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ABSTRACT. In this paper we prove that given a pair (X, D) of a threefold X and
a boundary divisor D with mild singularities, if (KX + D) is movable, then the
orbifold second Chern class c2 of (X, D) is pseudoeffective. This generalizes the
classical result of Miyaoka on the pseudoeffectivity of c2 for minimal models. As
an application, we give a simple solution to Kawamata’s effective non-vanishing
conjecture in dimension 3, where we prove that H0(X, KX + H) 6= 0, whenever
KX + H is nef and H is an ample, effective, reduced Cartier divisor. Furthermore,
we study Lang-Vojta’s conjecture for codimension one subvarieties and prove that
minimal threefolds of general type have only finitely many Fano, Calabi-Yau or
Abelian subvarieties of codimension one that are mildly singular and whose nu-
merical classes belong to the movable cone.
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1. INTRODUCTION

It is well known that the Chern classes of nef vector bundles over smooth pro-
jective varieties satisfy certain inequalities [DPS94]. More generally, a theorem
of Miyaoka [Miy87] states that over a normal, projective variety (that is smooth
in codimension two) any torsion free, coherent sheaf E that is semipositive with re-
spect to the tuple of ample divisors (H1, . . . , Hn−1) and whose determinant det(E )
is nef, verifies the inequality

c2(E ) · H1 . . . Hn−2 ≥ 0.

On the other hand, thanks to Miyaoka’s celebrated generic semipositivity result,
cf. [Miy87], and the result of Boucksom, Demailly, Păun and Peternell ([BDPP13]),
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when KX is pseudoeffective, the cotangent bundle Ω1
X of a smooth projective vari-

ety is generically semipositive. As a result, for a smooth projective variety X with
KX nef, the inequality

(1.0.1) c2(X) · H1 . . . Hn−2 ≥ 0

holds, for any tuple of ample divisors (H1, . . . , Hn−2).
Recent works of Campana and Păun ([CP15], [CP16]) have generalized some

parts of Miyaoka’s results, showing in particular that if X is a smooth projective
variety with KX pseudoeffective, then Ω1

X is semipositive with respect to any mov-
able class α ∈ Mov1(X) (see Definition 2.3).

Our first result is a natural generalization of the inequality (1.0.1) to the setting
of pairs with movable log-canonical divisors.

Theorem 1.1. Let X be a normal projective threefold that is smooth in codimension two
and D a reduced effective divisor such that (X, D) has only isolated lc singularities. If
(KX + D) ∈ Mov1

(X), then for any ample divisor A, the inequality

c2
(
(Ω1

X log(D))∗∗
)
· A ≥ 0

holds.

The second result is another generalization of an inequality established by
Miyaoka [Miy87], which is sometimes referred to as the Miyaoka-Yau inequality.

Theorem 1.2. Let X be a normal projective threefold that is smooth in codimension two
and D a reduced effective divisor such that (X, D) has only isolated lc singularities. If
(KX + D) ∈ Mov1

(X), then

c2
1
(
(Ω1

X log(D))∗∗
)
· A ≤ 3c2

(
(Ω1

X log(D))∗∗
)
· A,

for any ample divisor A.

Theorem 1.2 will also be established for pairs (X, D) of dimension three with
isolated singularities (see Theorem 7.1).

There are two main ingredients in the proof of the above inequalities. The first
one is a restriction result for semistable sheaves with respect to certain movable
curves. This is described in Section 3. The second component involves the semi-
positivity of the orbifold cotangent sheaves for certain mildly singular pairs and is
treated in Section 4.

The rest of the paper is devoted to two applications of Theorems 1.1 and 1.2.
The first is concerned with the so-called effective non-vanishing conjecture.

Conjecture 1.3 (Effective non-vanishing conjecture of Kawamata). Let Y be a nor-
mal projective variety and DY an effective R-divisor such that (Y, DY) is klt. Let H be
an ample, or more generally big and nef, divisor such that (KY + DY + H) is Cartier and
nef. Then H0(X, KY + DY + H) 6= 0.

Using Theorem 1.1, in Section 6, we obtain a simple proof of the following weak
version of Conjecture 1.3 in dimension three.

Theorem 1.4 (Non-vanishing for canonical threefolds). Let Y be a normal projective
threefold with only canonical singularities. Let H be a very ample divisor. If (KY + H) is
a nef and Cartier divisor and not numerically trivial, then H0(Y, KY + H) 6= 0.

We note that Theorem 1.4 is stated in [Hör12] under the weaker assumption that
H is a nef and big Cartier divisor. The proof relies on an inequality similar to that
of Theorem 1.1 but under the weaker assumption that the first Chern class is nef
in codimension one. It seems that there is a gap in the proof of that inequality, but
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the author kindly informs us that one can get rid of this assumption and use only
the classical result of Miyaoka, where c1 is assumed to be nef (see the inequality
(1.0.1)).

A second application is given in section 8 vis-à-vis Lang-Vojta’s conjectures on
subvarieties of varieties of general type:

Geometric Lang-Vojta conjecture: In a projective variety of general type X,
subvarieties that are not of general type are contained in a proper algebraic subva-
riety of X.

In particular, a variety of general type should have only finitely many codi-
mension one subvarieties that are not of general type. We partially establish this
conjecture in the setting of the following theorem.

Theorem 1.5. Let X be a normal projective Q-factorial threefold such that KX ∈
Mov1(X). If X is of general type then X has only a finite number of movable codimension
one, normal subvarieties D verifying the following conditions.

(1.5.1) The subvariety D has only canonical singularities.
(1.5.2) The anticanonical divisor −KD is pseudoeffective.
(1.5.3) The pair (X, D) has only isolated lc singularities.

In particular, there are only finitely many such Fano, Abelian and Calabi-Yau subvarieties.

Here, by a variety of general type, we mean a normal variety whose resolution
has a big canonical bundle.

We remark that—in the smooth setting—a stronger version of Theorems 1.5
and 1.1 has been claimed in [LM97], where the authors establish these results un-
der the weaker assumption that (KX + D) is pseudoeffective. Unfortunately the
arguments in [LM97] are not complete. We refer to Remark 8.2 for a detailed dis-
cussion of these problems.

1.1. Acknowledgements. The authors would like to thank Sébastien Boucksom,
Junyan Cao, Paolo Cascini, Andreas Höring, Steven Lu and Mihai Păun for fruitful
discussions.

2. BASIC DEFINITIONS AND BACKGROUND

2.1. Movable cone. We introduce the movable cone of divisors; one of the impor-
tant cones of divisors that is ubiquitous in birational geometry.

Let X be a normal projective variety and D a Q-divisor on X. The stable base
locus of D is defined by

B(D) :=
⋂
m

Bs(|mD|).

The restricted base locus is given by

B−(D) =
⋃

A ample

B(D + A).

Definition 2.1 (Movable cone of divisors). Let N1(X)Q be the space of numerical

classes of divisors over Q; the Neron–Severi space. The movable cone Mov1
(X) ⊂

N1(X)Q is the closure of the convex cone Mov1(X) generated by the classes of all
effective divisors D such that B−(D) has no divisorial components.
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The following inclusions now follow from the definitions.

Amp(X)︸ ︷︷ ︸
ample cone

⊂ Nef(X)︸ ︷︷ ︸
nef cone

⊆ Mov1
(X) ⊆ Eff(X)︸ ︷︷ ︸

pseudoeffective cone

⊂ N1(X)Q.

The following proposition gives a more geometric picture of Definition 2.1.

Proposition 2.2 ([Bou04], Proposition 2.3). Given any α in the interior of Mov1(X),
there is a birational map φ : Y → X and an ample divisor A on Y such that [φ∗A] = α.

2.2. Stability with respect to movable 1-cycles. Now we introduce the notion of
movable curves with respect to which a slope stability theory for sheaves can be
formulated.

Definition 2.3. A class γ ∈ N1(X) is movable if there is a projecitve birational
morphism π : X̃ → X and a set of ample classes H1, . . . , Hn−1 in N1(X̃)Q such that
γ is equal to the class of π∗(H1 · . . . · Hn−1). We define Mov1(X) to be the convex
cone generated by such 1-cycles and denote its closure in N1(X)Q by Mov1(X).

Movable classes form a natural setting for the notion of stability of coherent
sheaves (see [CP11] and [GKP15]). We shall now recall the basic definitions and
properties.

Notation 2.4 (determinant sheaves). Throughout this paper by det(E ) we mean the
reflexive hull of the determinant sheaf of E .

Notation 2.5. Let X be a normal projective variety and F a coherent sheaf on X
of rank r. Let D be a Weil divisor in X such that det(F ) ∼= OX(D). When D is
Q-Cartier, we set [F ] to denote the numerical class [D] ∈ N1(X)Q of D.

Definition 2.6. Assume that X is normal, Q-factorial and projective, let γ ∈
Mov1(X). The slope of a coherent sheaf E of rank r with respect to γ is defined by

µγ(E ) :=
1
r
· [E ] · γ ∈ Q.

Definition 2.7. We say that a torsion free sheaf E is semistable with respect to γ,
if µγ(F ) ≤ µγ(E ) for any coherent subsheaf 0 ( F ⊂ E .

Proposition 2.8 ([GKP15], Corollary 2.27). Let X be a normal, Q-factorial, projective
variety and γ ∈ Mov1(X). There exists a unique Harder–Narasimhan (or HN, for short)
filtration i.e. a filtration 0 = E0 ( E1 ( · · · ( Er = E where each quotient Qi :=
Ei/Ei−1 is torsion-free, γ-semistable, and where the sequence of slopes µγ(Qi) is strictly
decreasing.

Remark 2.9. We note that, by definition, the intersection of γ ∈ Mov1(X) with
any effective divisor is strictly positive. Therefore, to have a reasonable notion of
stability, one works with elements of Mov1(X) instead of those of its closure.

Notation 2.10 (Polarization). Given a projective normal variety X, let D1, . . . , Dk ∈
N1(X)Q. By (D1, . . . , Dk) we denote the element of H2k(X) defined by D1 · . . . ·Dk.

