of their type, and this interpretation would not make sense anymore
when writing continuations explicitly. From a computational point

of view, typable terms are programs that should be able to be exe-
cuted in any context, and this forbids them to contain explicit ones.

As usual we define the absurdity as ⊥ := ∀X X and the negation
as ¬A := A → ⊥. All types considered later on live actually in a
fragment of this system that corresponds to simple types augmented
with the ⊥ constant, so types are implicitly considered universally
quantified in every variable.

2.3 Realizability

Realizability builds polarized models of the propositional logic
above by associating truth values to each formula. Positive truth
values are sets of terms while negative ones are sets of stacks. These
models are parametrized by a given observation: let ⊥⊥ ⊆ Λ×Π
be a set of executables closed by anti-reduction (i.e. if e � e′ and
e′ ∈ ⊥⊥ then e ∈ ⊥⊥). The executables in this set are called the ob-
servables and they are said to realize the absurd. In the definitions
below, we assume such a ⊥⊥ has been chosen.

From ⊥⊥ we deduce a notion of orthogonality between terms and
stacks, and subsequently between positive and negative truth val-
ues: a set X of terms is said to be orthogonal to a set Z of stacks
(which we can write X ⊥⊥ Z) if for any term t ∈ X and any stack
π ∈ Z we have t ∗π ∈⊥⊥. The orthogonal of a given set of terms or
stacks is then the largest set orthogonal to it, i.e. X⊥⊥ = {π | X ⊥⊥ π}
and Z⊥⊥ = {t | t ⊥⊥ Z} (note that we use the same notation in both
cases even if it applies to objects of different kinds).

We associate truth values to the types of our system. For a given
type A, the positive value |A|will be, intuitively, the set of terms that
behave well as members of this type. The corresponding negative
value [A], orthogonal to |A|, will contain the contexts, i.e. the stacks,
where terms of type A behave well.

Negative truth values are defined inductively given a valuation of
propositional variables. Let e be a function from propositional vari-
ables into the powerset P (Π). The negative truth value [A]e associ-
ated to a given type A in the valuation e is defined as

[X]e := e(X)

[A → B]e := [A]⊥⊥e · [B]e

[∀X A]e :=
[

Z⊆Π
[A]e[Z/X]

where e[Z/X] is the environment e where value Z has been as-
signed to X . These definitions correspond to the semantic meaning
of the types. For closed formulas we can write [A] instead of [A]e
since the value is environment-independent (more generally, [A]e
depends only on the values e takes on variables free in A). We then
call interpretation of A the positive truth value |A|e = [A]⊥⊥e , i.e. the
set of terms orthogonal to [A]e, and we say that a term t realizes
a type A (in environment e), which we write t �e A, if t is in the
interpretation of A. We write this t � A when A has no free variable.

The value of some particular types is worth explaining. For the
absurd ⊥ = ∀X X , the negative value is the whole set of stacks, i.e.
[⊥] = Π; the associated positive value |⊥| is thus the set of terms t
such that for any stack π the executable t ∗π is in ⊥⊥, that is terms
who reduce into ⊥⊥ whatever the context. It is also interesting to
describe the values of negated types: the negative value [¬X] =
[X →⊥] turns out to be the positive value |X | concatenated with Π.
Subsequently, if π is a stack in [X] and t is a term in |X |, then t ∗π is
in ⊥⊥ by definition, and anti-reduction implies that kπ ∗ t ·π′ is also

2

in ⊥⊥ for any π′, which means that π ∈ [X] implies kπ �¬X . In turn,
a consequence is that kπt realizes ⊥, and actually it is more or less
an executable on its own.

This � is a semantic relation between terms and types, while the
typing provided a more syntactic relation. For any choice of ⊥⊥, the
typing relation is actually a subset of the realization relation:

THEOREM 1 (ADEQUACY). Let x1 : A1, . . . ,xn : An ` t : B be a
derivable typing judgement and let ⊥⊥ be a set of observables. For
any valuation e : Var → P (Π), any family t1, . . . ,tn of terms such
that ti ∈ |Ai|e for each i and any stack π ∈ [B]e, the executable
t[t1/x1, . . . ,tn/xn]∗π is in ⊥⊥.

This theorem is standard, but we include its proof anyway, for co-
herence and as an illustration of the kind of reasoning we will use
later on.

PROOF. We proceed by induction on the typing derivation. Call
Γ the typing environment x1 : A1, . . . ,xn : An and consider a given
valuation e, a given family ti ∈ |Ai|e and a given stack π ∈ [B]e. For
any term t, call t̄ the substituted term t[t1/x1, . . . ,tn/xn].

axiom: We have the judgement x : A ` x : A so if t ∈ |A|e we have
t ∗π ∈⊥⊥ by definition.

application: Let t and u be terms such that Γ ` t : A → B and Γ `
u : A are derivable. By induction we have t̄ ∈ |A → B|e and
ū ∈ |A|e, so ū ·π is in |A|e · [B]e = [A → B]e, therefore t̄ ∗ ū ·π

is in ⊥⊥, and so is t u∗π since ⊥⊥ is closed by anti-reduction.

abstraction: Assume Γ,x : A ` t : B is derivable. By induction, for
any term u ∈ |A|e, we know that t̄[u/x] ∗π is in ⊥⊥, and so is
λx.t ∗ u ·π by anti-reduction, so we can actually deduce that
λx.t is orthogonal to |A|e · [B]e = [A → B]e.

