Examen du cours « Logique et théorie du calcul » (2012-2013)

Emmanuel Beffara & Yves Lafont Institut de Mathématiques de Luminy Université d'Aix-Marseille

jeudi 13 décembre 2012

1 Fonctions primitives récursives et réécriture de mots

Au lieu de définir les fonctions primitives récursives comme des applications $f: \mathbb{N}^p \to \mathbb{N}$ (avec $p \in \mathbb{N}$), on va plutôt les définir comme des applications $f: \mathbb{N}^p \to \mathbb{N}^q$ (avec $p, q \in \mathbb{N}$). On obtient ainsi une définition plus naturelle, et plus proche de la réécriture de mots ou des machines à piles. Cette définition, due à Albert Burroni, est inspirée par la théorie des catégories.

On considère la plus petite classe $\mathcal P$ qui contient les applications suivantes :

- $id_p : \mathbb{N}^p \to \mathbb{N}^p$ pour tout $p \in \mathbb{N}$, définie par $id_p(x_1, \dots, x_p) = (x_1, \dots, x_p)$;
- $\mathbf{0}_p: \mathbb{N}^p \to \mathbb{N}^{p+1}$ pour tout $p \in \mathbb{N}$, définie par $\mathbf{0}_p(x_1, \dots, x_p) = (0, x_1, \dots, x_p)$;
- $\mathbf{S}_p : \mathbb{N}^{p+1} \to \mathbb{N}^{p+1}$ pour tout $p \in \mathbb{N}$, définie par $\mathbf{S}_p(x_0, x_1, \dots, x_p) = (x_0 + 1, x_1, \dots, x_p)$;

et qui est close par les deux opérations suivantes :

• la composée $h = g \circ f : \mathbb{N}^p \to \mathbb{N}^r$, pour $f : \mathbb{N}^p \to \mathbb{N}^q$ et $g : \mathbb{N}^q \to \mathbb{N}^r$, définie par :

$$h(x_1,\ldots,x_p)=g(f(x_1,\ldots,x_p));$$

• l'itérée $k = q * f : \mathbb{N}^{p+1} \to \mathbb{N}^q$, pour $f : \mathbb{N}^p \to \mathbb{N}^q$ et $g : \mathbb{N}^q \to \mathbb{N}^q$, définie par :

$$\begin{cases} k(0, x_1, \dots, x_p) = f(x_1, \dots, x_p), \\ k(x_0 + 1, x_1, \dots, x_p) = g(k(x_0, x_1, \dots, x_p)). \end{cases}$$

Par exemple, on a $g * f(3, x_1, ..., x_p) = g(g(g(f(x_1, ..., x_p)))).$

On note () l'unique élément de \mathbb{N}^0 , et on identifie \mathbb{N}^1 avec \mathbb{N} .

- 1. Montrer que pour tout $n \in \mathbb{N}$, l'application $n : \mathbb{N}^0 \to \mathbb{N}^1$, définie par n() = n, est dans la classe \mathcal{P} .
- 2. Montrer que l'application $\sigma: \mathbb{N}^2 \to \mathbb{N}$, définie par $\sigma(x,y) = x + y$, est dans la classe \mathcal{P} .
- 3. Montrer que l'application $d: \mathbb{N} \to \mathbb{N}$, définie par d(x) = 2x, est dans la classe \mathcal{P} .
- 4. Montrer que l'application $e: \mathbb{N} \to \mathbb{N}$, définie par $e(x) = 2^x$, est dans la classe \mathcal{P} .
- 5. Montrer que l'application $\delta: \mathbb{N} \to \mathbb{N}^2$, définie par $\delta(x) = (x, x)$, est dans la classe \mathcal{P} .

On introduit l'alphabet $\Sigma = \{\mathbf{o}, \mathbf{s}\}$, et on code l'entier $n \in \mathbb{N}$ par le mot $[n] = \mathbf{s}^n \mathbf{o} \in \Sigma^*$. Par exemple, on a $[3] = \mathbf{s}\mathbf{s}\mathbf{s}\mathbf{o}$.

Plus généralement, on code le *p*-uplet $(n_1, \ldots, n_p) \in \mathbb{N}^p$ par le mot $[n_1, \ldots, n_p] = [n_1] \cdots [n_p] \in \Sigma^*$. Par exemple, on a $[2, 3] = \mathbf{ssossso}$.

6. Montrer que si $f: \mathbb{N}^p \to \mathbb{N}^q$ est dans la classe \mathcal{P} , alors on peut construire un alphabet fini $\Sigma' \supset \Sigma$, un ensemble fini $\mathcal{R} \subset \Sigma'^* \times \Sigma'^*$, et un mot $u \in \Sigma'^*$ tels que, pour tout $(x_1, \ldots, x_p) \in \mathbb{N}^p$, on a :

$$u[x_1, \ldots, x_p] \to_{\mathcal{R}}^* [y_1, \ldots, y_q] \text{ où } (y_1, \ldots, y_q) = f(x_1, \ldots, x_p).$$

7. Expliciter Σ' et $\mathcal R$ dans chacun des cas particuliers suivants :

$$\sigma: \mathbb{N}^2 \to \mathbb{N}, \qquad d: \mathbb{N} \to \mathbb{N}, \qquad e: \mathbb{N} \to \mathbb{N}.$$

8. Montrer que les trois systèmes de réécriture ci-dessus sont *convergents*, c'est-à-dire qu'ils satisfont les propriétés de *terminaison* et de *confluence*.

2 Arithmétique de Peano et calculabilité

On rappelle qu'un énoncé est dit Δ_0 s'il utilise le langage de l'arithmétique (avec relation d'ordre) et si dans cet énoncé toute quantification universelle est de la forme $\forall x((x \leq t) \to A)$, notée $(\forall x \leq t)A$, et toute quantification existentielle est de la forme $\exists x((x \leq t) \land A)$, notée $(\exists x \leq t)A$. Un énoncé Σ_1 est un énoncé de a la même forme précédé d'une quantification existentielle $\exists t$ pas nécessairement bornée.

- 1. Montrer que les énoncés suivants peuvent s'exprimer avec des énoncés Δ_0 :
 - « q est le quotient de a par b dans la division euclidienne »
 - « q est le reste dans la division euclidienne de a par b »
 - − « a est un carré »
 - « a est une puissance de 2 »
 - « a est une puissance de 4 »

On considère des machines de Turing à 1 ruban sur un alphabet $\{a,b\}$ en plus des deux symboles spéciaux de case vide et case initiale.

2. Montrer que l'on peut représenter une configuration d'une machine de cette nature par un triplet $(q, a_1 \dots a_\ell, b_1 \dots b_r)$ où les a_i sont les lettres à gauche $(a_1$ est celle qui est immédiatement à gauche et a_ℓ celle qui est en première position sur le ruban).

On considère les mots comme des entiers écrits en base 4 (puisqu'il y a 4 symboles) et on représente donc une configuration par trois entiers (q, L, R).

- 3. Montrer que, pour une macine de Turing donnée M, on peut écrire l'énoncé suivant dans Δ_0 :
 - (q,L,R) n'est pas une configuration finale et (q',L',R') est la configuration suivante de M
- 4. En déduire que l'énoncé suivants peut être exprimé en arithmétique par un énoncé Δ_0 :
 - « partant de la configuration (q, L, R), la machine M termine en au plus t étapes sa configuration finale est (q', L', R') »
- 5. Conclure qu'une fonction (éventuellement partielle) de \mathbb{N} dans \mathbb{N} est calculable par une machine de Turing si et seulement si elle est récursive.