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ABSTRACT. We show that for every generic smooth projective hypessak ¢ P,
n > 2, there exists a proper algebraic subvarigty> X such that every nonconstant
entire holomorphic curv¢: C — X hasimagef(C) which lies inY’, provideddeg X >

5

277.
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1. INTRODUCTION

In 1979, Green and Griffiths [8] conjectured that every mtiye algebraic varietyX’
of general type contains a certginoper algebraicsubvariety Y ;Cé X inside which all
nonconstant entire holomorphic curvgsC — X must necessarily lie.

A positive answer to this conjecture has been given for sagdy McQuillan [11]
under the assumption that the second Segre nuwrfberc, is positive. In the survey
article [21] (cf. also [20]), Siu established that there exists a high integesuch that
generic hypersurface¥ c P"*! of degree> d,, are moreoveiKobayashi-hyperbolic
namely all entire curveg: C — X must beconstant not only algebraically degenerate.

Siu’s strategy is based on two key steps: 1) the explicititoation, in projective coor-
dinates, of global holomorphic jet differentials; 2) théatenation of such jet differentials
by means of slanted vector fields having low pole order. Thi@k construction of jet
differentials can be seen as a replacement of the argumisigt Reemann-Roch which is
known to be difficult to realize since it involves a controltbE cohomology. The rea-
son to perform explicit constructions is also a better exteshe base-point set, and this
provides hyperbolicity instead of just algebraic degeagr&omplete up-to-date survey
considerations may further be found in [22, 4, 12, 5, 10, 25].

In this paper, we overcome the difficulty of the Riemann-Racgument thanks to
an alternative approach for Siu’s first key step based on Digradundle of invariant
jets [4]. The advantage of this method is that it usuallydsddetter bounds on the degree.
Indeed, after performing in Sections 4 and 5 below some @gkptielicate elimination
computations, we finally obtain a lower bound on the degkge= d(n) as an explicit
function ofn, for generic projective hypersurfaces of arbitrary dimens, > 2.

Theorem 1.1. Let X C P"*! be a generic smooth projective hypersurface of arbitrary
dimensiom > 2. If the degree ofX satisfies theffectivelower bound:

deg(X) > 2",
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then there exists properalgebraic subvariety” & X such that every nonconstant entire
holomorphic curvef: C — X has imagef (C) contained inY".

As in [20, 21], we thereby confirm, for generic projective bygurfaces of high degree,
the Green-Griffiths-Lang conjecture. Even if our lower boisifar from the oneleg X >
n + 3 insuring general type, to our knowledge, Theorem 1.1 ishismdirection, the first
n-dimensional result with, moreover, an explicit degreedowound.

Two main ingredients enter our proof: 1) the existence o&tiant jet differentials
vanishing on an ample divisor in projective hypersurfaddsgh degree, following [4, 6];
and Siu’s second key step: 2) the global generation of a mifflg high twisting of the
tangent bundle to the so-callatanifold of verticah-jets which is canonically associated
to the universal family of projective hypersurfaces, faliog [21, 13].

The first ingredient dates back to the seminal work of Blodh fdvisited by Green-
Griffiths in [8], by Siu in [19, 22, 21] and by Demailly in [4]. IBch’s main philosophical
idea is that global jet differentials vanishing on an amplésdr provide some algebraic
differential equations that every entire holomorphic eufv C — X should satisfy. Five
decades later, Green and Griffiths [8] modernized Bloch'eepts and established several
results — still fundamental nowadays — about the geometgntife curves.

Later on, Demailly [4] refined and enlarged the whole thegrndéfining jet differen-
tials that are invariant under reparametrization of thes®aU. Through this geometrically
adequate, new point of view, one looks only at the confornledscof all entire curves.
In [6, 7], the first-named author combined Demailly’s apjgfosvith Trapani's [23] alge-
braic version of the holomorphic Morse inequalities, scoasonstruct global invariant jet
differentials inany dimensionn > 2. The first effective aspect of our proof is to make
somewhat explicit such a construction.

Indeed, by following [6, 7], we consider a certain intergatproduct éee(10) and (13)
below), the positivity of which yields — thanks to a suitableplication of the holomor-
phic Morse inequalities — a lower bound for the (asymptotizhension of the space
of global sections of a certamweighted subbundlef Demailly’s full bundle £, ,,, T of
invariant n-jet differentials. This intersection product lives in tbehomology algebra
of the n-th projectivized jet bundle ovek, a polynomial algebra im indeterminates
u1,us, ..., Uy, equipped with canonical, geometrically significant relas ([4, 6]). The
u; here are the first Chern classes of the successive (antiiigigal line bundles which
arise during the projectivization process. The task of caduthe mentioned intersection
product in terms of the Chern classesiof — after eliminatingall the Chern classes
living at each level of Demailly’s tower — happens to be ofthgjgebraic complexity,
because four combinatorics are intertwined there: 1) psef several relations shared
by all the Chern classes of the lifted horizontal distribng; 2) Newton expansion of
large n2-powers; 3) differences of various binomial coefficientsemergence of many
Jacobi-Trudy determinants.

The second ingredientyjiz. the vertical jets comes from ideas developed for 1-jets
by Voisin [24] in order to generalize works of Clemens [3] dfich on the positivity of
the canonical bundles of subvarieties of generic projedtiypersurfaces of high degree.
In [21], Siu showed how the correspondigépbal generation properfpr 1-jets devised
by Clemens generalizes to the bundle of tangents to the sgfacertical n-jets. Siu
then established that one may use the available tangemtngrators, which are mero-
morphic vector fields with a certaipole orderc,, > 1, so as to produce, by plain dif-
ferentiation, many new algebraically independent invarjat differentials when starting
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from just a singlenonzergjet differential. At the end, one obtains in this way suffittlg
many independent jet differentials, and this then forcésesnurves to lie in a positive-
codimensional subvariety & X.

This strategy was realized in details for 2-jets in dimens2dby Faun [15] with pole
orderco = 7, and similarly, for 3-jets in dimension 3 by the third-naneadhor in [18]
with ¢3 = 12. In both works, global generation holds outside a certaceptional set.
The general case of-jets in dimensiom was performed recently by the second-named
author in [13] withe,, = "2+5" and with a quite similar exceptional set. It then became
clear, when [13] appeared, that Demailly’s invariant jeimbined with Siu’s second key
step could yieldveakalgebraic degeneracy (nonexistence of Zariski-denseseriives)
in any dimensionn > 2. But to reach effectivity, it yet remained to perform whag th
present article is aimed at: taming somehow the complicateabinatorics of Demailly’s
tower. Furthermore, at the cost of increasing the pole oogeto ¢/, = n? + 2n, the
exceptional set is shrunk to be just the set of singular [@&), and thenstrong effective
algebraic degeneracy is gained. This is Theorem 1.1.

As the effective lower boundeg X > 27° of the main theorem above is not optimal,
Section 6 of the paper is intended to provide numericallyebetstimates in small dimen-
sions. For surfaces, the best known effective lower bounthidegree ig > 18 ([15]),
afterd > 21 ([5]) andd > 36 ([12]). In [18], the third-named author obtained the first
effective result for weak algebraic degeneracy of entirvesiinside threefold of P4,
wheneverdeg X > 593.

Theorem 1.2. Let X c P"*! be a generic smooth projective hypersurface. Then there
exists a proper closed subvariety G X such that every nonconstant entire holomorphic
curve f: C — X has imagef (C) contained inY’

e for dim X = 3, whenevereg X > 593;

e for dim X = 4, whenevereg X > 3203;

e for dim X = 5, whenevereg X > 35355;
e for dim X = 6, wheneverleg X > 172925.

The last three effective lower bounds in dimensions 4, 5 amadetentirely new. In
dimensior3, our bound 593 is the same as in [18]. Indeed, an inspectitreaxceptional
set in [18] shows that the part of the degeneracy locus whialg depend oryf is in
fact of codimension 2¢f. [13]), and therefore is empty, thanks to Clemens’ result [3]
which excludes elliptic and rational curves. Usiag = 18 andc¢; = 25 instead of
¢y = 24 andcy = 35, we would have obtained the two lower bountig X > 2432
anddeg X > 25586 which were announced in our firat xi v. or g preprint and which
insured onlyweakalgebraic degeneracgf([13]; usingcs = 33 instead ofcy = 48, the
bound would beleg X > 120176).