continuation: If Γ,x : A → B ` t : A is derivable, then, by induc-
tion, for any term u ∈ |A → B|e and any stack π ∈ [A]e we
have t̄[u/s] ∗π ∈ ⊥⊥. Besides, for any stack v ·π′ ∈ [A → B]e
the term v is in |A|e, so v ∗π is in ⊥⊥, and so is kπ ∗ v ·π′ by
anti-reduction, which proves that kπ is in |A→ B|e, so the exe-
cutable t̄[kπ/x]∗π is in⊥⊥, as well as κx.t ∗π by anti-reduction.

quantification: Write B = ∀X A and suppose that Γ ` t : A is deriv-
able. From the definition of [∀X A]e we deduce the existence
of a stack set Z for which [A]e[Z/X] contains π. Since the vari-
able X does not appear in any of the Ai, the value of each |Ai|e
does not depend on e(X), so for each i we have ti ∈ |Ai|e[Z/X],
and therefore t̄ ∗π is in ⊥⊥ by induction hypothesis.

un-quantification : Assume Γ ` t : ∀X A, this means that for every
stack set Z and every stack in [A]e[Z/X] we have t ∗ π ∈ ⊥⊥.
This is true in particular for Z = [B]e for a given type B. If we
prove that the valuation of A[B/X] in e is equal to the valuation
of A in e[[B]e/X], then we get the expected result, and this
substitution lemma is proved easily by induction on A, from
the definition of substitution.

Adequacy thus holds for all types.

In the case of closed formulas, it reduces into the following ade-
quacy lemma:

PROPOSITION 2. For any term t and any type A, if ` t : A is deriv-
able then t � A holds for any ⊥⊥.

The idea of realizability is derived from Girard’s concept of re-
ducibility candidate, and it can actually be used to prove normaliza-
tion results. Once the adequacy lemma is established, these proofs
derive easily, even in our context where the calculus is enriched
with global control.

Adequacy is also the key argument in our specification proofs. The
general idea is to define ⊥⊥ as the closure by anti-reduction of a
given executable e. That a set of terms X and a set of stacks Z are
orthogonal values in the resulting model then means that applying
a term in X to a stack in Z gives an executable that reduces into e.

As an example, let us consider the following specification for
Church booleans. For each b ∈ {0,1}, let us define the type for
boolean b as

Bb = ∀X0∀X1(X0 → X1 → Xb)

Then we have the following specification:

PROPOSITION 3. Let t be a term typable as Bb for some b ∈
{0,1}. For any couple of terms (u0,u1) and any stack π, the ex-
ecutable t ∗u0 ·u1 ·π reduces into ub ∗π.

PROOF. Let u0 and u1 be two terms and π be a stack. Define ⊥⊥ as
the closure of {ub ∗π} by anti-reduction. Since ` t : Bb is derivable
by hypothesis, adequacy proves that t � Bb. As a consequence,
for any environment e : Var → P (Π), i.e. for any value of e(X0)
and e(X1), we have t �e X0 → X1 → Xb. Define e(Xb) as {π} and
e(X1−b) as the empty set. Then ub � Xb by definition of ⊥⊥ and
trivially u1−b � X1−b, so the stack u0 ·u1 ·π is in [X0 → X1 → Xb]e,
and subsequently t ∗u0 ·u1 ·π is in ⊥⊥, which means that it reduces
into ub ∗π.

Of course, this result could be obtained by a direct proof, using
subject reduction arguments. However, the proof above, though
voluntarily detailed, is very simple. The pattern is always the same:
carefully choose the observation ⊥⊥ and the value of type variables
(thanks to universal quantification), and let the adequacy do the
work. We will use the same statement and nearly the same proof in
proposition 12 as a consistency argument for the calculus enriched
with control combinators.

3 Specification Theorems

The class of formulas we are considering here is the so-called dis-
junctive normal forms (or DNFs), that is disjunctions of conjunc-
tions of literals. Given a set Var of propositional variables, we write
Lit for the set of literals over Var, i.e. Lit = Var∪¬Var. Two literals
X and ¬X are said to be opposite. A clause is a conjunction of liter-
als, or equivalently a finite subset of Lit, and a DNF is a disjunction
of clauses, or a finite subset of the set Pfin(Lit) of finite parts of Lit.
We could use multisets instead of sets, however this would lead to
undue notational complication, so we don’t. We will write clauses
and DNFs indifferently as formulas with ∨ and ∧ or as sets of sets
of literals, whichever is more suited to the context.

We will study the specification problem for this class of formulas.
However, simple types are built with → as the only connector, so
we must define how DNFs are converted into types. For any type τ
and any ordered clause {L1, . . . ,Lk} we define:

{L1, . . . ,Lk} → τ := L1 → ··· → Lk → τ

The ordering we use will be either clear from the context or indiffer-
ent. Likewise, given a formula Γ = {c1, . . . ,cn} and a fresh variable

3

Z, we interpret Γ as a type by defining

Γ := ∀Z (c1 → Z) → ··· → (cn → Z) → Z

again using an appropriate ordering. Any term of type Γ will thus
take n functions as arguments. Take note that Γ seen as a type is
intuitionistically isomorphic to Γ as a DNF, so conversion is com-
putationally neutral.