2.3. Chern classes for singular spaces. For any i ∈ N, let X be a quasi-projective
variety that is smooth in codimension i. For every coherent sheaf F on X, by
using a finite projective resolution of F |Xreg , we can define the i-th Chern class
ci(F |Xreg) as an element of the Chow ring Ai(Xreg), cf. [Ful98]. On the other hand,
with Z := X\Xreg, there is a natural exact sequence of Abelian groups

0 −→ Ai(Z) −→ Ai(X) −→ Ai(Xreg) −→ 0.
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Therefore, if codimX(Z) > i, then we have Ai(X) ∼= Ai(Xreg). In particular, for
normal varieties, c1(F ) can be defined as an element of A1(X) as the class of the
(unique) extension of c1(F |reg). Similarly, if X is smooth in codimension two, we
can define c2(F ) ∈ A2(X). Consequently, assuming that X is projective, c2(F )
induces a multilinear form on

N1(X)Q × . . .×N1(X)Q︸ ︷︷ ︸
(n− 2)-times

,

where n = dim X.

Remark 2.11 (Non-Q-factorial case). If for every torsion free subsheaf F ⊆ E , the
class of γ ∈ Mov1(X) has a representative by a smooth curve C ⊂ Xreg such that
F |C is locally free, then the Q-factoriality assumption in Definition 2.7 is redun-
dant. In this case we can define γ-slope of F by

1
r

c1(F ) · [C] = 1
r
· deg(F |C),

where [C] ∈ An−1(X). One can relax the above—rather stringent—assumptions
on C but that would be unnecessary for our purposes in the current article. We
note that the Q-factoriality assumption in Proposition 2.8 is redundant if γ is a
1-cycle class of this form.

2.4. Q-twisted sheaves. It will be quite useful in the sequel to work in the more
general setting of Q-twisted sheaves as introduced in [Miy87].

Definition 2.12 (Q-twisted sheaves). A Q-twisted sheaf is a pair E 〈B〉, where E is
a coherent sheaf and B is a Q-Cartier divisor.

We now recall the usual formulas for Chern classes of Q-twisted locally free
sheaves.

Definition 2.13. For a Q-twisted locally-free sheaf E 〈B〉 of rank r on a normal
quasi-projective variety we have

c1(E 〈B〉) := c1(E ) + rc1(B),

c2(E 〈B〉) := c2(E ) + (r− 1)c1(E ) · c1(B) +
r(r− 1)

2
c1(B)2.

Notation 2.14. In the setting of Notation 2.5, for any Q-Cartier divisor A, we set
[F 〈A〉] = [F ] + r · [A].

For Q-factorial normal projective varieties we can define a notion of slope sta-
bility for Q-twisted sheaves with respect to γ ∈ Mov1(X) in the natural way.
Moreover, from the definition it follows that E is γ-semistable (or stable) if and
only if E 〈B〉 is γ-semistable (resp. stable) as Q-twisted sheaf (see also [Laz04-II,
Rem. 6.4.8]). In particular the following inequality follows from the well-known
Bogomolov-Gieseker inequality for smooth projective surfaces [Bog79].

Proposition 2.15 (Bogomolov–Gieseker inequality for semistable Q-twisted
sheaves). Take S to be a smooth projective surface. Let E 〈B〉 be a Q-twisted locally-
free sheaf on S of rank r and A ∈ Amp(X)Q. If E 〈B〉 is semistable with respect to A,
then E 〈B〉 verifies Bogomolov–Gieseker inequality

(2.15.1) 2r · c2(E 〈B〉)− (r− 1) · c2
1(E 〈B〉) ≥ 0.

Definition 2.16 (Semipositive sheaves). Let X be a normal, Q-factorial, projective
variety and γ ∈ Mov1(X). A torsion-free sheaf E is said to be semipositive with
respect to γ, if for every torsion-free, quotient sheaf F of E , we have [F ] · γ ≥ 0.
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Remark 2.17. Similar to the case of stability, if for every torsion free quotient F
of E , the class of γ has a representative by a smooth projective curve C as in Re-
mark 2.11, then the Q-factoriality assumption in Definition 2.16 is not necessary.
In this case the semipositivity assumption is given by

c1(F ) · [C] = deg(F |C) ≥ 0.
For a Q-factorial projective variety X the two definitions coincide.

The semipositivity property for sheaves also naturally extends to the setting of
Q-twisted sheaves. We say E 〈B〉 is semipositive with respect to γ, if [F 〈B〉] · γ ≥
0, for all torsion free quotient sheaves F .

2.5. Orbifold basics. Following the terminology of Campana [Cam04], an orb-
ifold is simply a pair (X, D), consisting of a normal quasi-projective variety and a
boundary divisor D = ∑ di ·Di, where di = (1− bi/ai) ∈ [0, 1] ∩Q. We follow the
usual convention that when di = 1 we have “ai = ∞”. Throughout this article all
pairs (X, D) will be of this form. As such, we frequently refer to them simply as
pairs. When X is projective, we refer to (X, D) as above as a projective pair. We say
(X, D) is log-smooth, if X is smooth and D has simple normal crossing support.

Our main aim is now to define a notion of cotangent sheaf, adapted to a pair.
To this end, and since we will not be exclusively working with smooth varieties,
we will need a notion of pull-back for Weil divisors (that are not necessarily Q-
Cartier). We denote the group of Weil divisors by WDiv(X) and set WDiv(X)Q :=
WDiv(X)⊗Q to denote the group of Q-Weil divisors.

Definition 2.18 (Pull-back of Weil divisors). Let f : Y → X be a finite morphism
between quasi-projective normal varieties X and Y. We define the pull-back f ∗(D)
of a Q-Weil divisor D ⊂ X by the Zariski closure of f ∗(D|Xreg).

Notation 2.19. Given a pair (X, D), with D = ∑ di · Di, we use the following nota-
tions:

bDc := ∑bdic · Di,

dDe := ∑ddie · Di,
where bdic denotes the round-down and ddie the round-up.

Definition 2.20 (Adapted and strongly adapted morphisms). Let (X, D) be an orb-
ifold. A finite, surjective morphism f : Y → X is called adapted (to D) if, f ∗D is an
integral Weil divisor and f is unramified at the generic point of bDc. We say that
a given adapted morphism f : Y → X is strictly adapted, if we have f ∗Di = ai · D′i ,
for some Weil divisor D′i ⊂ Y. Furthermore, we call a strictly adapted morphism
f , strongly adapted, if the branch locus of f only consists of supp

(
D − bDc + A

)
,

where A is a general member of a basepoint free linear system on X.

Remark 2.21. For a log-smooth pair (X, D), the existence of a strongly adapted
morphism f : Y → X was established by Kawamata, cf. [Laz04-II, Prop. 4.1]. A
similar strategy can be applied to construct strongly adapted morphisms f : Y →
X when all the irreducible components of D are Q-Cartier; in particular when X is
assumed to be Q-factorial. Alternatively, one can use the following more general
statement, which follows from Kawamata’s original result.

Proposition 2.22. Let D ⊂ X be a prime divisor on a normal quasi-projective variety.
For every m ∈ N there is a normal variety Y, a finite morphism f : Y → X and a Weil
divisor DY ⊂ Y such that
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(2.22.1) f ∗D = m · DY, and that
(2.22.2) the branched locus of f consists of D and a general member of a basepoint free

linear system.

Proof. Let π : (X̃, D̃) → (X, D) be a log-resolution. By [Laz04-II, Prop. 4.1] we
know that there is a morphism f̃ : Ỹ → X̃ of smooth quasi-projective varieties
such that f̃ ∗D̃ = mDỸ, for some Weil divisor DỸ ⊂ Ỹ. Define g := π ◦ f̃ . Now, let
µ : Ỹ → Y be the birational morphism and f : Y → X the finite map arising from
Stein factorization of g. After normalization, if necessary, the morphism f : Y → X
satisfies the required properties1. �

The following lemma is useful in the course of the arguments in Section 4. Its
proof follows directly from the construction of adapted morphisms. Nevertheless,
for the reader’s convenience, we include a brief argument.

Lemma 2.23. Let (X, D) be a pair with bDc = 0, and g : Y → X any finite morphism
of normal varieties. There is an adapted morphism h : Z → (X, D) factoring through g
and a morphism r : Z → Y.

Proof. Setting D = ∑(1− bi/ai) ·Di, for every i, let nj ∈N be the integer for which
we have

g∗Di =
ki

∑
j(i)=1

nj · Dij,

for some ki ∈ N. Define mi := lcm(n1, . . . , nki). By Proposition 2.22, for each
Dij ⊂ Y we can construct a morphism rij : Zij → Y such that

r∗ij(Dij) = (
mi
nj
· ai) · Bij,

for some Bij ⊂ Zij. Let r : Z → Y denote the composition of all such maps. Then,
by construction we have

r∗(g∗Di) =
ki

∑
j=1

nj · r∗(Dij)

= (ai ·mi)
ki

∑
j=1

Bij,

as required. �

Notation 2.24. Let f : Y → X be a morphism adapted to D, where D = ∑ di · Di,
di = 1− bi

ai
∈ (0, 1] ∩Q. For every irreducible component Di of (D − bDc), let

{Dij}j(i) be the collection of prime divisors that appear in f ∗(Di). We define new
divisors in Y by

Dij
Y := bi · Dij(2.24.1)

D f := f ∗(bDc).(2.24.2)

Now, let us explain how to define the cotangent sheaf of an orbifold (or a pair).

1For an effective, π-exceptional divisor E and ample divisor A ⊂ X, the ample divisor in Kawa-
mata’s construction should be taken to be of the form (π∗A− a · E), with a ∈ Q+ sufficiently small, so
that (π∗A− a · E) is ample. This guarantees that Property (2.22.2) is satisfied.
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Definition 2.25 (Orbifold cotangent sheaf). In the situation of Notation 2.24, de-

note Y◦ to be the log-smooth locus of the pair (Y, ∑ Dij + D f ) and define Dij
Y
◦

:=

Dij
Y|Y◦ . Set Ω1

(Y◦ , f ,D) to be the kernel of the sheaf morphism

( f |Y◦)∗
(
ΩX log(dDe)

)
−→

⊕
i,j(i)

O
Dij

Y
◦

induced by the natural residue map. We define the orbifold cotangent sheaf
Ω[1]

(Y, f ,D)
by the coherent extension (iY◦)∗(Ω1

(Y◦ , f ,D)), where iY◦ is the natural in-

clusion. We define the orbifold tangent sheaf T(Y, f ,D) by (Ω[1]
(Y, f ,D)

)∗.