For dimensions 5 and 6, our strategy of proof is the same aBHeorem 1.1, except
that we choose a numerically better weighted subbundle ofdilg’s bundle of invariant
jet differentials, exactly as in [6].

Quite differently, for dimension8 and4, the construction of nonzero jet differentials is
based on @aompletealgebraic description of the full Demailly bundl&s, ,,, 7%, n = 3,4,
due respectively to the third-named author ([16]) and tostheond-named author ([14]),
after Demailly [4] and Demailly-El Goul [5] forn = 2. The invariant theory approach
requires finding the composition series of thg ,, 7, but this is understood only in di-
mensions 2, 3 and 4, because of the proliferation of secgriaariants — a well known
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phenomenorgf. [14] and the references therein. Then by appropriately simgihe Eu-
ler characteristics of the composing Schur bundles [1&]ntpaccount of the numerous
syzygies shared by a collection of fundamental bi-invdasdib4], one establishes the pos-
itivity of the Euler characteristicg (Ean)*() for n = 3,4, at least asymptotically as
goes to infinity. Furthermore, realizing also in dimensidhéstrategy finalized in dimen-
sion 3 by the third-named author [17], we estimate from allgeontribution of the even
cohomology dimensions® (X, E,, ,,T% ), thereby gaining a suitable lower bound for the
dimension of the spack’ (X, E,, ,,T%) of global sections. Such estimates are done by
means of Demailly’s [4] generalization of Bogomolov’s wgtning theorem [2] for the top
cohomology, and also by means of the algebraic version ofvbek holomorphic Morse
inequalities for the intermediate cohomologies [17].

Even if the numerical bounds obtained in this way in dimemsi8 and 4 are better
than the ones we obtained in all dimensions, the extrem&acyr of the algebras of
invariants by reparametrizatioref([14]) is the main obstacle to run the process in the
higher dimensiong > 5. This was our central motivation to follow the strategy of Té.

Acknowledgments. The first-named author warmly thanks Stefano Trapani fdepty
listening all the details of the proof of the main theorem.

2. PRELIMINARIES

2.1. Jet differentials. We briefly present here useful geometric concepts seleotea f
the theory of Green-Griffiths’ and Demailly’s jets [8, 4]f( also [16, 6]). Let(X,V)
be adirected manifoldi.e. a pair consisting of a complex manifold together with a
(not necessarily integrable) holomorphic subburidle- T'x of the tangent bundle t& .
This category will be very useful later on, when we will catesi the situation wherg is
the universal family of projective hypersurfaces of fixedmd® and/ the relative tangent
bundle to the family. The bundld,V is the bundle oft-jets of germs of holomorphic
curvesf: (C,0) — X which are tangent t&’, i.e., such thatf'(t) € Vi for all ¢ near
0, together with the projection mgp— f(0) onto X.

Let Gy, be the group of germs @f-jets of biholomorphisms ofC, 0), that is, the group
of germs of biholomorphic maps

ts o) =art+agt’+-- +apth, a1 €C* a;€C, j=2

of (C,0), the composition law being taken modulo termsf degreej > k. ThenGy
admits a natural fiberwise right action dpV’ which consists in reparametrizirigjets of
curves by such changesof parameters. In [13], one finds the multivariate Faa di Brun
formulas yielding explicit reparametrization for the smled absolute cas® = Tx.
Moreover the subgroufll ~ C* of homothetiesp(t) = At is a (non-normal) subgroup
of G, and we have a semidirect decompositiop = G}, x H, whereG/ is the group of
k-jets of biholomorphisms tangent to the identitg. with a; = 1. The corresponding
action onk-jets is described in coordinates by

(1) N (F o F ) = (N2 A ),

As in [8], we introduce theGreen-Griffiths vector bundlE,Sg’;V* — X, the fibers of

which are complex-valued polynomiad(f’, .. .., f*)) in the fibers of.J,V having
weighted degree: with respect to th€* action, namely such that:

QNI NI N FRY)y = xmQ(f! f7,, f ),
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forall A € C* and aII(f’, .. ,f("f)) € J, V. Demailly extended this concept.
Definition 2.1 ([4]). The bundle of invariant jet differentials of ordér and weighted
degreem is the subbundlef;, ,,,\V* C E,?fflv* of polynomial differential operators
Q(f', f",..., f®) which are invariant undearbitrary changes of parametrizatione.

which, for everyp € Gy, satisfy:

Qo). (fog) ..s(Fo)®) = O™ Q! ... 1),
Alternatively, Ej, ,,V* = (Eﬁflv*)@;f is the set of invariants oE7;V* under the action
of G}

We now define a filtration ozg’S’V*. A coordinate chang¢ — W o f transforms

every monomial f(*)¢ = (f)a (") .- (f*)% having, for anys with 1 < s < k,
the partial weighted degree§; := |(1| + 2|¢2] + -+ + s|¢s|, into a new polynomial

(o f)('>)e in (f,f”,..., f®), which has the same partial weighted degree of osder
when/,, 1 = --- = {;, = 0, and a larger or equal partial degree of ordetherwise (use
the chain rule). Hence, for eagh= 1,.. ., k, we get a well defined decreasing filtration

F? on ESCV* as follows:

(f', f",.... f®) € EZCV* involving
only monomials(f(®)¢ with [¢|, > p

F(gsv) = {“ b wpen

The graded term€ir,_, (E{'C V*) associated with thgk — 1)-filtration F)_ (EF/CV*)
are the homogeneous polynomig$f’, f”, ..., f*)) all the monomialg f(*))* of which
have partial weighted degré8,_, = p; hence, their degre& in f®)is such thatn—p =
kly, andGrZ_l(E,?jﬁV*) = 0 unlessk|m — p. Looking at the transition automorphisms

of the graded bundle induced by the coordinate chafhge ¥ o f, it turns out thatf(¥)
transforms as an element Bf C Tx and, by means of a simple computation, one finds

Gr)' [ (BEGVY) = ESC i V* ® SHV*.
Combining all filtrationsF; together, we find inductively a filtratiof™® on E{'CV* the
graded terms of which are
Gt (EJS V") =SV @ SPV* @ @ S%V*, LeNF, |f,=m.
Moreover ([4]), invariant jet differentials enjoy the nedliinduced filtrations:
FP(BpmV*) = EpV* N FP(EZSVY),

the graded terms of which are, if we emprGk to denoteG/ -invariance:

Gy,
Gr.(Ek:,mV*):< D Sflv*@@sbv*@---@#w*) .

|| x=m

2.2. Projectivized k-jet bundles. Next, we recall briefly Demailly’s construction [4]
of the tower of projectivized bundles providing a (relajigenooth compactification of
J,*V /Gy, whereJ,*%V is the bundle ofegulark-jets tangent td/, that is,k-jets such
that f/(0) # 0.

Let (X, V') be a directed manifold, withim X = n and rank/ = r. With (X, V), we
associate another directed manifoi, V) whereX = P(V) is the projectivized bundle
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of lines of V, 7: X — X is the natural projection and is the subbundle df’; defined
fiberwise as N o

Viwo,[vol) ={¢e T3 (o)) | ™6 € C- v}
for anyzo € X andvg € Tx 4, \ {0}. We also have a “lifting” operator which assigns to
a germ of holomorphic curvg: (C,0) — X tangent tol” a germ of holomorphic curve
f: (C,0) — X tangent to” in such a way thaf () = (f(t), [f'(t)]).

To construct the projectivized-jet bundle we simply set inductivelyXy, Vy) =
(X, V) and(Xy, Vi) = (Xp—1, Vi_1). Clearly ranki, = r anddim Xj, = n + k(r — 1).
Of course, we have for eadh > 0 a tautological line bundl®x, (-1) — X and a
natural projectionr;: X;, — Xj_;. We call;; the composition of the projections
Tjy1 0 -+ 0T, SO that the total projection is given by ;. : X — X. We have, for each
k > 0, two short exact sequences

(2 0—Tx,/x, , = Ve = Ox,(=1) =0,

Here, we also have an inductively definfedifting for germs of holomorphic curves such
thatf[k,]: (C, 0) — X, is obtained as‘[k,} = f[kfl]-

Theorem 2.1([4]). Suppose thatnkV > 2. The quotient/, %V /G, has the structure of
a locally trivial bundle overX, and there is a holomorphic embeddidf®V /G, — X
over X, which identifies/; %V /Gy, with X9, that is the set of points ifX;, on the form
i (0) for some non singulak-jet f. In other word X}, is a relative compactification of
J, %V /Gy, over X. Moreover, one has the direct image formula:

(m0,1)+Ox;, (M) = O(Epm V™).