3.1 A First Specification

Our purpose now is to identify a computational behavior common
to all λκ-terms that are typable using a given DNF. For this purpose,
we characterize tautologies among DNFs using a notion of section:

Definition 1. Let Γ = c1 ∨ ·· ·∨ cn be a disjunctive normal form. A
section of Γ is an element of the product c1 ×·· ·× cn.

One can rephrase this by saying that a section is a choice of one
literal in each clause. We then write σ(c) for the literal chosen in
clause c and L ∈ σ if literal L is chosen in some clause. A section
can be interpreted as a potential counter-example, and therefore it
comes as no surprise that the formula is true exactly when there is
no such counter-example:

PROPOSITION 4. A disjunctive normal form Γ is a tautology if
and only if every section of Γ contains two opposite literals.

PROOF. Suppose that Γ is a tautology and there is a section σ that
does not contain opposite literals. We can then define a boolean val-
uation v of the propositional variables such that v(X) => if ¬X ∈ σ
and v(X) = ⊥ if X ∈ σ. This valuation thus makes each clause of Γ
false, which is contradictory.

Suppose now that Γ is not a tautology, so there is a valuation v
such that v(Γ) is false. For each clause c, since vc = ⊥, there is
a literal σ(c) such that v(σ(c)) = ⊥, and this defines a section in
which all literals are false in v, therefore σ cannot contain opposite
literals.

Sections are clearly connected to provability by the proposition
above, but they also happen to play a rôle in the specification. Be-
fore embarking on the precise statement, let us explain intuitively
what is happening. Let Γ be a DNF tautology, let t be a term of
type Γ and ~f be a sequence of arguments, with c ∈ Γ. What t does
is to pass each fc a freshly created set of exceptions, indexed by the
literals in c. If all of the fc raise one of the exceptions they were
given, then t selects two of these with opposite types X and ¬X and
runs their arguments one against the other. That there always must
be two opposite exceptions is precisely what the proposition above
says, and therefore the arguments have compatible types.

Note, in the statement of the theorem below, that there is no mention
of exceptions. What we assume is that the terms fc apply one of
their arguments, whatever it is. The intuition about exceptions is
only a way of saying, and it will be formalized only in the next
section. In the theorem, we write ~f to represent a family of terms
indexed over Γ and fc for the element of index c in this family,
similarly we write ~u to represent any family of terms indexed over
the literals in a given clause of Γ and uL for members of such a
family.

THEOREM 5. Let Γ be a tautology in disjunctive normal form and
let t be a λκ-term of type Γ. Let π be a stack and ~f a family of terms
indexed by the clauses of Γ. Suppose there exists a section σ of Γ

and a family of terms vc and stacks πc such that for each clause c,

σ(c) ∈ ¬Var ⇒∀~u ∃π′ fc ∗~u ·π � uσ(c) ∗ vc ·π′

σ(c) ∈ Var ⇒∀~u fc ∗~u ·π � uσ(c) ∗πc

where ~u is any family of terms indexed on the literals of c. Then
there exists a pair of clauses (c,c′) such that σ(c) = ¬σ(c′) and

t ∗ ~f ·π � vc ∗πc′ .

PROOF. First we split Γ into Γ+ = {c | σ(c) ∈ Var} and Γ− = {c |
σ(c) ∈ ¬Var}. Define ⊥⊥ as the closure by anti-reduction of

{vc ∗πc′ | c ∈ Γ−,c′ ∈ Γ+,σ(c) = ¬σ(c′)}

and instantiate the propositional variables by

[Z] = {π} and [X] = {πc′ | c′ ∈ Γ+,σ(c′) = X}

where Z is the fresh variable used to translate Γ into a type and X
ranges over variables occurring in Γ.

Let c be a clause in Γ−. For any family (uL) of terms such that
uL � ¬L for each literal L ∈ c, by hypothesis, fc ∗~u ·π reduces into
uσ(c) ∗ vc ·π′ for some π′. Here σ(c) is a negative literal ¬X , and
the term vc realizes X since for each element πc′ in [X] we have
σ(c) = ¬σ(c′) and so vc ∗πc′ ∈ ⊥⊥, therefore uσ(c) ∗ vc ·π′ is in ⊥⊥,
so is fc ∗~u · ·π by anti-reduction, and so fc � c → Z.

Similarly, let c′ be a clause in Γ+. For any family ~u of terms such
that uL � L for each clause L ∈ c′, by hypothesis fc′ ∗~u ·π reduces
into aσ(c′) ∗πc′ where σ(c′) is some variable X . This executable is
in ⊥⊥ since πc′ ∈ [σ(c′)], therefore fc′ � c′ → Z.

By hypothesis, ` t : Γ is derivable, so the adequacy lemma proves
that t realizes Γ. We have just shown that for each clause c, the term
fc realizes the type c → Z, and by definition π is in [Z], so ~f ·π is
in [Γ], so t ∗ ~f · π is in ⊥⊥, which means that it reduces into some
vc ∗πc′ with σ(c) = ¬σ(c′).