3. RESTRICTION RESULTS FOR SEMISTABLE SHEAVES

Let h = (H1, . . . , Hn−1) be a tuple of ample divisors on a normal projective vari-
ety X of dimension n and E a torsion free sheaf. A theorem of Mehta-Ramanathan
[MR82] states that if m is large enough and Y ∈ |mHn−1| is a generic hypersurface,
then the maximal destabilizing subsheaf of E |Y is the restriction of the maximal
destabilizing subsheaf of E .

It is natural to try to extend this restriction theorem to movable polarization.
Unfortunately, in general, such results are not valid for movable curve. For ex-
ample, when X is a projective K3 surface then its cotangent bundle Ω1

X is not
pseudoeffective, which gives rise to the existence of movable curves for which
the restriction theorem does not hold (cf. [BDPP13, Sect. 7]).

In this section, we will prove a restriction theorem for some movable curves
(see Proposition 3.9 below). The following lemmas will serve as key technical
ingredients in the proof of this result.

Set-up 3.1. Let π : S̃ → S be a birational morphism of smooth projective surfaces
S̃ and S. Let ÃS̃ ⊂ S̃ be an ample divisor and define PS := [π∗(ÃS̃)] ∈ N1(S)Q.

Lemma 3.2 (Induced destabilizing subsheaves of small rank on higher birational
models. I). In the setting of Set-up 3.1, let GS be a locally free sheaf on S of rank two.
Assume that FS ⊂ GS is a saturated and properly destabilizing subsheaf of GS. If B̃ ⊂
π∗GS is the maximal destabilizing subsheaf of π∗GS, then

(
π∗(B̃)

)∗∗ ∼= FS.

Proof. The proof is a direct consequence of the assumptions made on the slopes of
B̃ and FS. More precisely, if we consider the exact sequence

0 −→ π∗FS −→ π∗GS −→ Q̃ −→ 0,

where π∗FS is the saturation of π∗FS in π∗GS, we have the slope inequality
µÃS̃

(Q̃) < µÃS̃
(π∗GS). This implies that the induced map from B̃ to Q̃ is zero,

otherwise we get µÃS̃
(B̃) < µÃS̃

(Q̃), which is absurd. It thus follows that there is
an injection

B̃ ↪−→ π∗FS

But the slope of B̃ is maximal. Therefore B̃ ∼= π∗FS and this proves the claim.
�

Lemma 3.3. In the setting of Set-up 3.1 let ES be a locally free sheaf of rank three on
S. Define G̃S̃ ⊂ π∗ES to be the maximal destabilizing subsheaf with respect to ÃS̃. If
rank(G̃S̃) = 2, then for every saturated, properly destabilizing subsheaf FS ⊂ ES of rank
one with respect to PS, there is an injective morphism

FS ↪−→ GS,



ORBIFOLD CHERN CLASSES INEQUALITIES 9

where GS :=
(
π∗G̃S̃

)∗∗.
Proof. Let π∗FS denote the saturation of π∗FS in π∗ES and set Q̃ to be the torsion
free quotient π∗ES/π∗FS, whose slopes satisfies the inequality

(3.3.1) µ(Q̃) < µ(π∗ES).

As rank(FS) = 1, there is a nontrivial morphism σ : G̃S̃ → Q̃.
Now, if σ is injective, then µ(G̃S̃) ≤ µ(Q̃). It then follows from the inequality

(3.3.1) that
µ(G̃S̃) < µ(π∗ES),

a contradiction. Therefore K̃ := Im(σ) ⊂ Q̃ is a rank one subsheaf, giving rise to
the commutative diagram of exact sequences:

0 // π∗FS // π∗ES // Q̃ // 0

0 // M̃

OO

// G̃S̃
σ //

OO

K̃ //

OO

0.

Claim 3.4. µÃS̃
(K̃ ) > µÃS̃

(Q̃).

Proof of Claim 3.4. Aiming for a contradiction, assume that µ(K̃ ) ≤ µ(Q̃). Now,
as G̃S̃ is ÃS̃-semistable, the inequality

(3.4.1) µ(G̃S̃) ≤ µ(K̃ )

holds. On the other hand, we have

(3.4.2) µ(K̃ ) ≤ µ(Q̃) < µ(π∗FS),

where the last inequality follows from (3.3.1); that is, the fact that π∗FS ⊂ π∗ES is
properly destabilizing. But (3.4.1) and (3.4.2) lead to the inequality

µ(G̃S̃) < µ(π∗FS),

which contradicts the assumption on G̃S̃ having the maximal slope. This finishes
the proof of the claim.

We now consider the saturation of K̃ , which we denote by K̃1, as a properly
destabilizing subsheaf of Q̃ with the resulting exact sequence of sheaves

0 // K̃1 //τ // Q̃ // Ã // 0

that are locally free in codimension one. Let B̃ be the kernel of the induced surjec-
tion γ : π∗ES −→ Ã and

0 // B̃ // π∗ES
γ // Ã // 0,

the corresponding exact sequence.
As K̃ generically coincides with ker(τ) = K̃1, the induced map G̃S̃ −→ Ã is

zero. Therefore there is an injection

G̃S̃ ↪−→ B̃.
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Now, since G̃S̃ is the maximal destabilizing subsheaf (with respect to the ample
divisor ÃS̃), it follows that G̃S̃ and B̃ are isomorphic in codimension one.

On the other hand, from the sequence

0 // π∗FS // π∗ES
g //

γ

$$
Q̃ // Ã ,

we can see that there is an injection π∗FS = ker(g) ↪−→ ker(γ) = B̃. Noting that
FS ⊂ ES is saturated and thus reflexive, this implies that FS injects into (π∗G̃S̃)

∗∗.
�

Lemma 3.5 (Induced destabilizing subsheaves of small rank on higher birational
models. II). In the situation of Set-up 3.1, let ES be a PS-unstable locally free sheaf of
rank three on S. Assume that ES contains a saturated properly destabilizing subshseaf FS
of rank one. Let G̃S̃ ⊂ π∗ES be the maximal ÃS̃-destabilizing subsheaf of π∗ES and define
GS := (π∗G̃S̃)

∗∗. Then, either
(3.5.1) GS is a properly destabilizing subsheaf of ES. Or
(3.5.2) there is a nontrivial morphism

(∗) π∗FS → G̃S̃
inducing an injection FS → GS, whose image is properly destabilizing. Or

(3.5.3) the Harder–Narasimhan filtration of π∗ES has two steps. With D̃S̃ :=
FHN

2 (π∗ES) and DS := (π∗D̃S)
∗∗, there is an injection FS → DS ⊂ ES.

Moreover, we either have

µPS(DS) > µPS(ES)

or DS is not semistable, with the image of FS in DS being a properly destabilizing
subsheaf.

Proof. We exclude Item (3.5.1) by making the assumption that

(3.5.4) µPS(GS) ≤ µPS(ES).

Assume further that rank(GS) = 2. Then, according to Lemma 3.3 we have an
injection

(3.5.5) FS ↪−→ GS.

Using (3.5.4) we can see that the image of FS under the map (3.5.5) properly desta-
bilizes GS.

Now, if rank(GS) = 1, consider the exact sequence

0 // G̃S̃
// π∗ES //ν // C̃ // 0.

Using (3.5.4) again, we can see that there is an injection π∗FS ↪−→ C̃ . Then, the
inequalities

µ(π∗FS) > µ(π∗ES), since FS ⊂ ES is destabilizing

> µ(C̃ ), as G̃S̃ ⊂ π∗ES is destabilizing

imply that the image of π∗FS under ν destabilizes C̃ . Therefore, there is a second
step D̃S̃ in the HN-filtration of π∗ES.
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Claim 3.6. There is an injection π∗FS ↪−→ D̃S̃.

Assuming Claim 3.6 for the moment, we proceed to finish the proof of the
lemma. We note that once the injection in Claim 3.6 exists, then we have FS ↪−→
DS. Now, either µ(DS) > µ(ES) or

µ(DS) ≤ µ(ES).

If the latter inequality holds, then (the image of) FS properly destabilizes DS and
this finishes the proof of the lemma.

It now remains to establish Claim 3.6.
Proof of Claim 3.6. The first observation is that D̃S̃ ⊂ π∗ES is destabilizing. To see
this, we consider the two exact sequences

0 // G̃S̃
// D̃S̃

// Q′ // 0,

0 // D̃S̃
// π∗ES

j // Ã // 0,

with the two sheaves Q′ and Ã being the successive quotients of the HN-filtration.
By the definition of HN-filtration, we know that

(3.6.1) µ(Q′) > µ(Ã ).

On the other hand, as G̃S̃ is the maximal destabilizing subsheaf, from the first se-
quence we have

(3.6.2) µ(Q′) < µ(D̃S̃) < µ(G̃S̃).

Combining (3.6.1) and (3.6.2) we have

µ(Ã ) < µ(D̃S̃).

From the second sequence it now follows that

µ(π∗ES) < µ(D̃S̃),

i.e. D̃S̃ destabilizes π∗ES. Consequently π∗FS projects to zero via the morphism j
so that there is a map π∗FS → D̃S̃, as required. �

Lemma 3.7 (Induced destabilizing subsheaves of small rank on higher birational
models. III). In the setting of Lemma 3.5, let ES be a PS-unstable locally free sheaf of rank
3 on S. Assume that ES contains a saturated proper destabilizing subsheaf FS of rank
2. Let ÑS̃ ⊂ π∗

∧2 ES be the maximal destabilizing subsheaf of π∗
∧2 ES and NS :=

(π∗ÑS̃)
∗∗. Then, either

(3.7.1) the subsheaf NS =
(
(π∗ÑS̃)

∗∗) destabilizes
∧2 ES, or

(3.7.2) we have an injection
∧2 FS ↪−→ NS with the image of

∧2 FS being properly
destabilizing, or

(3.7.3) the second step ÃS̃ of the HN-fitlration of
∧2 π∗ES descends to a destabilizing

subsheaf AS of
∧2 ES, or

(3.7.4)
∧2 FS maps into AS inducing a properly destabilizing subsheaf.
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Proof. By using the fact that

µ(
2∧

ES) = 2 · µ(ES) and µ(
2∧

FS) = 2 · µ(FS),

we can see that
∧2 FS ⊂

∧2 ES is a properly destabilizing, saturated subsheaf.
Now, as rank(

∧2 FS) = 1 and rank(
∧2 ES) = 3, Lemma 3.5 applies and settles the

proof. �

Remark 3.8. The main objective of the above lemmas is to show that once we have
an unstable bundle ES of rank at most 3 on S, there is a term of a HN filtration on
S̃ that “descends” to a destabilizing subsheaf of E (or

∧2 E ). Now, either the sheaf
on S̃ is the first or second step of the HN-filtration of π∗E (or ÑS̃ ⊂

∧2 π∗E ), that
is

(3.8.1) µPS(GS) > µPS(E ) (resp. µPS(NS) > µPS(
2∧

ES)),

or it is the maximal destabilizing subsheaf of one of the two steps of the HN filtra-
tion for π∗ES. To be more precise, for example when rank of a properly detabiliz-
ing subsheaf F of ES is one, if the inequality (3.8.1) does not hold, then the image
of FS in GS is destabilizing (see (3.5.2)). Therefore, according to Lemma 3.2, the
maximal destabilizing subsheaf B̃ ⊂ π∗GS descends to the sheaf (π∗B̃)∗∗ on S
that is isomorphic to the saturation of (the image of) FS in GS. In particular we
have

µPS

(
(π∗B̃)∗∗

)
> µPS(ES).