Next, we are in position to recall the fundamental applaatof jet differentials to
Kobayashi-hyperbolicity and to Green-Griffiths algebraégeneracy.

Theorem 2.2([8, 22, 4]) Assume that there exist integdrsm > 0 and an ample line
bundleA — X such that

H®(Xg, 0x, (m) @ w5 1, A7) ~ HO (X, BV @ A7)

has non zero sections, . .., oy andletZ C X, be the base locus of these sections. Then
every entire holomorphic curve: C — X tangent to/” necessarily satisfiefy;,) (C) C Z.

In other words, for every globals-invariant differential equationP vanishing on an
ample divisor, every entire holomorphic curyemust satisfy the algebraic differential
equationP(j*f(t)) = 0. Furthermore, the same result also holds true for the bundle

GG
Ek,mTX'

2.3. Existence of invariant jet differentials. Now, we recall some results obtained by
the first-named author in [7], concerning the existence wahriant jet differentials on
projective hypersurfaces which generalized to all dimamsh previous works by De-
mailly [4] and of the third-named author [17].

Denote byc,(E) the total Chern class of a vector bundie The two short exact
sequences (2) and (3) give, for edch- 0, the following two formulas:

ce(Vk) = co (TXk/Xk—l) C'(OXk(_l))
Ce (Wltvk’fl ® OXk(l)) = Ce (TXk/Xk—l)’
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so that by a plain substitution:
(4) ce(Vi) = Ca (Oxk(—l)) Ceo (WZVk_l ® Oxk(l)).

Let us callu; = ¢; (Ox; (1)) andclm = ¢;(V};). With these notations, (4) becomes:

l

(5) =D [(20) = (2 et w1 <<
s=0

SinceX is the projectivized bundle of line df;_;, we also have the polynomial relations

©) o rmel T e =0, 1< <k

After all, the cohomology ring ofX;, is defined in terms of generators and relations as
the polynomial algebraf®(X)[u1, ..., ux] with the relations (6) in which, using induc-
tively (5), one may express in advance all ttJ[@ as certain polynomials with integral
coefficients in the variableg;,...,u; andci(V),...,¢(V). In particular, for the first
Chern class of/, a simple explicit formula is available:

k
(7) M =m e (V) + (= 1) S 7.
s=1

Also, it is classically known that the Chern classesX) of a smooth projective hy-
persurfaceX ¢ P"*! are polynomials ind := deg X and the hyperplane clags :=
c1(Opn+1(1)), viz.for 1 < j < m:

J
®) ¢j(X) = ¢j(Tx) = (=17 W Y (1) ("1} .

=0

Now, let X c P"*! be a smooth projective hypersurface of degdeg X = d
and consider, for all what follows in the sequel, the absolcaseV = Tx. For
a=(a1,...,a;) € Z¥, we define ¢f. [4, 6]) the following line bundle y, (a) on X;;:
Ox,(a) =71 ,0x, (a1) ® 75, Ox, (a2) ® - - - @ Ox, (ax)-

Using the algebraic version — first appeared in Trapani®lar{23] — of Demailly’s
holomorphic Morse inequalities, the first-named authorwat in [7] that in order
to check thebignessof Ox, (1), it suffices to show thepositivity, for somea =

(a1,...,a,) € N" lying arbitrarily in the cone defined by:

) ai = 3ag, ... ap—2 > 3ar—1 and ap_1 > 2a; > 1,

of the following intersection product:

7’7,2
(Ox,(a) ® 7 ,,0x(2a)))" —
—n*(0x,(a) ® m,,0x(2a])) -m6.,0x(2]a]),

wherela| = a; + - - - + a,, and wher@) x (1) is the hyperplane bundle ovér. We recall
passimthat this intersection product is derived from the follog/iexpression 00 x, (a)
as the “difference” of two line bundles ovéf,,:

0x,(a) = (0x,(a) © 75,,0x (2la))) © (n5,,0x (2la])) ",
that are shown in [6] to be both globally nef. Here is the meatatement.

(10)

n?-1



8 SIMONE DIVERIO, JOEL MERKER, AND ERWAN ROUSSEAU

Theorem 2.3([7]). Let X c P"*! by a smooth complex hypersurface of degtege X =
d and fix any ample line bundlé — X. Then, for jet ordek = n equal to the dimension,
there exists a positive integdy, such that the two isomorphic spaces of sections:

HY(Xy, 0x, (m) @ w5, A1) ~ HY(X, BTk @ A1) #0,
are nonzerq whenever! > d,, provided thatn > mq, is large enough.

It is also proved in [6] that for any jet ordér < n smallerthan the dimension, no
nonzero sections, though, are availabt#? (X, Ox, (m) ® wgykA—l) = 0; in fact, this
vanishing property is technically used in the proof of theciem.

In our applications, it will be crucial to be able to contrala more precise way the
order of vanishing of these differential operators aloreydmple divisor. Thus, we shall
need here a slightly different theorem, inspired from [23,, 118]. Recall at first that for
X a smooth projective hypersurface of degreim P"*!, the canonical bundle has the
following expression in terms of the hyperplane bundle:

Kx ~0x(d—n-—2),
whence it is ample as soon @&s> n + 3. Here is the new useful result.

Theorem 2.4. Let X C P™*! by a smooth complex hypersurface of degiege X = d.
Then, for all positive rational numbegsmall enough, there exists a positive integgr
such that the space of twisted jet differentials:

HO(X,. 0, (m) © 73, K5") =~ HO(X, Ey T © K57) £

is nonzero, whenevet > d,, 5 provided again thain > mg , s is large enough and that
om is an integer.

Observe that all nonzero sectionss H°(X, E,, ., 7% ® K°™) then have vanishing
order at least equal n(d — n — 2), when viewed as sections &, ,,, T .

Proof of Theorem 2.4Similarly as in [7], for each weighi € N" satisfying (9), we first

of all expres®x, (a) ® wg‘,nK;f‘a‘ as the following difference of two nef line bundles:

(0x,(a) ® 75,,0x (2]a])) ® (m5,,0x (2la]) ® 75, K™ "

In order to apply the holomorphic Morse inequalities, we tmes led to evaluate the
following intersection product:

(0, (a) ® 75, O0x (2[al)" —

nQ— sk sk a
—n?(0x, (a) @ 75,,0x(2la]))" " - (75.,.0x(2]a)) © w5, K3,

and to decide when it is positive. After reducing it in ternighee Chern classes of,
and then in terms off = deg X using (8), this intersection product becomes a polyno-
mial — difficult to compute explicitly, but effective aspsatill start in Section 4 — inl

of degree less than or equalrot 1, having coefficients which are polynomials ia, §)

of bidegree(n?, 1), homogeneous ia. Notice that for§ = 0, the intersection product
identifies with (10); according to the proof of Theorem 2.3egi in [7], we already know
that for a certain (noneffective) choice of weightying in the cone (9), the polynomial
corresponding to (10) has degree precisely equal to1 with a positiveleading coeffi-
cient. Thus by continuity, with the same choice of weight,dth 5 > 0 small enough, the
leading coefficient still remains positive. So the polynahiin question again takes only

(11)
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positive values whed > d,,, for some (noneffectivej,,. Holomorphic Morse inequalities
then insure the claimed existence of nonzero sectionstlgxecin [7]. O

2.4. Global generation of the tangent bundle to the variety of vetical jets. We now
briefly present the second ingredient, as said in the Inttiolu LetX ¢ P*t! x PN
be the universal family of projective-dimensional hypersurfaces of degréén P"*1;
its parameter space is the projectivizatiBH (P!, 0(d))) = PNi, where N} =
("*9*1) — 1. We have two canonical projections:

X
N
]P>n+1 ]P)N; .

Consider the relative tangent bundleC T with respect to the second projectith:=
ker( pr,)., and form the corresponding directed manif@ld, V). It is clear thatV is
integrable and that any entire holomorphic curve frérto X tangent toV has its image
entirely contained in some fiber pr(s) = X, s € PNd .