3.2 Sharper Specifications

The specification extracted above is actually quite shallow. There
is an important restriction, namely that the values vc and the stacks
πc that the processes pass when raising exceptions may not contain
any occurrence of the functions’ arguments (the uL in the quantifi-
cations). We can do better by relaxing the conditions on the argu-
ments, i.e. by assuming that there exists a family of parametrized
terms vc[] and parametrized stacks πc[] such that, for each clause c,

σ(c) ∈ ¬Var ⇒∀~u ∃π′ fc ∗~u ·π � uσ(c) ∗ vc[~u] ·π′

σ(c) ∈ Var ⇒∀~u fc ∗~u ·π � uσ(c) ∗πc[~u]

and proving that the reduction of t ∗ ~f ·π leads to vc[~a] ∗πc′ [~b] for
some families of terms~a and~b. Proving just this is mainly the same
as proving theorem 5. However, proving something about the terms
in the families ~a and~b is harder.

As an illustration, let us consider he particular case of the excluded
middle, i.e. Γ = ¬X ∨ X . Its translation as a type, as explained
above, is (¬X →Y) → (X →Y) →Y . Here the following develop-
ment result holds:

PROPOSITION 6. Let t be a term of type ¬X ∨X. Let π be a stack
and let f and g be two terms. Suppose there is a stack πg and a

4

family of contexts (vi[])0≤i≤n such that

∀u ∃π′ f ∗u ·π � u∗ v0[u] ·π′

∀u g∗u ·π � u∗πg

∀i < n ∀u ∃π′ vi[u]∗πg � u∗ vi+1[u] ·π′

then there exists a term u such that t ∗ f ·g ·π reduces into vn[u]∗πg.

PROOF. Define ⊥⊥ as the closure by anti-reduction of

{vn[u]∗πg | u ∈ Λ}

and instantiate the propositional variables as

[X] := {πg} and [Y] := {π}.

Then obviously for any term u the we have vn[u] � X .

Let i be an integer with 0 ≤ i ≤ n−1. Assume that for any term u in
|¬X | the term vi+1[u] realizes X . Then for any such u and any stack
π′, the executable u∗vi+1[u] ·π′ is in ⊥⊥, therefore vi[u]∗πg is also in
⊥⊥, by anti-reduction using the third hypothesis. As a consequence,
for any u, u � ¬X implies vi[u] � X . By recurrence, we thus have
this property for the context v0[].

For any u � ¬X and any stack π′, u ∗ v0[u] ·π′ is in ⊥⊥ as we just
proved, so by anti-reduction f ∗u ·π is also in ⊥⊥, therefore f real-
izes ¬X → Y . Besides, one trivially proves that g realizes X → Y ,
and t realizes (¬X →Y) → (X →Y) →Y by the adequacy lemma,
so t ∗ f ·g ·π is in ⊥⊥, which means that it reduces into vn[u]∗πg for
some term u.

This allows values passed to exceptions to contain occurrences of
exceptions (however without lifting the constraint on the stacks).
The specification means that the reduction of t ∗ f · g · π leads to
something equivalent to v0[kπg], i.e. that the terms the combinator
puts inside the contexts vi[] behave like a continuation kπg . This can
be understood as the fact that the exception X can be raised several
times and that it will always be caught the same way by g.

Lifting also the constraint on stacks is harder, in particular it seems
to impose some restrictions on the allowed observations, though we
did not get a proof of this. These results could probably be extended
to the general case, but the task seems notationally daunting.

4 Synthesizing Combinators

Of course all DNF tautologies are provable in our system, and there-
fore one can find λκ-terms that will have them as types. Compared
to the specification as described in the theorem above, they appear
to implement it in a quite clumsy way. It is tempting to have new
combinators in the calculus doing the same job, only better.

In order to synthesize new control primitives, we now define a logic
with an associated sequent calculus to prove tautologies with, and
deduce a computational structure from the proofs, by using a spe-
cialized Curry-Howard correspondence.

4.1 The Or-And Logic

The logic L∨∧ is defined as follows, given a set Var of propositional
variables:

variables X ∈ Var

literals L ::= X | ¬X

clauses c ::= > | L∧ . . .∧L

formulas Γ ::= ⊥ | c, . . . ,c

sequents
 Γ

Again, clauses are understood as finite sets of literals and formulas
are finite sets of clauses, and > and ⊥ are their respective empty
sets. In particular, ignoring order and duplication, we derive se-
quents using a single n-ary rule:

 Γ1,∆ · · ·
 Γn,∆

 (¬X1 ∧·· ·∧¬Xn), (X1 ∧Γ1), . . . , (Xn ∧Γn), ∆

with n ≥ 0, where the notation L∧Γ represents the distribution of
the literal L over the clauses in Γ, i.e.

L∧ (c1, . . . ,cn) := (L∧ c1), . . . ,(L∧ cn)

For n = 0 our unique rule reduces to an axiom
 >,∆, noticing that
> is the conjunction of zero literals.

First of all, we have to show that this system is complete, i.e. that
it actually proves our tautologies. For this we need the following
lemma:

LEMMA 7. Every tautology in disjunctive normal form has a
clause with only negative literals.

PROOF. Let Γ be a DNF. Suppose that Γ has no such clause, then
each clause has at least one positive literal, which defines a section
with only positive literals. From proposition 4, we conclude that Γ
is not a tautology.

We also need the following notion of quotient:

Definition 2. Let Γ be a disjunctive normal form and X be a vari-
able. The quotient of Γ by X is defined as

Γ/X = {c\{X} | c ∈ Γ,¬X 6∈ c} .

For instance,

{{X ,Y},{¬X ,Z},{Z}}/X = {{Y},{Z}}.

This operation provides a reduction of Γ under the assumption that
variable X is true. Indeed we have the following consistency result:

PROPOSITION 8. Let Γ be a disjunctive normal form and X be a
variable. If Γ is a tautology, so is Γ/X.