One can argue similarly for the case of Item (3.5.3) or when rank(FS) = 2. Unique-
ness of such sheaves on S̃ will play a crucial role in the proof of Proposition 3.9.

The next proposition is the main result in this section, proving a restriction re-
sult for semistable sheaves with respect to a particular set of movable classes. As
we will see later in Section 5, these classes naturally arise in the context of positiv-
ity problems for second Chern classes.

Proposition 3.9 (A restriction result for movable classes). Let X be a normal pro-
jective threefold that is smooth in codimension two. Let P ∈ Mov1

(X) and H1, H2 ∈
Amp(X)Q. Let E be a torsion free sheaf on X of rank 3. There exists a positive integer
M1 such that for all sufficiently divisible integers m1 ≥ M1, there is a Zariski open subset
Vm1 ⊂ |m1 · H1| for which the following properties holds.

(3.9.1) Every member S ∈ Vm1 is smooth, irreducible and is contained in Xreg.
(3.9.2) The restriction E |S is torsion free.
(3.9.3) The divisor P|S is nef.
(3.9.4) For every such S, there exists M2 ∈ N+ such that every sufficiently divisible

integer m2 ≥ M2 gives rise to a Zariski open subset Vm2 ⊂ |m2 · (P + H2)|S|,
where every γ ∈ Vm2 is a smooth, irreducible curve in S such that E |γ is locally
free and verifies the following property:
(*) The formation of the HN-filtration of E with respect to (H1, P + H2) com-
mutes with restriction to γ, i.e. HN•(E )|γ = HN•(E |γ).

Proof. Let π : X̃ → X be the birational morphism and X̃ the smooth projective
variety with ample divisor Ã ⊂ X̃ associated to the Fujita approximation of the
big movable divisor P + H2 in the interior of Mov1(X), i.e.

π∗ Ã = [(P + H2)]
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(cf. Proposition 2.2, [Laz04-II, Sect. 11.4] and [Nak04, Chapt. III]).
Now, let N1 ∈ N+ be a sufficiently large and divisible integer such that for

every n1 ≥ N1, there are open subsets Un1 ⊂ |n1 ·π∗H1| and Ũn1 ⊂ |n1 · Ã|, where
for every subscheme S̃ := Dn1 and γ̃ := D̃n1 ∩Dn1 , with Dn1 ∈ Un1 and D̃n1 ∈ Ũn1 ,
we have:

(3.9.5) Both S̃ and γ̃ are smooth and irreducible.
(3.9.6) The restrictions (π[∗]E )|S̃ and

(∧[2] π[∗]E
)
|S̃ are locally free.

(3.9.7) The HN-filtration of π[∗]E with respect to (π∗H1, Ã) verifies:
HN•

(
(π[∗]E

)
|S̃) = HN•(π[∗]E )|S̃. In addition, the same property

holds for
∧[2] π[∗]E .

The positive integer N1 exists, thanks to Bertini theorem and Langer’s restriction
theorem for stable sheaves, cf. [Lan04].

Step. 1. (Reflexivity assumption). By the Bertini theorem and [DG65, Thm. 12.2.1],
and as P ∈ Mov1

(X), there exists a positive integer N2 such that for every suffi-
ciently divisible n2 ≥ N2 there exists a Zariski open subset Vn2 ⊂ |n2 · H1|, where
every S ∈ Vn2 satisfies the three Properties (3.9.1), (3.9.2) and (3.9.3) 2. We can
also ensure that every S ∈ Vn2 is transversal to the exceptional centre of π. Fur-
thermore, as P|S is nef, we can find N3 ∈ N+ such that for each sufficiently di-
visible n3 ≥ N3, the general member of γ ∈ |n3 · (P + H2)|S| is smooth and is
contained in an open subset of X over which the HN-filtration of E (with respect
to (H1, P + H2)) is a filtration of E by locally-free sheaves. Therefore, to prove that
Property (*) is verified by γ, we may assume, without loss of generality, that E is
reflexive and therefore for a suitable choice of S, its restriction E |S is locally free.

Step. 2. (Construction of γ). Let M2 ≥ N3 be a sufficiently large and divisible
integer such that for every m2 ≥ M2 there exists a Zariski open subset Vm2 ⊂
|m2(P + H2)|S|, where every curve γ ∈ Vm2 is smooth and is contained in the
complement of the exceptional center of π. Furthermore, E |γ is locally free, and if
E |γ is not semistable, then ES := E |S is not semistable with respect to (P + H2)|S
and more generally we have HN•(ES)|γ = HN•(E |γ). The existence of such M2
is guaranteed by Bertini theorem and Mehta-Ramanathan’s restriction theorem,
cf. [MR82].

Summarizing these geometric constructions, by choosing sufficiently large ni
and m2 and by shrinking Vni and Vm2 if necessary, we have γ ⊂ S and γ̃ ⊂ S̃, with
surjective morphisms

π|S̃ : S̃→ S and π|γ̃ : γ̃→ γ,

and satisfying Properties (3.9.5), (3.9.6), (3.9.7), and those in the setting of the
proposition but excluding (*).

Now, to prove the proposition, it suffices to show that if a reflexive sheaf E is
semistable with respect to (H1, P + H2), then so is E |γ. So let us now assume that
E is indeed semistable. The next steps are devoted to proving that E |γ is also
semistable.

Aiming for a contradiction, assume that E |γ is not semistable. It follows that
(π[∗]E )|γ̃ = π∗(E |γ) is not semistable. By the construction of γ, this also implies

2Here we are using the fact, which is a consequence of Fujita’s approximation for movable divisors,
that any codimension one movable class is nef in codimension one, that is its restriction to a sufficiently
general surface is nef.
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that ES is unstable. Therefore, π∗ES is unstable with respect to γ̃ (which is numer-
ically proportional to Ã|S̃). Moreove, thanks to [Lan04], unstability of (π[∗]E |γ̃)
implies that π[∗]E is unstable (with respect to (π∗H1, Ã)).

Claim 3.10.
∧[2] π[∗]E is not semistable with respect to (π∗H1, Ã).

Proof of Claim 3.10. This follows directly from rank considerations. Suppose M ⊂
π[∗]E is a saturated destabilizing subsheaf.

If rank(M ) = 2, then as µ(
∧2 M ) = 2 · µ(M ) and µ(

∧[2] π[∗]E ) = 2 · µ(π[∗]E ),
the subsheaf

∧2 M ⊂ ∧[2] π[∗]E is destabilizing.
Now, if rank(M ) = 1, then µ(Q) < µ(π[∗]E ), where Q is the torsion free

quotient π[∗]E /M . Again by using the fact that µ(
∧2 Q) = 2 · µ(Q), we find that

the inequality

µ(
[2]∧

Q) < µ(
[2]∧

π[∗]E )

holds, implying that
∧[2] π[∗]E is not semistable. This finishes the proof of

Claim 3.10. �

Now, let G̃ and Ñ be the first step of the HN-filtration of π[∗]E and
∧[2] π[∗]E ,

respectively and define

G :=
(
π∗(G̃ )

)∗∗ , N :=
(
π∗(Ñ )

)∗∗.
Assuming that they exist, let D̃ and Ã be the second step of the HN-filtration of
π[∗]E and

∧[2] π[∗]E and set

D :=
(
π∗(D̃)

)∗∗ , A :=
(
π∗(Ã )

)∗∗.
Let m1 ∈ N be a sufficiently divisible integer, verifying the inequality m1 ≥

M1 := max{N1, N2}, and such that there is an open subset Vm1 ⊆ |m1 · H1| for
which we have the following property. After shrinking Vm1 , if necessary, for every
S ∈ Vm1 (defined in Steps. 1 and 2), we have

(3.10.1) S̃ := π∗(S) ∈ Um2 ,
(3.10.2) G̃ |S̃, D̃ |S̃, Ñ |S̃ and Ã |S̃ are locally free,
(3.10.3) S does not intersect the singular loci of E , G , D , N and A , and
(3.10.4) we have (π∗(G̃ |S̃))

∗∗ ∼= (π∗G̃ )∗∗|S and the same holds for D̃ , Ñ and Ã .
Step. 3. (Extension of maximal destabilizing subsheaves). We are now in the setting
where we can apply Lemmas 3.2, 3.5 and 3.7. Let G̃S̃ and D̃S̃ be the first and sec-
ond steps of the HN-filtration of π∗ES, assuming that the latter exists. By construc-
tion, using Property (3.9.7) together with Properties (3.10.1) and (3.10.3), there are
isomorphism

G̃S̃
∼= G̃ |S̃ , D̃S̃

∼= D̃ |S̃.
Let us first assume that ES contains a saturated destabilizing subsheaf FS of

rank one. According to Lemma 3.5, one of the locally free sheaves GS := π∗(G̃S̃)
∗∗

or DS := π∗(D̃S̃)
∗∗ either

(*) destabilizes ES, or
(**) it is not semistable and admits an injection from FS with a properly desta-

bilizing image.
We identify FS with its image under FS ↪−→ GS (respectively, FS with its

image under FS ↪−→ DS).
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Now, if (*) holds, then we have our desired contradiction since by (3.10.4) the
subsheaf (π∗G̃ )∗∗ ⊂ E or (π∗D̃)∗∗ ⊂ E is properly destabilizing.