Now, letp: J,V — X be the bundle of-jets of germs of holomorphic curves i
tangent toV, the so-calledvertical jets and consider the subbundi&™®V of regularn-
jetsof mapsf: (C,0) — X tangent tdV such thatf’(0) # 0.

Theorem 2.5([13]). The twisted tangent bundle to vertioaijets:
Ty,v @ p*pry Opni1(n? + 2n) @ p*prs Opaz (1)

is generated oved,’?V by its global holomorphic sections. Moreover, one may choos
such global generating vector fields to be invariant withped to the reparametrization
action ofG,, on J,,"V.

This means that we have enough independent, global, im¢arector fields having
meromorphicoefficients over,,'V in order to linearly generate the tangent spagey »
at every arbitrary fixed regular jgt € J,,9V. The poles of these vector fields occur only
in the base variables &f, but not in the vertical jet variables of positive differietiion or-
der. Most importantly the maximal pole order hereis n? + 2n, hence it is compensated
by the first twisting(e) @ p*pri Opn+1(n? + 2n).

3. ALGEBRAIC DEGENERACY OF ENTIRE CURVES

Now, we are fully in position to establish ti@neffectiveversion of Theorem 1.1. The
proof (cf. the Introduction) incorporates two main ingredients: B #xistence, already
established by Theorem 2.4, of at leasenonzero global invariant jet differential van-
ishing on an ample divisor; 2) Theorem 2.5 just above to prediufficiently manyew
algebraically independenet differentials.

Theorem 3.1.Let X c P"*! be a smooth projective hypersurface of arbitrary dimension
n > 2. Then there exists a positive integér such that wheneveteg X > d,, and X is
generic, there exists properalgebraic subvarietyy” & X such that every nonconstant
entire holomorphic curvg : C — X has imagef (C) contained inY".

Proof. As above, consider the universal projective hypersurfaite! Moy P pag
of degreed in P"*+!. Observe thatX, = pr, !(s) is a smooth projective hypersurface of
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Pn+! for generics € PYNi and thatV = ker(pr,). restricted toX, coincides with the
tangent bundle t&(;. We infer therefore that:

HO(Xg, EpmV* @ priOpnsi (= dm(d—n —2))| ) = H* (X, EpmT%, © KX™™).

Thanks to Theorem 2.4, the latter space of sections is nonfmrsmall rationald > 0,

ford > d, s and form > mg,, s large enough, independently afFix anys, € PNd and
pick a nonzero jet differentiaPy € H(X,,, EnmTk, ® K;(‘Z”) In order to employ
the vector fields of Theorem 2.5, we must at first extéiychs aholomorphic familyof

nonzero jet differentials. Thus, we invoke the followingssical extension result.

Theorem 3.2([9], p. 288) Let7: Y — S be a flat holomorphic family of compact
complex spaces and It — Y be a holomorphic vector bundle. Then there ex-
ists a proper subvariety? C S such that for eachsy € S\ Z, the restriction map
HO (171 (Uyy), L) — H" (77 (s0),L],;-1(5,)) is onto, for some Zariski-dense open set
Us, C S containingsg.

We apply this statement to = pr,, toY = X, to S = PN, to L = EnmV* ®
priOpn+1( — ém(d — n — 2)) and we similarly denote by ¢ PVi the embarrassing
proper algebraic subvariety. The genericityXfassumed in the two theorems 1.1 and 3.1
will just consist in requiring that, ¢ Z (noticepassimthat we do not have a constructive
access t&) and of course also, thatdoes not belong to the set for whiéfy, is singular.

We therefore obtain a holomorphic family of jet differemdia

P = {P|s € HO(Xsa En,mT)*(s ® K)_(fm)}

parametrized by with P|;, = Py # 0 and vanishing orK§(”j; for our purposes, it will
suffice thats varies in some neighborhood &f. ‘

Now, take anonconstanentire holomorphic curvg: C — X tangent taV. Since the
distributionV has integral manifolds pr (s) = X, f mapsC into someX,,, for some
so € PNd. Of course, we assume that ¢ Z and thatX, is non-singular. Consider now
the zero-set locus

Y, = {z € X5, Plsy(z) =0},

whereP|,, # 0 vanishes as a section of the vector bunﬂlng)*(SO ® K;f(’)“ ThenYs,
is aproper algebraic subvarietgf X, . We then claim that

f(C) C Yy,

which will complete the proof of the theorem. (It will evenmie out that we obtain
strong algebraic degeneracy of entire curyesC — X, inside aY ; X, defined by
Y, = {z € X: P|,(z) =0} and parametrized bynears.)

Reasoning by contradiction, suppose that there exjsts C with f(tg) ¢ Ys,. Con-

sider then-jet map;™f: C — J,Vinduced byf. If ;f(C) would be entirely contained in
7,59y % 7 v\ J'9Y, then f would beconstant since singulan-jets satisfyf’(t) = 0.
So necessarily”f(C) ¢ .J,,VS"9, namely f’ # 0. Then by shifting a bit, if necessary,
we can assume that we in addition ha¥ét) # 0, viz. jf (tg) € Ji 2V.

Theorem 2.2 ensures thBt,, (j” f(¢)) = 0. DenotelU := PYi \ Z.

We may now view the family? = { P|,} as being a holomorphic map

P: J”v|pr2_l(U) — p*priOpn+1 (= dm(d — n — 2)) ‘pr2—1(U)
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which is polynomial of weighted degree in the jet variables. Let¥” be any of the global
invariant holomorphic vector fields of, V with values inp*pr; Opn+1 (n? + 2n) that were
provided by Theorem 2.5. Then we observe that the Lie dérevdt, P together with the
natural duality pairing

Opn+1(p) X Opn+1(—q) — Opn+1(p — q),
provides a new holomorphic map (notice the shiftidy+ 2n):

LyP: ‘]"V‘prgl(U) — p*prTOan( —om(d—n—2)+ n? + 2”) pry L(U)?

again polynomial of weighted degree in the jet variables, thus a new parameterized
family of invariant jet differentials. In particular, thestrictionLy P|,, of Ly P to {s =
so} yields anonzeroglobal holomorphic section in

HO (Xsov En,mT)*(so ® K)_(f(:n ® OXSO (n2 + Qn)) =
= H(Xop, EnmT%, ©O0x,,(=6m(d—n —2)+n®+2n)),

which is a global invariant jet differential ol 5, vanishing on an ample divisor provided
that —om(d — n — 2) + n? + 2n still remains negativetherefore, if we ensure such a
negativity 6eebelow), Theorem 2.2 shows thty P|s,] (5"f(t)) = 0. As a result, the
n-jet of f now satisfieswo global algebraic differential equations:

Py (47 () = [Lv Plso] (47 (1)) = 0.

JnVf (to) {L

constructing
another jet
differential
Ly P

Fig. 1: Producing from P a new jet differential Ly P having distinct zero locus inJ,,V

Heuristically €f. the figure), if the fibetJ,,V; ) would be, say, 2-dimensional, and if
the intersection of Ps, = 0} with {Ly P|s, = 0}, viewed in the fibet/, V), would be
a pointdistinct from the originalj"f (¢¢), we would get the sought contradiction. Now we
realize this ideadf. [21, 15, 18]) by producing enough new jet differential dosis whose
intersection becomesmpty

Indeed, witht, such thatf (to) &€ Ys, andj™f(to) € Ji 2V, and withW;, V; denoting
some global meromorphic vector fields in

H®(J,V, Ty, v @ p*priOpns1 (n® + 2n) @ p*prOpny (1)),

that are supplied by Theorem 2.5, we claim that the follovtimg evidently contradictory
conditions can be satisfied, and this will achieve the proof.