PROOF. By construction, Γ/X has its variables in Var \{X}. Let v
be a valuation of this set of variables. Define v′ as the extension of v
to Var such that v′(X) = >. Since Γ is a tautology, v′(Γ) is true, so
there is a clause c in Γ such that v′(c) =>. Since v′(X) =>, c does
not contain ¬X , so c\{X} is a clause of Γ/X , and v(c\{X}) = >,
so v validates Γ/X .

PROPOSITION 9 (COMPLETENESS). Let Γ be a disjunctive nor-
mal form. If Γ is a tautology, then
 Γ can be derived in L∨∧.

PROOF. We actually prove a slightly stronger result, namely that
under the same conditions, for any set of clauses ∆ the sequent

5

Γ,∆ is derivable in L∨∧. We proceed by induction on the number
of variables in Γ: if there is no variable, Γ is reduced to one trivial
clause >, and
 >,∆ is derived using the nullary rule. Otherwise,
lemma 7 proves that Γ has a totally negative clause, so we can write

Γ = (¬X1 ∧·· ·∧¬Xk), Γ′

We will thus derive
 Γ,∆ by applying the k-ary rule to the k for-
mulas we get by supposing that one of these variables is true. For
each i, define

Γi = {c | c∧Xi ∈ Γ,¬Xi 6∈ c}

∆i = {c | c ∈ Γ,Xi 6∈ c,¬Xi 6∈ c}

The union of these two formulas is actually the quotient Γ/Xi, and
from proposition 8 we know that the formula Γi,∆i is a tautology.
Since it contains strictly fewer variables than Γ, the induction hy-
pothesis proves that the sequent
 Γi,∆i,Γ′,∆ is derivable. Besides,
from this definition, obviously ∆i is a subset of Γ′, so the sequent

 Γi,Γ′,∆ is derivable. Moreover, since for each i the formula
Xi ∧Γi is also included in Γ′, we can write

 Γ1,Γ′,∆ · · ·
 Γn,Γ′,∆

 (¬X1 ∧·· ·∧¬Xn),Γ′,∆

which concludes the proof.

We also have to prove that this is actually a proof system, in the
sense that the formulas it derives are (classical) tautologies. This
can be proved using the characterization with sections:

PROPOSITION 10 (SOUNDNESS). If a sequent
 Γ is derivable
in L∨∧ then the disjunctive normal form Γ is a tautology.

PROOF. We prove by induction on the derivation that any section of
Γ contains opposite literals. First we can remark that if Γ contains
the empty clause >, it has no section and the result holds trivially.
Otherwise, let σ be a section of Γ. The last rule is

 Γ1,∆ · · ·
 Γn,∆

 (¬X1 ∧·· ·∧¬Xn), (X1 ∧Γ1), . . . , (Xn ∧Γn), ∆

for some n ≥ 1, so σ contains a ¬Xi. If it also contains Xi, then
the proof is finished. Otherwise, its restriction to Xi ∧Γi,∆ is actu-
ally a section of Γi,∆, which contains opposite literals by induction
hypothesis.

As said, none of these tautologies is intuitionistically valid, except
in the particular case where they contain the trivial clause >, there-
fore any behavior they may specify is fundamentally concerned
with global control.

4.2 Charts and Combinators

Proofs in the logic L∨∧ can be interpreted as strategies in a counter-
example game: in a node that proves Γ, the conclusion contains a
distinguished totally negative clause ¬X1 ∧ ·· · ∧¬Xk. If we play
this clause and the opponent refutes it, he does so by providing a
proof of an Xi, so we can deduce that Γ is equivalent to Γ/Xi and
the proof may go down this branch. We can materialize this with a
graphical notation that we call control charts:

Γ
X1

X2
Xk

Γ/X1 Γ/X2 · · · Γ/Xk

where the label Xi on an edge represents the passing of a proof of
Xi. The nullary rule is then interpreted as a simple leaf:

>

As illustrated below, it suffices to write the distinguished totally
negative clause in each node, then the charts are read down from the
top. If the root node contains a non-trivial clause ¬X1 ∧ ·· · ∧¬Xk,
then play it. If the opponent refutes the literal ¬Xi with a value ai
of type Xi, then follow the edge labeled Xi and remember the value
ai. By construction, when reaching a node labeled >, the opponent
cannot refute.

4.2.1 Example: a Twofold Excluded-Middle

At each step, the important clause is the distinguished purely nega-
tive one, so we write only this one. Taking for instance the complete
DNF for variables X and Y we have

Γ = {¬X ∧¬Y, X ∧¬Y, ¬X ∧Y, X ∧Y}

The unique proof of this formula corresponds to the following con-
trol chart, according to the informal description above:

¬X ∧¬Y

X Y

¬Y

Y

¬X

X

> >

The point of this new notation is that it can also be understood as
describing a combinator CΓ:

CΓ ∗ ~f ·π � f¬X∧¬Y ∗αX ·αY ·π
αX ∗a ·π′ � fX∧¬Y ∗a ·αXY ·π
αY ∗b ·π′ � f¬X∧Y ∗b ·αY X ·π

αXY ∗ c ·π′ � fX∧Y ∗a · c ·π
αY X ∗d ·π′ � fX∧Y ∗d ·b ·π

The family ~α above corresponds to the edges in the chart, while ~f
corresponds to the nodes. This definition is rather informal because
it hides information: the terms αc are not constants since they are
related to a particular instance of CΓ, moreover they must remem-
ber the argument vector ~f and the initial stack π, as well as an a or a
b in the case of αXY and αY X . For instance, αXY should be written
like αXY,Γ,~f ,π,a but we avoid this notation for readability.