So assume that (**) is true. We observe that by our choice of S (Property (3.10.3))
we have (π|S)∗GS =

(
π[∗]G

)
|S̃ (and (π|S)∗DS = (π[∗]D)|S̃). We can now apply

Lemma 3.2. More precisely, if FS ⊂ GS (or FS ⊂ DS) is destabilizing GS (respec-
tively, DS), then, according to Lemma 3.2, the maximal destabilizing subsheaf L̃S̃
of π∗(GS) verifies the isomorphism

(3.10.5)
(
(π|S̃)∗(L̃S̃))

∗∗ ∼= FS,

where F S is the saturation of FS in GS, and similarly when FS ⊂ DS is destabi-
lizing.

On the other hand, again by the restriction result [Lan04], we have

L̃ |S̃ ∼= L̃S̃,

where L̃ is the maximal destabilizing subsheaf of π[∗]G (after adjusting the choice
of S and S̃ if necessary). Therefore, by (3.10.5) L̃ descends to a destabilizing sub-
sheaf of E , i.e. (π∗L )∗∗ ⊂ E is destabilizing, a contradiction. Similarly we can
argue that the maximal destabilizing subsheaf of D̃ descends to a destabilizing
subsheaf of E .

Next, we assume that rank(FS) = 2. In this case Lemma 3.7 applies. The same
arguments as above (this time for N , A instead of G and D) then shows that

∧2 E
is not semistable. On the other hand, thanks to [GKP15, Thm. 4.2], we know that
semistable sheaves with respect to movable classes over normal varieties form
a tensor category3. As a result we again get a contradiction to the semistability
assumption on E . �

Remark 3.11 (Restriction of HN-filtration for Q-twisted sheaves). We note that
the consequences of Proposition 3.9 are still valid for Q-twisted torsion-free
sheaves. More precisely, given a Q-twisted, torsion-free sheaf E 〈B〉 and H1, H2 ∈
Amp(X)Q, P ∈ Mov1

(X), there is a complete intersection surface S and γ ⊂ S,
as in Proposition 3.9, such that HN•(E 〈B〉)|γ = HN•(E 〈B〉|γ). To see this we can
use the fact that, for every torsion free sheaf F and Weil Q-divisor B, we have

HN•
(
E 〈B〉

)
=
(

HN•(E )
)
〈B〉,

which follows directly from the definitions. The rest now follows from Proposi-
tion 3.9.

Remark 3.12 (Restriction result in higher dimensions). Following the same argu-
ments as those of the proof of Proposition 3.9, we can remove the restriction on
the dimension, that is the consequences of Proposition 3.9 are still valid, if X
is of dimension n > 3 and the polarization is (H1, H2, . . . , (P + Hn−1)), for any
H1, . . . , Hn−1 ∈ Amp(X)Q, as long as rank(E ) = 3.

As an immediate consequence we establish a Bogomolov–Gieseker inequality
for (Q-twisted) sheaves of small rank that are semistable with respect to movable
classes of the form that appear in Proposition 3.9. Although we do not use this
inequality in the rest of the paper, we find it to be of independent interest.

3This result has an additional assumption; Q-factoriality of X. As we pointed out in Remark 2.11,
this condition is unnecessary in the context of this proposition.
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Proposition 3.13 (Bogomolov–Gieseker inequality in higher dimensions). Let X be
an n-dimensional, normal projective variety that is smooth in codimension two and E 〈B〉
a Q-twisted, reflexive sheaf of rank at most equal to 3 on X. If E 〈B〉 is semistable with
respect to (H1, H2, . . . , (P + Hn−1)), where Hi ∈ Amp(X)Q and P ∈ Mov1

(X), then(
2r · c2(E 〈B〉)− (r− 1) · c2

1(E 〈B〉)
)
· H1 . . . · Hn−2 ≥ 0.

Proof. This is an immediate consequence of the restriction result in Proposition 3.9
and Remark 3.11 together with Proposition 2.15. �

4. SEMIPOSTIVITY OF ADAPTED SHEAF OF FORMS

In [CP16] Campana and Păun remarkably prove that the orbifold cotangent
sheaf of a log-smooth pair (X, D) is semipositive with respect to movable curve
classes on X (see Theorem 4.1 below). See Definition 2.16 for the definition of
this notion of semipositivity. Currently it is not clear if this result can be easily
extended to the case of singular pairs. In the present section we show that, for
a special subset of movable classes, the generalization to singular pairs can be
achieved by essentially reducing to the smooth case.

Theorem 4.1 (Orbifold semipositivity with respect to movable classes, cf. [CP16,
Thm. 1.2]). Given a log-smooth pair (X, D), if (KX + D) is pseudoeffective, then for any
movable class γ ∈ Mov1(X) and any adapted morphism f : Y → X, where Y is smooth,
the orbifold cotangent sheaf Ω1

(Y, f ,D) is semipositive with respect to f ∗(γ)4.

In the next proposition we slightly refine Theorem 4.1 for a class of movable
1-cycles that we call complete intersection 1-cycles. As we will see later in Section 5,
such classes appear naturally in our treatment of the pseudoeffectivity of c2.

Definition 4.2 (Complete intersection movable classes). We say that γ ∈ Mov1(X)
is a complete intersection movable 1-cycle, if there are classes B1, . . . , Bn−1 ∈
N1(X)Q such that γ is numerically equivalent to the cycle defined by (B1 · . . . ·
Bn−1) ∈ N1(X)Q.

Proposition 4.3 (A refinement of the orbifold semipositivity result). Let (X, D) be a
log-smooth pair and γ ∈ Mov1(X) a complete intersection movable cycle. If (KX + D) is
pseudoeffective, then for any strictly adapted morphism g : Z → X (see Definition 2.20),
Ω[1]

(Z,g,D)
is semipositive with respect to g∗γ.

Proof. Assume that Z is not smooth, otherwise the claim follows from the argu-
ments of Campana and Păun, cf. [CP16]. Let D = ∑ di · Di, where Di are prime
divisors and di = 1− (bi/ai) ∈ [0, 1] ∩Q. By assumption, for every Di, we have
g∗(Di) = ai · DZ,i, for some DZ,i ∈WDiv(Z).

Now, set f : Y → X to be a strongly adapted morphism (Definition 2.20),
where, thanks to Kawamata’s construction, cf. [Laz04-II, Prop. 4.1.12], the variety
Y is smooth. Let W be the normalization of fibre product Y×X Z with the resulting
commutative diagram

W v //

u
��

h

''

Z

g
��

Y
f // X.

4Here we are following the notation of [CP16] for “pullback‘” of movable 1-cycles. Since in the
current paper we are only concerned with those cycles that are defined by divisors, we have forgone
the exact definition of this notion.
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Aiming for a contradiction, assume that Ω[1]
(Z,g,D)

is not semipositive with respect

to g∗γ, that is there exists a reflexive subsheaf GZ ⊂ Ω[1]
(Z,g,D)

such that

(4.3.1)
(
γ∗(KX + D)− [GZ]

)
· g∗γ < 0.

We consider v[∗](GZ) ⊂ Ω[1]
(W,h,D)

. As γ is, numerically, a complete intersection
cycle, we can use the projection formula to conclude that

(4.3.2)
(
h∗(KX + D)− [v[∗]GZ]

)
· h∗γ < 0,

which implies that Ω[1]
(W,h,D)

is not semipostive with respect to h∗γ. Now, let

Ω[1]
(W,h,D)

� FW be the torsion free quotient with the minimum slope with the
kernel GW :

(4.3.3) 0→ GW → Ω[1]
(W,h,D)

→ FW → 0.

Assuming that u : W → Y is Galois, let G := Gal(W/Y). Notice that by the
construction of f , we have Ω[1]

(W,h,D)
= u∗(Ω1

(Y, f ,d)). Now, as the inclusion GW ⊂
Ω1

(W,h,D) is saturated, and since GW is a G-subsheaf (thanks to its uniqueness),
according to [HL10, Thm. 4.2.15] or [GKPT15, Prop. 2.16], there exists a reflexive
subsheaf GY ⊂ Ω1

(Y, f ,D) such that u[∗](GY) ∼= GW .

Now, by applying the G-invariant section functor u∗(·)G to the exact sequence
(4.3.3) we find that

(4.3.4) 0→ GY → Ω1
(Y, f ,D) →

(
u∗(FW)

)G → 0.

But, by the projection formula, it follows that

(
f ∗(KX + D)− [GY]

)
· f ∗γ ≤ 0,

i.e. Ω1
(Y, f ,D) is not semipositive with respect to f ∗γ, which contradicts Theorem 4.1.

For the case where u is not Galois, we can consider the Galois closure u′ : W ′ σ−→
W u−→ Y and repeat the above argument for σ[∗](Ω[1]

(W,h,D)
) instead of Ω[1]

(W,h,D)
. �

The next proposition is the extension of Theorem 4.1 to a special class of com-
plete intersection, movable 1-cycles on a mildly singular X.

Proposition 4.4 (Semipositivity for mildly singular pairs). Given a projective pair
(X, D), assume that (KX + D) is pseudoeffective. Let H1 . . . , Hn−1 ∈ Amp(X)Q and

P ∈ Mov1
(X). Then, for any strictly adapted morphism f : Y → X, the orbifold

cotangent sheaf Ω[1]
(Y, f ,D)

is semipositive with respect to f ∗(H1, . . . , Hn−2, P + Hn−1), if
(X, D) verifies one of the following assumptions.

(4.4.1) (X, D) has only klt singularities.
(4.4.2) D is reduced (i.e. bDc = 0) and (X, D) has only lc singularities.

Proof. Assume that the assumption (4.4.1) holds. Let π : (X̃, D̃) → (X, D) be
a log-resolution and Ỹ the normalization of the fibre product Y ×X Ỹ with the
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commutative diagram

Ỹ
f̃ //

π̃
��

X̃

π

��
Y

f // X,

where π̃ : Ỹ → Y and f̃ : Ỹ → Y are the naturally induced projections.
For simplicity, and as the arguments are identical in higher dimensions, we

only deal with the case when dim X = 3. Denote HY,i = f ∗(Hi), for i ∈ {1, 2} and
PY = f ∗(P).