(i) For everyp < m and for arbitrary such field$V,..., W, the restriction
Ly, - LW1P|80 yields a nonzero global holomorphic section in

H®(Xsy, EnmT%,, © Ox,, (=6m(d —n = 2) + p(n® + 2n)))
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with the property thafLyy, - - - Ly, P] (s0, 5f(t)) = 0.
(i) there exist somgp < m and some invariant fields/,...,V, such that
[Lv, -+ Ly, P (s0, j"f (to)) # O.
The first condition(i) will automatically be ensured by Theorem 2.2 provided the re
sulting jet differential still vanishes on an ample divisae. provided that
—om(d —n —2) +p(n*+2n) <0
is still negative. But sincg will be < m, it suffices that-6m(d—n—2)+m(n?+2n) < 0,
and then after erasing, that:
(12) d> " gy g9

To get(i), we first fix a rationab > 0 so that Theorem 2.4 giveswnzerojet differential
foranyd > d,, s, we increase (if necessary) this lower bound by taking autcofi(12),
we construct the holomorphic famil§|s, and(i) holds.

To establish(ii), we choose local coordinates:

(S,Z,Z/,...,Z(n)) e(CNZlZ XxC'"xC'x...xC"

onJ,V near(so,j”f(to)), wherez € C" provides some local coordinates an for any
fixed s nearsg, and Where(z/, o ,z(”)) are the jet coordinates associated withWe
also choose a local trivializatior C of the line bundIeK;(fm. Then our holomorphic

family of jet differentialsP|, € HY (X, E,mT%, © K;(ém) writes locally as a weighted
m-homogeneous jet-polynomial:

P= Z Qir,...in (8, 2) () ... (Z(n))in7
li1]+-+nlin|=m

whereiy, ..., i, € N" and where they;, ;. (s,z) are holomorphic neafso, f(to)).
Locally, the proper subvariety;, C X is represented as the common zero-locus:

Y;O = {Z S XSO: qn,...,in(SOaz) = 0, A ’il, . ,in}.

By our assumption thatf(ty) ¢ Yi,, there existi),...,i% € N such that
q4i0.....i0 (s0, f(to)) # 0. If we make the translational change of jet coordinates
7 =2 — fl(tg), ...,Z"™ = z(™) — f(")(¢ty), our jet-polynomial transfers to:

P= Z Tiy...in (5,2) (Z) -z,
li1]++-Fnlin|<m
(notice “<m”) with new coefficientsy;, ; (s,z) that depend linearly upon the old ones
and polynomially upor(f’(to), ..., f™(to)). Again, there exist., ...,i. € N such
_____ 0 (s0, f(to)) # 0, because otherwise the two jet—polynomiﬂ#;s(),f(to) and
s0./(to) would be both identically zero.

Sincej"f(ty) € JX9V, by the property 2.5 of generation by global sections, we get
that for everyk with 1 < k£ < n and for everyi with 1 < ¢ < n, there exists an invariant
vector fieldV;* with

k _ 0
Vi |(50,3"f(t0)) 2P

(s0.4"F(t0))’
where we have denoted the translated central jet I5yto) := (f(to),0,...,0).
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To achieve the proof ofii), we may suppose that for every integerwith p <
i+ - +|iv] < [3]+ - -+n[iy] = m and for every invariant vector field$V; , .. ., W),
one has{Wi --- W, P|(so, ] f(to)) = 0, since if any such an expression is alrealy,
(i) would be got gratuitously. Thanks to the global generatitbledorem 2.5, this van-
ishing property then holds for any vector field§ involving all the possible differentia-

tlonsgs aaz T s _( ) Then under this assumption, the remainder differentiatio
a n
k
present inV; aftera/azi ‘(so,ﬁ"f(to)) will not mterv_ine at the p_(())ln(ls(),j "f(to)) when
performing any multi-derivation of length equal Q| + --- + |7,,|, hence if we write
Ez = ({2 Lyeees g n) € N™ all the multiindices present in the specific coefficignt -o,
) U15005ln
it follows that
[Vn VZTLI ...... VZ(3 Vl ](80, ] f( ))
_[_o d d o P
[6 ) T T 52D Py P] (30> f(t0)707 70)
tn,n in,1 Z?,n ;(1),1
= g?z,n' ' %?L,l! """ g(1),71' e 2(1),1! qgo i (807 f(t())) 7& 07
1seln

which is nonzero. Thu@i) holds and the proof of Theorem 3.1 is complete. Theorem 3.1
being not effective regarding the conditiot > d,,, the next two Sections 4 and 5 are
devoted to the proof of the effective main Theorem 1.1. O

4. EFFECTIVENESS OF THE DEGREE LOWER BOUND

It is known (cf. [19, 4, 25, 21, 16, 6, 14]) that reaching an explicit lower mdwdegree
deg X > d, both for Green-Griffiths algebraic degeneracy and for Kaisay hyperbol-
icity (in nonoptimal degree) still remained an open quesiioarbitrary dimensiom, due
to the existence asubstantial algebraic obstacles$n order to render somewhat explicit
the lower boundi,, of Theorem 3.1, one has to expand tifepowered intersection prod-
uct (11) and then to reduce it as an explicit polynoniials(d), as was foreseen in the
proof of Theorem 2.4. To this aim, one should descend Deyrsiibwer step by step
each time using the two relations (5) and (6). As a matteraf fane must perform some
numerous, explicit eliminations and substitutions andethg tame the exponential growth
of computations. At several places, we shall leave asidenapty of majorations in order
to reach the neat announced lower boafid

4.1. Reduction of the basic intersection product.We remind from Theorem 2.4 that,
in order to produce a global invariant jet differential witbntrolled vanishing order on
hypersurfaces whose degred > d,, would be bounded from below by an effectively
known functiond,, = d(n) of n, we should ensuri an effective wayhe positivity of the
intersection product:

n2
(0x,(a) ® 75,,0x (2]a]))" —
n?— * * a
—n?(0x, (a) ® 75,0x (2[a]))" " (75, 0x(2]a)) @ 75 K3,

for a certainn-tuple of integersx = a(n) € N belonging to the cone (9) (with = n)
which would depeneffectivelyuponn, and for a certain rational numbér= §(n) > 0
which would also depeneffectivelyuponn.
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As in [7], denoteu, = ¢;(Ox, (1)) for £ = 1,...,n, denotec, = ¢(Tx) for k =
1,...,n,andh = cl(OX(l)). With these standard notations, the intersection prodect w
have to evaluate becomes:

7'L2
(13) Il := (a1u1 + -+ apu, + Q\a\h) —

—n*(a1uy + -+ + apun, + 2|a|h)nz_1 - (2lalh — dlalcr);

here and from now on, admitting a slight abuse of notatiorctviiill greatly facilitate the
reading of formal computationsye systematically omit every pull-back symbp} (e)
After elimination and reduction using the relations (5) édseebelow), our intersection
product gives in principle a polynomial (difficult to compuseethe end of the paper) of
degree< n+1 with respect tal = deg X, which is affine iny, and all of which coefficients
are homogeneous polynomialszrof degreen?. Thus, let us call it:

n+1 n+1
Pas(d) = Pa(d) + 0 PL(d Zpkad +(5Zpkadk

Now, suppose in advance that we have an effectlve contrrmiugm explicit inequalities,
of all the coefficients;, , € Z and p;aa € 7 of bothP, andP’,, and more precisely, that
we already know inequalities of the type:

‘pk,a‘ < Ek? (k:Ov"'vn)7 anrl,a 2 Gn+17 ‘pz,a‘ < E?g (k:Ov"'7n7n+1)7

with theE;, € N, with G,,4; € N'\ {0} and with theE] € N all depending upom only.
According to the proof of Theorem 2.4, a good choice of weghtdeed make$,,;1,a
positive; we will see below that, ., , is then necessarily negative.

If we now setd := ; g,"“ so thaté also dependa posterioriexplicitly uponn, the
n+1

leadingd" ! -coefficient ofP, s becomes positive and bounded from below:

/ o ! 1 Gny1 1
Prn+la+ O Pni1a = Pntla —0 ‘pn—i—l,a‘ 2 Gny1— 5 B, ntl = 5 Gn+1

The largest real root of a polynomia), ;1 d"*! + a,, d" + --- + ag having integer co-
efficients and positive leading coefficien}.; > 1 may be checked to be less than
1+ (an + -+ +ag)/an+1. Applied to our situation:

1 Gn+l

Lemma 4.1. If one choose$ := 5 = , then the intersection produ¢t it

(Pra +
dpy, a) d* has positive leading coefﬁmerptlﬂ,a + 5pn+1,a > 5 L G,+1 and has other
coefficients enjoying the majorations:

Gn
<Ep+3 g +1 E’ (k=0,...,n),

‘sz at 0P
and therefore it takes only positive values for all degrees
421+ (En+-+Eo+ 3 @2 {E, + +Ep}) /1 Gupr = . O
Thus thisd}Z will be effectively known in terms oft whenEy, G,,.1, E} will be so. In
order to have not only the existence of global invariantifécentials with controlled van-

ishing order, but also algebraic degeneracy, we have atséi¢écaccount of condition (12),
and this condition now reads:

d>1+n+2+2(n2—|—2n)2"“ = d2.

n+1 n
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In conclusion, we would obtain theffectiveestimate of Theorem 1.1 provided we com-
pute the boundgy, G,,+1, E}, in terms ofn and provided we establish that:

(14) 2" > max {d},d2} =: d,.