Another, more subtle point, is that these a and b may contain occur-
rences of αX and αY respectively and raise them again after αXY or
αY X has been triggered. Though this behavior is type-theoretically
correct, we can do better and prevent such non-linear behavior by
rebinding the exceptions on the fly:

αX ∗a ·π′ � fX∧¬Y ∗ (καX .a) ·αXY ·π
αY ∗b ·π′ � f¬X∧Y ∗ (καY .b) ·αY X ·π

αXY ∗ c ·π′ � fX∧Y ∗ (καX .a) · (καXY .c) ·π
αYX ∗d ·π′ � fX∧Y ∗ (καY X .d) · (καY .b) ·π

6

We observe that this is actually closer to exception handling as
found in functional languages, where exceptions are caught only
once.

The use of such rebinding is not purely syntactical, as it corresponds
to what the specification in proposition 6 meant: an exception αX a
is always caught the same way, by calling the function fX∧¬Y with a
as argument on the stack π, and if this leads to a∗πX then applying
αX to another value a′ will also lead to a′ ∗ πX , so replacing αX
by kπX will behave the same way. This is the argument for the
introduction of καX .a, as we will see in the proof of theorem 11
below.

4.2.2 General Definition

We are left now with the mission to define, for any chart, the asso-
ciated combinator and to prove its correctness.

Given a chart C over Γ, starting with clause c =¬X1∧·· ·∧¬Xk and
with immediate sub-charts CX1 , . . . ,CXk , we define CC inductively:

CC ∗ ~f ·π � fc ∗αX1 · · ·αXk ·π (1)

αXi ∗ v ·π′ � CCXi
∗ ~f ′ ·π (2)

where the αXi are new language constructs (and not variables, for
instance), and where ~f ′ is indexed on the clauses of Γ/Xi and de-
fined as

f ′c = fc if c ∈ Γ (3)

f ′c = fXi∧c(κx.v[x/αXi]) if Xi ∧ c ∈ Γ (4)

assuming, in the second case, that the type of fXi∧c has the literal Xi
in first position.

Note that the notation αXi is not formally enough, because the new
rules imply that these objects have a memory of the chart C and the
terms fc. To be precise, we would need to put all required informa-
tion in the indices, however this would lead to a heavy notation that
we avoid by making them implicit.

In a way, the κx.v[x/αXi] represents what has been learned from
raising the exception αXi , and we see that this exception will never
be raised again, since αXi is no longer free in the right-hand side
of (2).

In the particular case where c is the trivial clause >, the definition
downs to

CC ∗ ~f ·π � f> ∗π

so the combinator is a pure projection, indeed an intuitionistic con-
struct.

Fresh symbols are needed at step (1) because at step (4) we have to
be sure that what we bind was actually created at the corresponding
step (1). This is crucial in the correctness argument below.

4.3 Correctness

So we have a class of combinators with clearly defined reduction
rules, but we still have to prove that they actually realize the type
they are intended to implement. The dynamic binding, while mak-
ing the combinator’s definition valid, imposes a restriction on the
validity of realization.

Definition 3. An observable set ⊥⊥ is called sequential if it is not
empty, closed under reduction and validates the substitution prop-
erty: for any context e and any term t, if e[t] ∈ ⊥⊥ and if e[x] does
not reduce into an x∗π, then e[u] ∈⊥⊥ for all terms u.

These conditions arise rather naturally in the correctness proof. Be-
sides, the observables used in various specification theorems are all
of this form. Therefore, these specifications will still hold in our en-
riched calculus. We examine below the simple example of Church
booleans. Another example, that of computational consistency in
the presence of arithmetic constructs, is given in related work of
the first author [1].

THEOREM 11. Let Γ be a tautology in disjunctive normal form
and C be a chart over Γ. For any sequential ⊥⊥, the combinator CC
realizes the type Γ.

PROOF. We proceed by induction on the height of the chart C .
When C is a leaf, we have Γ = >,c1, . . . ,cn, which is the type
Z → (c1 → Z) → ··· → (cn → Z) → Z. As said, the definition of
CC gives CC ∗ ~f ·π � f> ∗π so for any ⊥⊥ and any value for [Z], if
f> � Z then for any π in [Z] we have CC ∗ ~f ·π � f> ∗π ∈ ⊥⊥, thus
CC � Γ.

Suppose C starts with a negative clause n = ¬X1 ∧·· ·∧¬Xk and let
⊥⊥ be a sequential set of observables. Assume for each variable X
a valuation [X]⊆ Π, and call Z the variable used as the return type.
For each clause c in Γ, let fc be a term that realizes c → Z. By
definition we have

CC ∗ ~f ·π � fn ∗αX1 · · ·αXk ·π

so if we prove that the right member is in ⊥⊥ we can conclude that
CC realizes Γ.

If the reduction of fn ∗~α ·π never places any αX in head position,
fn ∗~t · π will also ignore ~t for any family of terms, so it holds in
particular if tX � ¬X (the family is indexed on the variables in n),
in which case fn ∗~t ·π is in ⊥⊥. Then by the substitution property
we deduce that fn ∗~α ·π is in ⊥⊥, since none of the |¬X | is empty
(because ⊥⊥ 6= /0).