Now, aiming for a contradiction, assume that Ω[1]
(Y, f ,D)

is not semipositive with
respect to (HY,1, PY + HY,2). This implies that there exists a saturated subsheaf G ⊂
T(Y, f ,D) such that [G ] · (HY,1, PY + HY,2) > 0. Define H̃ := (π̃[∗]H )∩T

(Ỹ, f̃ ,D)
. Let

m be a sufficiently large positive integer such that the 1-cycle γ ∈ Mov1(Y), that is
numerically equivalent to the cycle defined by m2(HY,1, PY + HY,2), is away from
the exceptional centre of π̃. Existence of such γ in particular guarantees that

[H̃ ] · π̃∗(HY,1, PY + HY,2) > 0.

In other words there exists a torsion-free quotient sheaf

(4.4.3) Ω[1]
(Ỹ, f̃ ,D̃)

� F̃

on Ỹ such that deg(F̃ |γ̃) < 0, where γ̃ := π̃−1(γ).
Now, let us consider the logarithmic ramification formula

KX̃ + D̃ = π∗(KX + D) + ∑ ai · Ei −∑ bi · E′i ,

where ai ∈ Q+, and, because of the assumptions on the singularities, bi ∈ (0, 1) ∩
Q. Define G̃ := ∑ bi · E′i and let h̃ : Z → X̃ be the morphism adapted to (X̃, D̃ + G̃),
factoring through f̃ : Ỹ → X̃

Z

h̃

))
r

// Ỹ
f̃

// X̃ ,

as in Lemma 2.23. Set BZ := h̃∗(π∗(H1, P + H2)) and BỸ := f̃ ∗(π∗(H1, P + H2)).
Now, let GỸ be the kernel of the sheaf morphism (4.4.3) so that

(4.4.4)
(

f̃ ∗(KX̃ + D̃)− [GỸ]
)
· BỸ < 0.

As γ is away from the exceptional centre of π̃ and since G̃ is supported on the
exceptional locus of π, we have

h̃∗(KX̃ + D̃ + G̃) · BZ = h̃∗(KX̃ + D̃) · BZ

= r∗( f̃ ∗(KX̃ + D̃)) · BZ.

As a result, for the inclusion r[∗](GỸ) ⊂ Ω[1]
(Z,h̃,D̃+G̃)

, we find that
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([
Ω[1]

(Z,h̃,D̃+G̃)

]
− r[∗]GỸ

)
· BZ =

(
r∗
(

f̃ ∗(KX̃ + D̃)
)
− r[∗]GỸ

)
· BZ

= (deg r)
(

f̃ ∗(KX̃ + D̃)− [GỸ]
)
· BỸ

< 0, by Inequality 4.4.4,

contradicting Proposition 4.3.
Finally, if the assumption (4.4.2) holds, the proof follows from simply consider-

ing the ramification formula as above and using Theorem 4.1. �

5. PSEUDOEFFECTIVITY OF THE ORBIFOLD c2

In [Miy87] Miyaoka famously proved that the second Chern class c2 of a gener-
ically semipositive sheaf with nef determinant is pseudoeffective. Thanks to his
result on the semipositivity of cotangent sheaves, Miyaoka then established the
pseudoeffectivity of c2(X) for any minimal model X. Our aim in this section is to
generalize this result to the case of pairs (X, D) with movable (KX + D) (Corol-
lary 5.2).

Proposition 5.1 (Pseudoeffectivity of c2 for semipositive sheaves). Let X be a normal
projective, threefold with isolated singularities and A1 ∈ Amp(X)Q. Then, the inequality

c2(E ) · A1 ≥ 0

holds for any reflexive sheaf E of rank r verifying the following properties.

(5.1.1) [E ] ∈ Mov1
(X).

(5.1.2) For any A2 ∈ Amp(X)Q, the sheaf E is semipositive with respect to (A1, [E ] +
A2).

Proof. Let c be any positive integer. Consider the Q-twisted reflexive sheaf
E 〈 1

c ·H〉. For the choice of polarization (A1, [E 〈 1
c ·H〉]), the assumptions of Propo-

sition 3.9 are satisfied, for all c.
Now, let S be the complete intersection surface defined in Proposition 3.9 (see

also Remark 3.11) so that, using the assumption (5.1.2) with A2 := r
c H, the restric-

tion ES〈 1
c · HS〉 := (E 〈 1

c · H〉)|S is semipositive with respect to

β := c1(ES〈
1
c
· HS〉) = ([E ] +

r
c
· [H])|S.

Following the arguments of Miyaoka, we now consider two cases based on the
stability of ES〈 1

c · HS〉.
First, we consider the case where ES〈 1

c · HS〉 is semistable with respect to β.
Here, the semipositivity of c2 follows from Bogomolov–Gieseker inequality for Q-
twisted locally-free sheaves (Proposition 2.15).

Now, we assume that ES〈 1
c · HS〉 is not semistable with respect to β. Let

(5.1.3) 0 6= E 1
S 〈

1
m
· HS〉 ⊂ . . . ⊂ E t

S〈
1
c
· HS〉 = ES〈

1
c
· HS〉

be the Q-twisted HN-filtration of ES〈 1
c HS〉. Denote the semistable, torsion-free,

Q-twisted sheaves

E i
S〈

1
c
· HS〉/E i−1

S 〈1
c
· HS〉

of rank ri by Qi
S〈

1
c ·HS〉 and let Q

i
S〈 1

c ·HS〉 denote its reflexivization. As the second
Chern character ch2(·) is additive, we have
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2 · c2(ES〈
1
c
· HS〉)− c2

1(ES〈
1
c
· HS〉) = ∑

(
2 · c2(Q

i
S〈

1
c
· HS〉)− c2

1(Q
i
S〈

1
c
· HS〉)

)(5.1.4)

≥∑
(
2 · c2(Q

i
S〈

1
c
· HS〉)− c2

1(Q
i
S〈

1
c
· HS〉)

)
,

where the last inequality follows from the fact that c2(Q
i
S) ≥ c2(Q

i
S). Now,

by applying the Bogomolov inequality (2.15) to each semistable, Q-twisted sheaf
Q

i
S〈 1

c · HS〉, we find that each term in the right-hand side of the inequality (5.1.4)
verifies the inequality

2 · c2(Q
i
S〈

1
c
· HS〉)− c2

1(Q
i
S〈

1
c
· HS〉) ≥

−1
ri
· c2

1(Q
i
S〈

1
c
· HS〉).

Therefore we have

(5.1.5) 2 · c2(ES〈
1
c
· HS〉)− c2

1(ES〈
1
c
· HS〉) ≥∑

−1
ri
· c2

1(Q
i
S〈

1
c
· HS〉).

Next, we define the rational number αi ∈ Q by the equality

(5.1.6) ri · αi =
c1(Q

i
S〈

1
c · HS〉) · β

c2
1(ES〈 1

c · HS〉)
=

c1(Q
i
S〈

1
c · HS〉) · β
β2 .

It follows that

(5.1.7) ∑ ri · αi = 1.

Furthermore, according to the definition of αi, and by using the fact that the
slopes of the quotients of the HN-filtration (5.1.3) are strictly decreasing, we know
that

(5.1.8) α1 > α2 > . . . > αt ≥ 0,

where the last inequality follows from the semipositivity of ES〈 1
c HS〉.

Now, as αi ≥ 0, for each i, the equality (5.1.7) implies that αi ≤ 1. On the other
hand, according to the Hodge index theorem we have

−c2
1(Q

i
S〈

1
c
· HS〉) ≥

(
c1(Q

i
S〈

1
c · HS〉) · β

)2

β2 ,

so that

−c2
1(Q

i
S〈

1
c
· H〉) ≥ β2(ri · αi)

2.

Going back to the inequality (5.1.5) we now find that

2 · c2(ES〈
1
c
· HS〉) ≥ β2(1−∑ ri · α2

i )

≥ β2(1− α1 ∑ ri · αi) by (5.1.8)

= β2(1− α1) by (5.1.7)
≥ 0 as α1 ≤ 1.

The inequality c2(ES) ≥ 0 now follows by taking the limit c→ ∞. �

As an immediate consequence, we can now prove the pseudoeffectivity of c2
for the orbifold cotangent sheaves of pairs (X, D) in dimension 3 with only mild
isolated singularities and whose KX + D is movable.
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Corollary 5.2 (Positivity of c2 of orbifold cotangent sheaves). Let (X, D) be a pro-
jective pair of dimension 3 and with only isolated singularities. Assume that either D is
reduced and (X, D) has only lc singularities or (X, D) is klt. If (KX + D) ∈ Mov1

(X),
then for any ample divisor A ⊂ X and strongly adapted morphism f : Y → X, the
inequality

c2(Ω
[1]
(Y, f ,D)

) · f ∗(A) ≥ 0

holds.

Proof. As [Ω[1]
(Y, f ,D)

] = f ∗(KX + D), the corollary is a direct consequence of Propo-
sition 5.1 together with Proposition 4.4. �

We would like to point out that once we assume that (KX + D) is nef, then
an easy adaptation of the original results of Miyaoka to the case of orbifold
Chern classes, together with the semipositivity result of [CP14] (see also [CKT16,
Thm. 5.3]) leads to the following theorem.

Theorem 5.3 (Positivity of orbifold c2 for log-minimal models). Let (X, D) be a
projective lc pair of dimension n that is log-smooth in codimension two. If (KX + D) is
nef, then for any strongly adapted morphism f : Y → X , we have

c2(Ω
[1]
(Y, f ,D)

) · f ∗(An−2) ≥ 0,

where A ⊂ X is any ample divisor.

Remark 5.4. In the above results the assumption that (X, D) is log-smooth in codi-
mension two can be dropped if one is willing to work woth the so-calledQ-Chern
classes. But in this setting (X, D) would have to be klt and additional assump-
tions would be needed to guarantee that the covering Y has quotient singularities
in codimension two.

6. AN EFFECTIVE NON-VANISHING RESULT FOR THREEFOLDS

The goal of this section is to prove Theorem 1.4. The main point of the strategy is
to devise an effective lower bound for χ(KY + H), when Y is terminal (and (Y, H)
is lc). First we recall the well-known fact that Hizerbruch-Riemann-Roch Theorem
holds for locally free sheaves over projective threefolds or surfaces with only mild
singularities and, for the reader’s convenience, include a short proof.