4.2. Expanding the intersection product. By expanding then?- and the(n? — 1)-
powers, the intersection produdg in (13) writes as a certain sum, with coefficients being
polynomials inZ [al, ey Oy 5] , of monomials in the present Chern classes that are of the
general form:

Alalt-ouinor hlejudt - udn,

wherel + iy + -+ + i, =n?orl +1+4j1 + -+ j, = n?.

Lemma 4.2([4, 6]). After several elimination computations which take accaiihe re-
lations (5) and(6), any such monomial reduces to a certain polynomiéjh, ci, . . ., c,]|
which is homogeneous of degree= dim X, if & is assigned the weight and eache;,
receives the weight. Furthermore, after a last substitution by meang&fwhich uses
h" = [ h" = d = deg X, the polynomial in question becomes a plain polynomial in
Z|d] of degree< n + 1. O

We illustrate withh!v!' - - - u;"~1ui» three fundamental processes of reduction that will
be intensively used. Recall that asytmonomialh'uf! - - - uy! = 75 (')} ,(uft) - - - uyf
denotes a differential form livind(, and thatdim X, = n + ¢{(n — 1). Such a form is of
bidegree(p, p) wherep =1 + i1 + - - - + i,. We shall allow the (slight) abuse of language
to say thap itself is thedegreeof a (p, p)-form.

Atfirst, if i, < n—2, thenl+i;+- - -+i,_1 > n°—n+2 = 1+dime X,,_1, whence the
(sub)formhl! - - - u."~! which lives onX,,_; annihilates, as then do&&u"" - - - u,"~ ! uir
too. We call this (straightforward) first kind of reductioropess:

“vanishing for degree-form reasons”

and we symbolically point out the annihilating subform bydariining it with a small
circle appendedyiz.
hlui1 . u;”__ll u» =0  wheni, <n—2.

This will greatly improve readability of elimination comgations below.

Secondly, in the case whefg = n — 1, using an appropriate version of the Fubini
theorem and taking account of the fact t[fgger un=t = an,l u"~! =1, where all the
fibers ofr, 1., : X, — X,,—1 are~ P"1(C) ([4, 18, 6, 7]), we may simplify as follows
our monomial:

1 i in—1 n—1 _ 11 i1 in—1 ol in—1
Ryt - u, ) uy, f—hu1~~~un71-1—hu1"'unfl.
We shall call this second kind of reduction process:

“fiber-integration’.

The third process of course consists in substituting therélations (5) and (6) as many
times as necessary. With= n and without anyr? , (e), they now read:

J .
(15) =57 Ngow e w7,
k=0
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wherel < j, £ < n, with the conventlons([)} =1 andc[ = c;j, where we set
. (n—k n—k o (n k) (n—k)'
Ajj—k = (jfk) - (jfk:fl) — G-RIn—)!  Gk—D)(n—jF+D)*

and also, with upper indices af denoting exponents:
18) =N o el e,

Estimating the coefficient ofd”“. Our first main task is to reach a lower bou@g, ; —

JE 41 for the coefficient ofd™*! in IIs, and this cannot be straightforward, becausee

there arevery numerousnonomials in the expansion ofs. In a first reading, one might
jump directly to Subsection 4.4 just after Proposition 4gre is an initial observation.
Lemma 4.3([7]). Assum@ + iy +---+i, =n?orl+1+4j; +---+j, = n’. Then as
soon ag > 1, one has:

0 = coeff gnt1 [hl%1 uZ”] and 0 = coeff jn+1 [hlclul . uﬁ{l]

n

Proof. Indeed, after reduction of eithermonomial in terms of the Chern classgsof
the base, one obtains a sum with integer coefficients of tefrtige form:

hlci‘lcg‘2 e c;\ln
with [ + Ay + 2X2 + - - - + n), = n. But then if we replace the Chern classes by their
expressions (8) in terms afand of the degree, we get:
coeff g1 [hley e)? -+ ep] = coeff guy [(—1)MFFAn pr . ghitAettAn o ¢
= coeff jn+1 [(—1))‘1+"'+’\” d-dh Azt An l.o.t]
=0,
sincel + Ay + e+ -+ A\, KT+ A +2 0+ - +nA, =n. O
As aresult, a glance at (13) immediately shows that:
coeffyui[Ils] = coeffyi {(alm + b agun)” +dlaler (aur 4+ apug)” 71]
4.3. Reverse lexicographic ordering for theu-monomials. We order the collection of
all homogeneous monomialg' - - - ui» with i, +- - - +4,, = n? appearing in the expansion
2 . .
of (aju1 + -+ - +ayu,)" above by declaring that the monomigt - - - ui» is smaller for
the reverse lexicographic orderinghan another monomial{’ - - -ud?, again of course
with jy + - - + j,, = n?, if:
in > Jn
orif i, =j, but i, 1 > jp1
or if ’in:jn, ...,’i3 :j3 but 19 >j2.
Observe that,, = j,,...,is = jo impliesi; = j;. An equivalent language says that the
multiindices themselves are ordered in this way:
(ila cee 7Zn) <revlex (jla cee 7]n)
Proposition 4.1. The coefficient of**! in any monomiahil1 -t which islargerthan
ul -+ - u is zero:

coeff gni [ufl -+ uir] =0 forany  (i1,...,in) >reviex (Ny-- -, n).
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Proof. Thus, assuméiy, ..., i,) >reviex (1, ..., n). Firstly, if i, = n, the claimed van-
ishing property is in all concerned subcases yieldediigy of the lemma just below.
Secondly, ifi,, = n — 1, an integration on the fiber of,_; , : X,, — X,,_; replaces
u™~! by the constant-1, hence we are left Witl&’i1 --u."~! and(i) of the same lemma

n—1
then yields the conclusion. Thirdly and lastly;ijf < n — 2, then the formuj' - - - u"~}
vanishes identically for degree-form reasons. Thus, gdatite lemma, the proposition is
proved. O

Lemma 4.4. The coefficient ofi”*! in all the following four sorts of:.-monomials is
equal to zero:

(i) ul! u}j foranyk < n—1andanyiy,... iy withiy+---+ip =n+k(n—1);

(i) (c)" 7k uif . u;f foranyk < n — 1, and anyiq,...,7; withi, < n — 1 and
i1+ i =kn;

(i) u’f u;l up q - uy foranyl <n, anyiy, ... 4 withi, <n —1landi; +--- +
i = In;

(v) cruf - wptuf g -l foranyl < no— 1, anyi; < n— 1, anyiy,... i with
’i1+"'+il =In.

Proof. Property(i) is established in Section 3 of [7]. S holds.

Applying (15) written forj = 1, namelyc[f] = c[f*l] + (n — 1) ug, we get:

a7 cga:cl+(n—1)u1+-~-+(n—1)u(g.

To begin with, we start frongi) for k = n — 1,4, 1 = nandiy + -+ + i, o =
n+(n—1)(n—1)—i, 1 =n?—2n+ 1 arbitrary, namely:

0 = coeff gu+1 [uf' - uJul_].