Otherwise these exists a propositional variable X , a multi-hole term
context vX [] and a stack π′ such that we have

fn ∗~α ·π � αX ∗ vX [αX] ·π′ � CCX
∗ ~f ′ ·π

using the notations of section 4.2.2, thus proving that the third exe-
cutable is in ⊥⊥ is enough to conclude. By induction hypothesis, the
combinator CCX

realizes Γ/X , so we have to prove that f ′c realizes
c → Z for each c in Γ/X . If c is a clause of Γ, we have f ′c = fc
and fc � c → Z by hypothesis. Otherwise X ∧ c is a clause of Γ and
f ′c = fX∧c(κx.vX [x]). By hypothesis, we know that fX∧c realizes
X → c → Z, so we can conclude if κx.vX [x] realizes X .

Here is the key argument. Let us write n = X ∧m, assuming the
first argument to fn has type X , and look closely at the reduction
that produces the context vX []. Let πX be a stack in [X]. Obviously
the term kπX realizes ¬X , so fnkπX realizes m→ Z, so we have these
two convergent reductions, where ~α is any family indexed over m
such that βL � L for each literal L in m:

fn ∗ kπX ·
~β ·π � kπX ∗ vX [kπX] ·π′ � vX [kπX]∗πX

κx.vX [x]∗πX � vX [kπX]∗πX

Observe that since αX is fresh when passed to fn, the instances of
αX in αX vX [αX] are exactly all the residuals of that fresh αX , there-

7

fore the first reduction holds. We have fn � X → m → Z, kπX � X

and~β � m and the stack π is in [Z], therefore the first executable is in
⊥⊥, and since ⊥⊥ is closed under both reduction and anti-reduction,
κx.vX [x]∗πX is also in ⊥⊥, thus κx.vX [x] realizes X as required.

The import of this correctness result is that one can safely extend
the λκ-calculus with the family CC and assign type Γ to CC when C
is a chart over Γ, while keeping the coherence of the whole system,
as we will prove now.

4.4 Computational Consistency

Showing that new combinators integrate well in the tying system is
good thing, and showing that the calculus itself still makes sense is
also useful. To this end, we show that some non-trivial specifica-
tion result, namely the one for Church booleans exposed in propo-
sition 3, still holds in the enriched calculus. For each b ∈ {0,1}, we
defined the type boolean b as

Bb = ∀X0∀X1(X0 → X1 → Xb)

Then we have the following specification:

PROPOSITION 12. Let t be a term typable as Bb for some b ∈
{0,1}. For any couple of variables (u0,u1) the executable t ∗ u0 ·
u1 · ε reduces into ub ∗ ε.

PROOF. Let u0 and u1 be two variables not appearing in t. Define
⊥⊥ as the closure of {ub ∗ ε} by anti-reduction, which is clearly a
sequential observable set. Since ` t : Bb is derivable by hypothesis,
adequacy proves that t � Bb. Define [Xb] to be {ε} and [X1−b] to
be empty. Then ub � Xb and u1−b � X1−b, so t ∗u0 ·u1 · ε is in ⊥⊥,
which means that it reduces into ub ∗ ε.

This proposition, as compared to its previous statement, deals with
variables as arguments and requires an empty stack. The reason
for this is that the closure by anti-reduction of {ub ∗ ε} is then a
sequential observation. Stating a general result would require to
define ⊥⊥ as the smallest sequential observation that contains ub ∗π
(in the notations of proposition 3). The conclusion would be that t ∗
u0 ·u1 ·π reduces not into ub ∗π, but into something observationally
equivalent, namely a reduction of it, potentially with a substitution
performed on terms that never reach the head.

However, by reasoning about the stability of variable substitution
with respect to the reduction relation, we can get back to the original
specification. We will not formalize this, because it is beyond the
point of our remark, and because it would require some amount of
work, in particular the introduction of stack variables.

5 A Possible Syntax

To get an idea of the meaning of the combinators CC as program-
ming constructs, we sketch a syntax for them in an ML-like lan-
guage. On the model of constructs like the try body with Exn x →
handler of exceptions, let us write

sync catch C1
1x1, . . . ,C1

p1
xp1 throw T 1

1 , . . . ,T 1
n1

do t1
...

catch Ck
1x1, . . . ,Ck

pk
xpk throw T k

1 , . . . ,T k
nk

do tk

as a syntactic sugar around CC applied to terms t1, . . . ,tk. All the
T i

j and Ci
j belong to the same set of names, indexed by the variables

of Γ:

• T i
j is understood as an exception, i.e. an object of negative

type that one throws with value v by writing raise (T v), or
simply (T v),

• Ci
jx j is understood as a co-exception, i.e. an object that re-

ceives a value of a positive type thrown by an associated ex-
ception of the same name Ci

j and binds it in ti to the variable
x j .

The corresponding DNF is

Γ =
k

_

i=1

(
nk̂

j=1

¬T i
j ∧

pk̂

j=1

Ci
j

)

The corresponding chart is constructed inductively by picking the
first completely negative clause (that catches nothing) and using the
quotient construction. Of course, this might not succeed if Γ is not
a tautology, and this is part of the type-checking of this structure.
If it does type-check, we know from the correctness result that no
exception can escape.