Proposition 6.1. Let X be a projective variety and L a Cartier divisor on X.
• If X is a terminal threefold, then we have

χ(X, L) =
1

12
· L · (L− KX) · (2L− KX)

+
1

12
· c2(X) · L + χ(X, OX). (6.1.1)

• If X is of dimension two and with only rational singularities, then we have

(6.1.2) χ(L) =
1
2

L2 − 1
2

L · KX + χ(X, OX).

Proof. We consider the threefold case first. Let π : X̃ → X be a resolution such that
π−1|Xreg is an isomorphism. Remember that, as its singularities are only terminal,
X has only rational singularities (in this case since X has only quotient singular-
ities [KM98, Cor. 4.39], the fact that X has rational singularities follows from the
definition). Consequently it follows that
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χ(X̃, π∗L) = χ(X, L)
and in particular we have χ(OX̃) = χ(OX).

On the other hand, by Hizurbruch-Riemann-Roch theorem for smooth projec-
tive threefolds (see [Har77, Ex. 6.7, App. A]) we have

χ(X̃, π∗L) =
1

12
· π∗L · (π∗L− KX̃) · (2π∗L− KX̃)

+
1

12
· c2(X̃) · π∗L + χ(X̃, OX̃). (6.1.3)

Using that fact that X is smooth in codimension two, we now find that the right-
hand sides of (6.1.1) and (6.1.3) are equal and therefore Equality (6.1.1) is estab-
lished.

A similar argument can now be used to show that the equality (6.1.2) also holds.
�

Proposition 6.2 (Lower bounds for the Euler characteristic of adjoint bundles). For
a terminal projective threefold X the inequality

(6.2.1) χ(X, KX + A) ≥ 1
24
· (KX + A) · A · (2A + KX)

holds, for any Weil divisor A satisfying the following conditions.
(6.2.2) A is irreducible.
(6.2.3) The pair (X, A) is lc and is log-smooth in codimension two.
(6.2.4) The divisors A and (KX + A) are Cartier and nef.

Proof. According to (6.1.1), with L being replaced by (KX + A), we have

χ(X, KX + D + A) =
1

12
· (KX + A) · A ·

(
2(KX + A)− KX

)
+

1
12
· c2(X) · (KX + A) + χ(X, OX). (6.2.5)

Standard Chern class calculations show that we have the equality

(6.2.6) c2(X) = c2(Ω
[1]
X log(A))− (KX + A) · A− A2,

as linear forms on N1(X)Q. After substituting back into Equality 6.2.5, we find
that the equality

χ(X, KX + D + A) =
1

12
· (KX + A) ·

{
A · (KX + 2A)

+ · c2(Ω
[1]
X log(A))− (KX + A) · A− A2

}
+ χ(X, OX)

holds, which then simplifies to

(6.2.7) χ(X, KX + A) =
1

12
(KX + A) ·

{
A2 + c2(Ω

[1]
X log(A))

}
+ χ(X, OX).

On the other hand, as X is terminal, we know, thanks to [Kaw81, Lems. 2.2
and 2.3], that

(6.2.8) χ(X, OX) ≥
−1
24

KX · c2(X).
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Bu using the equality (6.2.6) we can rewrite this inequality as

24 · χ(X, OX) ≥
(

A− (KX + A)
)
· c2(Ω

[1]
X log(A))

+ KX · (KX + A) · A
≥ (KX + A) ·

{
KX · A− c2(Ω

[1]
X log(A))

}
,

where for the latter inequality we have used the assumption that A is nef and the
pseudoeffectivity of c2 (Theorem 5.3). Now, going back to Equation 6.2.7, we get

(6.2.9) 24χ(X, KX + A) ≥ (KX + A)
{

2A2 + c2(Ω
[1]
X log(A)) + KX · A

}
.

Again, by using Corollary 5.2 and the nefness assumptions on (KX + A), we find
that
(6.2.10)
24 · χ(X, KX + A) ≥ (KX + A) · (2A2) + (KX + A) · A = (KX + A) · A · (2A + KX),

as required. �

6.1. Proof of Theorem 1.4. Thanks to Kawamata-Viehweg vanishing [Mat02,
Thm. 5.2.7], it suffices to prove that χ(Y, KY + H) 6= 0. For a general choice of
H′ ∈ |H|, the pair (Y, H′) satisfies Assumption (6.2.3). Therefore the assumptions
of Proposition 6.2 are satisfied except for the terminal assumption for the singular-
ities.

Now, let π : X → Y be a terminalization of Y, cf. [KM98, Sect. 6.3]. Set A :=
π∗(H′). Since π is small, the adjoint divisor (KX + A) is also nef. We may now
conclude using the strict positivity of the right-hand side of the inequality (6.2.1)
by the following argument. According to the basepoint freeness theorem for log-
canonical threefolds, cf. [KMM04], the divisor KX + A is semi-ample. Therefore,
for sufficiently large integer m, we can find an irreducible surface S ∈ |m · (KX +
2A)| such that (A|S) is big. On the other hand, the divisor (KX + A)|S is nef. It
thus follows that (KX + A)|S · A|S > 0, thanks to Kleiman’s ampleness criterion
([Laz04-I, Thm. 1.4.29]). �

7. A MIYAOKA-YAU INEQUALITY IN HIGHER DIMENSIONS

In [Miy87], Miyaoka generalized the famous inequality c2
1 ≤ 3c2 from surfaces

with pseudoeffective canonical divisor to higher dimensional varieties with nef
canonical divisor. We extend this result to the case of movable canonical divisor.

Theorem 7.1. In the setting of Corollary 5.2, we have the inequality

c2
1(Ω

[1]
(Y, f ,D)

) · f ∗A ≤ 3c2(Ω
[1]
(Y, f ,D)

) · f ∗A.

Proof. Let H̃ ∈ Amp(X)Q, H := f ∗H̃ and E := Ω[1]
(Y, f ,D)

. Let c any any positive

integer. Consider the Q-twisted reflexive sheaf E 〈 1
c · H〉. For the choice of polar-

ization ( f ∗A, [E 〈 1
c · H〉]), the assumptions of Proposition 3.9 are satisfied, for all

c.
Now, let S be the complete intersection surface defined in Proposition 3.9 (see

also Remark 3.11) so that the restriction ES〈 1
c · HS〉 := (E 〈 1

c · H〉)|S is semipositive
with respect to

β := ([E ] +
r
c
· H)|S.
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Let

(7.1.1) 0 6= E 1
S 〈

1
c
· HS〉 ⊂ . . . ⊂ E s

S 〈
1
c
· HS〉 = ES〈

1
c
· HS〉

be the Q-twisted HN-filtration of ES〈 1
c HS〉.

The same arguments as those in the proof of Proposition 5.1 show that

(2c2(ES〈
1
c
· HS〉)− c2

1(ES〈
1
c
· HS〉)) ≥ (∑

−1
ri

c2
1(Q

i
S)),

where Qi
S〈

1
c · HS〉 is the torsion free, Q-twisted quotient sheaf of rank ri of the

filtration (7.1.1).
Again, as in the proof of Proposition 5.1, for each i, we define αi by the equation

ri · αi =
c1(Q

i
S〈

1
c · HS〉) · β
β2 .

From the definition of αi, it follows that ∑ ri · αi = 1 . Moreover, we have α1 >
· · · > αs ≥ 0, where the last inequality is due to the semipositivity of ES〈 1

c · HS〉.
We now deduce

(6c2(ES〈
1
c
· HS〉)− 2c2

1(ES〈
1
c
· HS〉)) ≥(

3(∑
i>1

−1
ri

c2
1(Gi)) + 6c2(E

1
S 〈

1
c
· HS〉)− 3c2

1(E
1
S 〈

1
c
· HS〉) + c2

1(ES〈
1
c
· HS〉)

)
.

And finally,

(7.1.2) (6c2(ES〈
1
c
· HS〉)− 2c2

1(ES〈
1
c
· HS〉)) ≥

((1− 3 ∑
i>1

riα
2
i ).c

2
1(ES〈

1
c
· HS〉) + 6c2(E

1
S 〈

1
c
· HS〉)− 3c2

1(E
1
S 〈

1
c
· HS〉)).

There are three possibilities: r1 ≥ 3, r1 = 2 and r1 = 1.
If r1 ≥ 3, using Bogomolov-Gieseker inequality and the Hodge index theorem,

we obtain

(6c2(ES〈
1
c
· HS〉)− 2c2

1(ES〈
1
c
· HS〉)) ≥

((1− 3 ∑
i>1

riα
2
i ) · c2

1(ES〈
1
c
· HS〉)− 3

1
r1

c2
1(E1)) ≥

(1− 3 ∑
i

riα
2
i ) · c2

1(ES〈
1
c
· HS〉) ≥ (1− 3α1) · c2

1(ES〈
1
c
· HS〉) ≥ 0.

since 3α1 ≤ r1α1 ≤ ∑i riαi = 1.

If r1 = 2, we choose S general enough so that E 1
S injects into Ω1

S(log( f−1dDe|S)).
Using the Bogomolov-Miyaoka-Yau inequality, we have either κ(S, c1(E

1
S )) ≤ 0

or c2
1(E

1
S ) ≤ 3c2(E

1
S ).

In the case κ(S, c1(E
1
S )) ≤ 0, since c1(E

1
S ).β > 0, we have c2

1(E
1
S ) ≤ 0.
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Applying Bogomolov-Gieseker inequality to 7.1.2:

(6c2(ES〈
1
c
· HS〉)− 2c2

1(ES〈
1
c
· HS〉)) ≥

((1− 3 ∑
i>1

riα
2
i ) · c2

1(ES〈
1
c
· HS〉)−

3
2

c2
1(E

1
S 〈

1
c
· HS〉)) ≥

(1− 3 ∑
i>1

riα
2
i ) · c2

1(ES〈
1
c
· HS〉)−

3
2

c2
1(E

1
S 〈

1
c
· HS〉)) ≥

(1− 3α2 ∑
i>1

riαi) · c2
1(ES〈

1
c
· HS〉)−

3
2

c2
1(E

1
S 〈

1
c
· HS〉)) =

(1− 3α2(1− 2α1)) · c2
1(ES〈

1
c
· HS〉)−

3
2

c2
1(E

1
S 〈

1
c
· HS〉)) ≥

(1− 3α1(1− 2α1)) · c2
1(ES〈

1
c
· HS〉)−

3
2

c2
1(E

1
S 〈

1
c
· HS〉)) =(

6(α1 −
1
4
)2 +

5
8

)
· c2

1(ES〈
1
c
· HS〉)−

3
2

c2
1(E

1
S 〈

1
c
· HS〉)) ≥ −

3
2

c2
1(E

1
S 〈

1
c
· HS〉)).