Next, thanks to (16), we may replace in this equality , by —c[" Zun=1—clr=2lyn—2_
2
0= COEﬂ:dn+1 |:u211 e u;n:QQ ( _ aniQ]uz:% _ c[2n72]u2:% L 67[;172]0)}
= COEdenH [u211 Ce U;n:QQ( - C[1n72] Z:%)] [degree-form reasons]  [use (17)]
= coeff gni1 [uf! u;"_’;( —ca—Mnm—-—1Nu —--—(n— 1)un_20) ur” 1]

= coeffdn+1 [ — clulf ce u;":;u:;:ﬂ [apply (i) again],
and we therefore g€ii) for kK = n — 1 wheni,,_; = n — 1. Butin all the other remaining
cases whem, 1 < n — 2, then by the assumption that the sum of the indigésequal to
(n—1)n:

it4 - Fipo>(n—1n—(n—2) =n®>—2n+2=dimX, o,

and consequently, the degree of the erlmif e u;":g is > 1+ dim X,,_o, whence this
form vanishes identically. Thug) is proved completely fok = n — 1.
Next, consider(iii) for [ = n. If i, < n — 2, then by degree-form reasofs=

in—1

wlt -y, whencecoeff g [uf! - u,""luin | = 0 gratuitously. So we assumig =
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n — 1. Buttheni; + --- +i,_1 = n?> — n + 1, hence(i) applies to give:

0 = coeff gn+1 [ulll e u;":ll] [reconstitute hidden integration of u” 1]

_ il in—l n—1
= coeff jn+1 [ul Cee Uy T Uy ],

and therefore this provesi) completely forl = n. But we also get at the same time the
property(iii) for i = n—1. Indeed, withi; +- - - +1i,—1 = (n—1)n and withi,,_; < n—1,
we may reduce, using (16):

i1 in-1,n i1 In—1 [n—1] n—1 [n—1] n—2 [n—1]
Uy w Uy Uy = Uy "‘un—l[_cl Up =~ —C Uy — "G O}
i b — —1 _
= ulll s u;"_ll [ — c[ln ]uz 1] [degree-form reasons]  [use (17)]
i in—1
=y U,y [_cl —(n—=1w —"'—(n_l)“nfl]

Thanks to(i), after expansion, the puremonomials give no contribution td**+!, and
consequently:

, i , i
coeff gurt [ui' - upr—lunt| = coeff gnar [ — crug -y | =0,

where the last equality holds true thanks to the prop@jtylready proved fok = n — 1.
Thus(iii) is completely proved fof = n and forl = n — 1.

Lastly, we just observe thdiv) for [ = n — 1 coincides with(ii) for k = n — 1. In
summary, we have completed a first loop of proofs.

Consider now the second loop. We start fr@il for £ = n — 1 (already got) with
in—1 =n— land withi,,_o = n,sothatiy + -+ -+ i, 3 =(n —1)n —ip_9 —ip_1 =
n? — 3n + 1, and then we compute:

in—-3, n 1}

0 = coeff jnt1 [clulll R T S VA T Un-1; [fiber-integration]

= coeffgni1 [crull - - u;’fg( - c[ln muﬁ:% - C[Q"_B]Ufb’:% — = CL’,’*3]O)} [use (16)]
= coeff gni1 C1u§1 EE u:{f;( — C[ln_g])uZ:%] [degree-form reasons]  [use (17)]
in— 1 1
(e 0 D (0 D b ]

= coeff gnt1| — clclulf SRR T un_éuzz%f] [apply (ii) for k = n — 1 again]

in—3, n—1

= coeff gni1 [cluzf S
= coeffgni1 [ — crepult - R 3] Ifiber-integration],

where we have reintroducad;:1 (artificially) in the fourth line, so as to appli) for
k =n—1(got). As a result of the last obtained equation, we havesgHii) for k = n—2
wheni,,_s = n — 1, but since when,,_» < n — 2, the formclclui1 .. Z" 5 vanishes
identically for degree reasons, we finally have fully essit@d(ii) for k = n - 2

Next, we look atiii) forl = n—2. Theni; +---+i,—2 = (n—2)nwith i;, o < n—1.
So we ask whether the following coefficient vanishes:

i1 in—2 n
coeff gn+1 [ul U Ty U U }

= coeff g [ul - uyr=3ul i (e — (n— Dug — -+ — (n — Dun-1_)]

= coeffgnir [ — crull - w2l ]

= coeff jni1 [ — clu1 . uZ’QZ( —a—-—Mm-—1Du;——(n— 1)un_g)uz:ﬂ
= coeff g1 [ercrull - 2 %[}

:O’
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and in fact, this coefficient vanishes actually, thank§ijofor £ = n — 2 seen a moment
ago. This therefore provesi) for [ = n — 2 completely.

Finally, conside(iv) forl = n—2. Theni; +---+i,_9 = (n—2)n andi,_o < n—1.
But coming back to the third line of the equations just abevegrei,, o < n — 1too, we
have in fact already implicitly proved that:

— (51 in—2_ mn
0 = coeff gnt1 [clul SRR TR un_l],

and this iiv) for [ = n—2. Thus, the second loop is completed, and the general irmhycti
similar, is now intuitively clear. 0

Corollary 4.1. The coefficient of*! in any monomiablu{1 . Ui;’fll W with 1 + 1+
“o 4 Jn_1 + jn = n? which is larger tharc;u? - - - u”_u? 1 is zero:

n—1

COEden+1 [Clujll A uzv,n—_ll uiln] _ O7

forany (ji,...,Jn—1,0n) >revlex (1, ...,n,n —1).
Furthermore:
coeff gn+1 [uf -+ upy_qupt] = coeff gori [(—1)"(c1)"] = +1.
coeffgnir [eruf - ull _yul ] = coeffgnir [(—1)" " (er)"] = —1.

Proof. The first claim is just a rephrasing of the propefty) of the lemma, after one
notices thablu{1 e ui”:fu%" vanishes identically for degree reasons whigr< n — 2,
while the termu?~! = ulr disappears after fiber integration whgn = n — 1. The
identities stated just after now have obvious proofs. O

4.4. Minorating coeff jn+1 [H] Let us decompose the intersection prodligtdefined
by (13) aslI + oI, where:

n? n?

IT:= (ajus + -+ anu, +2lalh)” —n’h(arus + - + ayu, + 2/alh) -1 2lal,

n?—1

Ir = TL201 (a1u1 + -t apun + 2|a|h> |a|

The (ineffective) Lemma 4.2 insures that the reductiotlah terms ofd = deg X is a

certain polynomial:
n+1

Pa(d) =) prad,
k=0

having certain coefficients; » € Z[ai,...,a,|. Moreover, Lemma 4.3 showed that
positive powers ofi do not contribute to the leading coefficient, whence:

Pr+1,a = coeff jni1 [H] = coeff jnt1 [(alul + e+ anun)n2]

n2

= coeff gur1 [(a1ur + -+ + ayun, + 2alh)" .

Because the bundle:
Ox,(a) ® m,0x, (2]al)
is globally nef when(ay, ..., a,) belongs to the cone (9) (with = n), its maximaln?-
2

th power to which correspondg;u; + - - - + a,u, + 2/alh)”  has positive dominating
coefficient, so that we in fact always hawé. the proof of Corollary 3.1 in [7]):

pn—i—l,a > 0.
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But from the corollary just above, we know that, | , € Z[a] is not identically zero, for
it incorporates at least the nonzero (central) monomial:

coeff gnt1 [i, at --apuf--up] = n,”—mn, ay---ay.
Then, in order to capture a weighfor whichp,, 1 o > 0, we at first observe that the cube
of N” having edges of length? which consists of all integer&i,, . . ., a,,) satisfying the
inequalities:

1<a, <14n% 302 <an1 <B+1)n? (32 +3)n? <apo < (3% +3+ 1)n?
ey B 32 <ar < (BT 4 134 1)n?
is visibly contained in the cone in question:
anp =1, ap_1>22an, an_9>=3an_1,...,a1 = 3as.

We now claim that there exists at least ontuple of integera* = (a7, ..., ;) belonging
to this cube with the property that,. 1 o+ iS nonzero, and hence:

Pn+1,a* > 1= Gn+17

so that we can také as the minorant introduced at the beginning. Indggd,; » is a
homogeneous polynomial of degreéto which an elementary lemma applies.

Lemma 4.5. Letq = q(by,...,b,) € Z[b1,...,b,]| be a polynomial of degree > 1.
Theng can vanish at all points of a cube of integers having edgesrmth equal to its
degreec only when it is identically zero.