In a programming setting, using names in place of the propositional
variables is mandatory since pure type inference cannot discover the
whole structure, in particular because different propositional vari-
ables may be assigned the same type in a particular instantiation.

5.1 Back to the Example

Returning to the example of the twofold excluded middle (as seen
in section 4.2.1), the syntax

sync throw A,B do t1
catch Ax throw B do t2
catch By throw A do t3
catch Ax,By do t4

will then represent the term

CC (λAλB.t1)(λxλB.t2)(λyλA.t3)(λxλy.t4).

The semantics of this construct will be to execute t1 and return its
return value, unless it raises one of the exceptions. If the execution
of t1 leads to raise (Aa), then exception A is caught; the value a is
sent to all the cases that are able to catch A (here t2 and t4) and those
that throw A are discarded (here t3, and of course t1). The result is
that the execution continues with

sync throw B do t2[a/x]
catch By do t4[a/x]

Note that with this particular tautology, there is only one possible
control chart, so the order in which clauses are written is purely
cosmetic.

As shown in the reduction above, in the simple case of the excluded
middle, the syntax boils down to

sync throw Exn do body
catch Exn x do handler

which is not too far from the usual try . . . with presentation, except
that we are dealing here with a locally defined exception and that
we provide strong typing.

6 Conclusions

Information flows mostly from programming language design to
theory and not in the other direction. The story of control oper-

8

ators, of how they were discovered to correspond to Peirce’s law
by Griffin [6] and Felleisen, and only later were put on the logic
workbench [5, 6, 12, 13, 3], makes this absolutely clear.

We have presented here an analysis of disjunctive normal forms
leading to the synthesis of a new family of multi-exception han-
dlers which we can present also in a reasonable programming-style
syntax. Free with the method, based on running Curry-Howard
backwards and using Krivine’s realizability, comes the means of
asserting the correctness of these combinators. The realizability
approach shows really strong here in allowing us to deal with a con-
trolled form of dynamic binding and to smoothly extend the typing
system.

The combinators we have constructed are all based on the idea of
using only negative exceptions. But, DNF always have a purely
positive clause as well, not just a purely negative one. Building on
this idea, it is possible to develop a completely symmetric world of
co-exception based combinators, or even to mix styles, and this still
needs to be explored.

Another question is whether the analogy between control charts and
winning strategies can be made rigorous and whether there is a con-
nection to Kreisel’s famous “no-counter-example” interpretation or
other game-based explanations of classical truth.

The theory of realizability shows to smoothly extend to more so-
phisticated calculi, with constants and data types [1]. This suggests
that our results will still hold in settings closer to real programming
languages, the first example being that of PCF with control. On
the way towards realistic programming settings, extensions of λ-
calculus with other forms of control, like partial continuations [7],
catch/throw [11, 8] could be studied with our techniques.

Finally, another challenging question is whether one can do the
same analysis in a call-by-value scenario and get new, clean and ab-
stract control forms that one can prove to be correct and that would
be more meaningful for an actual programming language. We think
it is possible.

7 References

[1] E. Beffara. Realizability with constants. Workshop on Formal
Methods and Security, Nanjing, China, 2003.

[2] G. Cousineau and M. Mauny. The Functional Approach to
Programming with Caml. Cambridge University Press, 1998.

[3] V. Danos, J.-B. Joinet, and H. Schellinx. A new deconstructive
logic: Linear logic. Journal of Symbolic Logic, 62:755–807,
1996.

[4] V. Danos and J.-L. Krivine. Disjunctive tautologies as syn-
chronisation schemes. In P. Clote and H. Schwichtenberg, ed-
itors, Proceedings of CSL’00, number 1862 in Lecture Notes
in Computer Science, pages 292–301, Fischbachau, 2000.
Springer Verlag.

[5] J.-Y. Girard. A new constructive logic: Classical logic. Math-
ematical Structures in Computer Science., 1992.

[6] T. G. Griffin. A formulae-as-types notion of control. In 17th
Symposium on Principles of Programming Languages, pages
47–58. ACM, Jan. 1990.

[7] Y. Kameyama. A type-theoretic study on partial continua-
tions. In J. van Leeuwen, O. Watanabe, M. Hagiya, P. D.
Mosses, and T. Ito, editors, Theoretical Computer Science:
Exploring New Frontiers of Theoretical Informatics, volume
1872 of Lecture Notes in Computer Science, pages 489–504.
Springer Verlag, 2000.

[8] Y. Kameyama and M. Sato. Strong normalizability of the non-
deterministic catch/throw calculi. Theoretical Computer Sci-
ence, 272(1–2):223–245, 2002.

[9] J.-L. Krivine. Typed lambda-calculus in classical Zermelo-
Frænkel set theory. Archive in Mathematical Logic,
40(3):189–205, 2001.

[10] J.-L. Krivine. Dependent choice, ‘quote’ and the clock. The-
oretical Computer Science, to appear.

[11] H. Nakano. A constructive formalization of the catch and
throw mechanism. In Symposium on Logic in Computer Sci-
ence (LICS’92), pages 82–89, Santa Cruz, California, 1992.

[12] C.-H. L. Ong and C. A. Stewart. A Curry-Howard founda-
tion for functional computation with control. In Proceeding
of POPL’97, 1997.

[13] M. Parigot. Strong normalization for second-order lambda-
mu calculus. In Proceedings of LICS’93, 1993.

9