Finally, we obtain (3c2(ES)− c2
1(ES)) ≥ 0.

In the case c2
1(E

1
S ) ≤ 3c2(E

1
S ) we have from 7.1.2:

(6c2(ES〈
1
c

HS〉)− 2c2
1(ES〈

1
c

HS〉)) ≥

((1− 3 ∑
i>1

riα
2
i )c

2
1(ES〈

1
c

HS〉)− c2
1(E

1
S 〈

1
c

HS〉) + (6c2(ES〈
1
c

HS〉)− 2c2
1(E

1
S 〈

1
c

HS〉) ≥

((1− 4α2
1 − 3 ∑

i>1
riα

2
i )c

2
1(ES〈

1
c

HS〉)) + (6c2(ES〈
1
c

HS〉)− 2c2
1(E

1
S 〈

1
c

HS〉) ≥

((1− 4α2
1 − 3α2 ∑

i>1
riαi)c2

1(ES〈
1
c

ḢS〉)) + (6c2(ES〈
1
c

HS〉)− 2c2
1(E

1
S 〈

1
c

HS〉) =

((1− 4α2
1 − 3α2(1− 2α1))c2

1(ES〈
1
c

HS〉) + (6c2(ES〈
1
c

HS〉)− 2c2
1(E

1
S 〈

1
c
· HS〉)) =

(1− 2α1)(1 + 2α1 − 3α2) · c2
1(ES〈

1
c

HS〉)) + (6c2(ES〈
1
c

HS〉)− 2c2
1(E

1
S 〈

1
c

HS〉).

As 3α2 < r1α1 + r2α2 ≤ 1, we have

(6c2(ES)− 2c2
1(ES)) ≥ 0.
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Finally, if r1 = 1, a classical result of Bogomolov and Sommese (the Bogomolov-
Sommese vanishing) implies that E 1

S ⊂ Ω1
S(log( f−1d∆e|S)) has Kodaira dimen-

sion at most one. Therefore c2
1(E

1
S ) ≤ 0. From 7.1.2, one obtains:

(6c2(ES〈
1
c
· HS〉)− 2c2

1(ES〈
1
c
· HS〉)) ≥

((1− 3 ∑
i>1

riα
2
i ) · c2

1(ES〈
1
c
· HS〉))− 3c2

1(E
1
S 〈

1
c
· HS〉) ≥

((1− 3α1 ∑
i>1

riαi) · c2
1(ES〈

1
c
· HS〉))− 3c2

1(E
1
S 〈

1
c
· HS〉) =

((1− 3α1(1− α1)) · c2
1(ES〈

1
c
· HS〉))− 3c2

1(E
1
S 〈

1
c
· HS〉) ≥(

1− 3
2
(1− 1

2
)

)
· c2

1(ES〈
1
c
· HS〉)− 3c2

1(E
1
S 〈

1
c
· HS〉) =

1
4

c2
1(ES〈

1
c
· HS〉)− 3c2

1(E
1
S 〈

1
c
· HS〉) ≥

−3c2
1(E

1
S 〈

1
c
· HS〉).

Therefore, we have
(6c2(ES)− 2c2

1(ES)) ≥ 0.

�

We finish this section by pointing out that when (KX + D) is nef, the original re-
sult of Miyaoka can be adapted to the case of orbifold Chern classes. This can then
be combined with the semipositivity result of [CP14] to conclude the following
result.

Theorem 7.2. Let (X, D) be an n-dimensional lc pair that is smooth in codimension two.
If KX + D is nef, then for any strongly adapted morphism f : Y → X and any ample
divisor A in X, we have

(7.2.1) c2
1(Ω

[1]
(Y, f ,D)

) · f ∗An−2 ≤ 3c2(Ω
[1]
(Y, f ,D)

) · f ∗An−2.

8. REMARKS ON LANG-VOJTA’S CONJECTURE IN CODIMENSION ONE

A classical conjecture of Lang predicts that a variety of general type X, admits
a proper algebraic subvariety that contains all subvarieties of X that are not of
general type. In this section, we will prove a particular case of this conjecture for
codimension one subvarieties satisfying certain conditions: the codimension one
subvariety will be assumed to be movable and with only canonical singularities.

First, an immediate application of the inequality (7.1) gives the following theo-
rem.

Theorem 8.1. Let X be a normal, projective and Q-factorial threefold such that KX ∈
Mov1

(X). Let H be a nef divisor, D a reduced, irreducible, normal divisor such that
(X, D) has only isolated lc singularities. Assume that [D] ∈ Mov1

(X). If −KD is
pseudoeffective, then

(8.1.1) KX · D · H ≤ (3c2 − c2
1) · H,

where ci(X) := ci(Ω
[1]
X ).
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Proof. As (KX + D) ∈ Mov1
(X), from the inequality (7.1), we have

c2
1(Ω

[1]
X (log D)) · H ≤ 3c2(Ω

[1]
X (log D)) · H. Therefore, we have

(KX + D)2 · H ≤ 3(c2 + (KX + D) · D) · H.

It follows that

2KX · D · H ≤ (3c2 − c2
1) · H + 3(KX + D) · D · H − D2 · H.

Finally, thanks to the adjunction formula, cf. [Kol92, Prop. 16.4], we get

KX · D · H ≤ (3c2 − c2
1) · H + 2KD · H|D.

The inequality (8.1.1) now follows from the assumption that −KD is pseudoeffec-
tive. �

Proof of Theorem 1.5. Let H be an ample divisor in X. The divisor KX is big so we
can find a positive integer m such that (m · KX − H) is linearly equivalent to an
effective divisor E.

Let us first prove that the family of polarized varieties (D, H|D) is bounded.
We note that as each D has only rational singularities, using (6.1.2), we see that the
coefficients of the Hilbert polynomial corresponding to H|D are determined by
Riemann-Roch formula. Therefore, the theorem of Kollár and Matsusaka [KM83]
applies, that is to bound the family (D, H|D), it suffices to bound the intersection
numbers

H2 · D and H · KD = H · (KX + D) · D.

For H2 · D, we note that, as long as D is not a component of E we can use the
inequality (8.1.1), to get

0 ≤ H2 · D ≤ mH · (3c2 − c2
1).

For the second term KD · H, we use Theorem 1.2 to find

0 ≤ 3c2(Ω
[1]
X (log D)) · H − c2

1(Ω
[1]
X (log D)) · H

= (3c2 − c2
1) · H + 2(KX + D) · D · H − KX · D · H.

We immediately deduce that

−1
2
(3c2 − c2

1) · H ≤ H · (KX + D) · D = H · KD ≤ 0.

Therefore, the family of polarized varieties (D, H|D) is bounded.
It now remains to show the finiteness of the polarized varieties (D, H|D) with

canonical singularities and −KD pseudoeffective. Let d be the Hilbert polynomial
of one of this object D and Hilbd

X the corresponding Hilbert scheme. All other
surfaces with canonical singularities in Hilbd

X are deformations of D. From simul-
taneous resolution of families of surfaces with canonical singularities [KM98], one
can assume that the deformation is smooth. Then from the deformation invariance
of the Kodaira dimension [Siu98], we obtain that such deformations of D are not
of general type. If Hilbd

X is not finite then X is covered by a family of varieties
which are not of general type. This is impossible by the easy additivity of Kodaira
dimensions and the fact that X if of general type. The boundedness above gives
that polarized varieties (D, H|D) with canonical singularities and −KD pseudoef-
fective are contained in finitely many such Hilbert schemes. This concludes the
proof. �
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Remark 8.2. In [LM97, Thm. 4], in the setting where X is non-uniruled and smooth
and D is reduced, the Miyaoka-Yau inequality 7.2 is claimed to be valid. As a
consequence a stronger version of Theorem 1.5 is obtained. Unfortunately we have
been unable to verify the details of the proof of [LM97, Thm. 4]. The main point
of difficulty is that within the proof of this theorem, in [LM97, Subsect. 3.1], the
authors claim that given a smooth projective, threefold X of general type with an
ample divisor H, for sufficiently large m, there is a general member S ∈ |m · H| for
which the following conditions hold.

(8.2.1) The restriction (Ω1
X log(D))|S is semipositive with respect to (Pσ(KX +

D))|S, where Pσ is the positive part of the divisorial Zariski decomposi-
tion of KX + D, cf. [Nak04, Chapt. III].

(8.2.2) The restriction (Pσ(KX + D))|S of the positive part of KX + D verifies the
equality Pσ(KX + D)|S · N((KX + D)|S) = 0, where N(KX + D|S) is the
negative part of the Zariski decomposition of the pseudoeffective divisor
(KX + D)|S.

Although Item (8.2.1) in the conditions above can most likely be recovered
by [CP15, Thm. 2.1] and the arguments in Sections 3 and 4 in the current paper,
the second condition (8.2.2) is more problematic as the underlying assumption is
that Zariski decomposition is functorial; a condition that in general does not hold.

Remark 8.3. Starting with a general type variety X and a divisor D such that (X, D)
is dlt, thanks to [BCHM10], it is certainly possible to establish a Miyaoka-Yau in-
equality using a minimal model of (X, D). More precisely, let π : (X, D) 99K
(X′, D′) be a LMMP map resulting in the log-minimal model (X′, D′). Let π̃ : X̃ →
X′ be a desingularization of π factoring through µ : X̃ → X. Now, as we pointed
out prior to Theorem 7.2, thanks to [CP14], one can use the original arguments
of Miyaoka, together with those of Megyesi (and his use of Q-Chern classes), to
show that the inequality(

3c2(Ω
[1]
X′ log(D′)− (K′X + D′)2)

)
· Hn−2 ≥ 0

holds for any ample divisor H ⊂ X′. Furthermore, we can use known results on
the behaviour of Chern classes under birational morphisms to show that

(8.3.1)
(
3c2(Ω1

X̃ log(D̃))− (KX̃ + D̃)2)
)
· π̃∗(H)n−2 ≥ 0.

But the inequality (8.3.1) is hardly independent of the divisor D. In fact in the
inequality (8.3.1) even the polarization (π∗H) depends on D. Therefore, the in-
equality (8.3.1) is far from being useful in the context of Lang-Vojta’s conjecture.
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