Proof. Expandq = » ¢ _ b5 qp, (b2, . .., b,), recognize gc + 1) x (¢ + 1) Van der
Monde determinant, deduce that eagh(bo, ..., b,) vanishes at all points of a similar
cube in a space of dimension- 1, and terminate by induction. O

4.5. Majorating the other coefficients coeff 4 [II]. Now, for such ama* which is not
very precisely located in the cube, we nevertheless hawdffigretive control, useful below:
3n—1,2 _ 3" 2

lrgzaéla—al S5—nt < G5 nt.
From now on, we shall simply deno#é by a. At present, for any integér with 0 < £ <
n, let us denote b (n) any available boundsgein advance Theorem 5.1) in termsmf
only for the maximal absolute value of the coefficientbfin all monomialsh!vj' - - - uir
with [ + iy + - - - + 4, = n?, namely:

max |coeff g [hlu’f uﬁ{l” < Di(n).
I+i1++Fin=n>

Then for anyk with 0 < £ < n, we now aim at estimating from above the coefficient of

d* in our intersection produdﬁ, using two new lemmas and starting from its expansion,
all terms of which we shall have to control:

|coedek (1] | <

< > Tt (2la))al - aly - [coeff g [hluft -l ]|+
Iy oo i =n?
+ > n2,,<",7*1 2[a|(2|al)'al - - adr - [coeffur [hh'ult - ulr]].

g1+ +in=n?—1
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Lemma4.6. Letl, i1, ...,i, € Nsatisfyingl+i,+---+i, = n?andletl, j;,...,j, €N
satisfyingl + j; + - - + j, = n? — 1. Then:
o<+ )" and 2 0 < (1)

Wil i Wil gn!

Furthermore, the number of summandsE)HlJr,,,Hn:nz and the number of summands

N> 4 i 4+t j.—n2—1, Which are both plain binomial coefficients, enjoy the fiafilag two

elementary majorations:
(n?+n)!

n2ln!

2n—1 . 2—1+4n)! on—1
" and. W < 2n " .

<4dn

Proof. Indeed, any multinomial coeﬁicie@% is less than or equal to the sum of all
multinomial coefficientg1 + 1 + - -- + 1)"* = (n + 1)"”. At the same time, we deduce:
2_
n2 ls‘;lllizzll — nQ(n 4 1)77,2—1 < (n 4 1)77,2-}—1.
For the second claim, we as a preliminary have:

(n®+n-1)! _ (n? +1) ‘(n?+4n—1) (n?+4n?)--(n®4n?) _ gn-lp2n—2 2n—2
n2 (n—1)! ~(n—1) < (n—1)! (n— 1) <2n

9

since2" ! < 2(n — 1)! for anyn > 1. Consequently, we deduce:

(n?4n)! _ (n2+n—1! (n%+n) < 9p2n—2 . (n+ l) < 4p2n—1

nZlnl = 2 (n—1)! n n/ ’
. 2_ ! 21p—1)! 2
and similarly: ((’;2711;’2!' < (7?2!?:711))!. 2L op2n2 .y — 22l 0

Lemma 4.7. For anyl, i1, ... ,i, € N satisfyingl +i; + --- + i,, = n?, one has:
(2|a|)l (AT ailn < n3n2 3n3‘

Proof. Indeed, we majorate each by |a| and|a| = a1 + - - - + a,, by na;, and alsd by
. 2 n

n?, so that(2la])la’! - - air < 27" (na;)™ and we apply; < 3 n?. O

Thanks to these two lemmas, we may perform majorations:
|coeff g [TT] | < 4n*=t . (n 4 1)”2 R Di(n)+
+2n21. (n+ 1)n2+1 3t gn® Dy (n)
<60t (n+ 1)"2+1 R L Di(n)  (k=0,...,n).

Lemma 4.8. For any exponent with 0 < k < n, one has:
|coeff s [TT]| < 6021 - (n+1)™ -0 3" . Dy(n). O

To conclude these estimates, for any integee 0,1,...,n,n + 1, let us denote by
D}.(n) any available majorant for all the monomials appearing’in

max |coeff g [erhluf - - ulr]| < Djy(n).
1414714 +jn=n2

Lemma 4.9. For any exponenkt with0 < k£ < n + 1, one has:

[coeffu [I']| < n*" - (n 4+ 1)+ % 37 - D) ().
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Proof. Indeed, one performs the similar majorations:
|coeff g [IT']| <

2_ . ) . .
< Z n? l!(;'!mlj).i! |a|(2lal)'a]" - aly - |coeff g [erh'uft - - ulr] |
I+t in=n2—1

2021 (n + 1)L %n3"2 3n° . D}.(n)

n2=1 . (n + 1)n2+1 p3n° gn® D/, (n),

<
<
hence the bound we obtain is exactly the same, up to the factor O

4.6. Final effective estimations. We can now explain how to achieve the proof of Theo-
rem 1.1. Atfirst, we shall realize in Section 5 that both canstoefficientsoeff ;o [I1] =
coeff o [II'] = 0 vanish, hencd®(n) = Dj(n) = 0 works. Most importantly, we shall
establish in Section 5 that one may choose:

Di(n) = -+ = Dy(n) = Di(n) = - = D}, (n) = D),y (n) = n*"'2"".
Taking nin’on” for granted, remind that with the above choice of weigh{now denoted
a), we ensure that:
coeff gn+1 [H] =Pntta =1 =:Gyp1.
From the preceding two lemmas, we therefore deduce that:
‘coeffdk [H” <6n o (n+ 1)”2+1 B gn®  pAniont . g H(n) (k=1--n)
|coeff g [IV]| < n®" "+ (n+ 1)"2Jrl SR L L H(n) (k=1-n+1).

so that, coming back to the beginning of Section 4, we may stbg = E{, = 0 (since
Do(n) = D (n) = 0) and also explicitly in terms af:
Ey=---=E,=6H(n)
B =+ =B, = Efpy = H(n).

Coming back to the definition af., d2 given at the end of Lemma 4.1 and just after, we
may now majorate:

d

L <1+ (nGH() + 24
d? <1 (n*+2

+n+24+2

Notice thatd? > d! as soon as > 3. Finally, by comparing the growth of all terms in
H(n) asn — oo, One sees tha"" dominates and hence that the following inequality:
B =14+n+2+20n>+2n) 021 (n4 1) F1. p3n” g0’ piniont < on®

holds for all largen. However, any symbolic computer shows that7ioe 2, 3,4, one in
fact hasd? > 22, d2 > 2%, d% > 2%°, while &2 < 2"° andd2 < 2"’ forn = 6,7,8,9 so
thatél?l < 27" holds for anyn > 5 by an elementary inspection ofi— Eiv?l. Fortunately,
the three cases = 2, n = 3 andn = 4 of Theorem 1.1 are covered by the second
Theorem 1.2, becaus®’ > 593, 2° > 3203 and2*” > 35355. So granted Sections 5
and 6 below, the announced bouthe X > 27" works in all dimensions, > 5.

The proof of the main theorem stated in the introduction iaglete. O
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5. ESTIMATIONS OF THE QUANTITIESDy(n) AND Dj.(n)

To complete our program, it now remains only to capture somagweffective upper
boundsDy(n), 0 < k < nandDj(n),0 <k <n+1.

Theorem 5.1. Withn > 2, for anyl, i1, ..., i, € Nwithl +4; + --- + 4, = n? and any
L,j1,-- - jn € NWith1 41+ j; + - - + j, = n?, one has:

0 = coeff 4o [hlu’f - ulr] = coeff o [clhlu{1 ol

Moreover and above all, for evety= 1, ...,n+ 1, the following uniform effective upper
bound holds:
‘Coeﬂ:dk [hlulll - u;ln] | < n4n3 2714’

In other words, in the above notations, one may chddgg:) = Dj(n) = 0 and
Di(n) = Dj(n) = ni’ ot fork =1,...,n+ 1.

5.1. Jacobi-Trudy determinants. One key observation towards these estimations is that
the reduction process from one level to the lower level in Bi#lgis tower involves Jacobi-
Trudy determinants in the Chern classes of the lower levgugstion.

Definition 5.1. At any level/ with0 < ¢ < n—1and foranyJ with0 < J <n+/4(n—
1) = dim X/, we define the correspondintaicobi-Trudy determinant

I

J4 l l

I
Cr=10 1 Mo

0 0 0 -

where, again by convention, we set arﬁﬁ := 0 as soon a& > n + 1; by convention
also,C’ := 0 is set to zero whed > dim X, and when/ < 0; lastly, we seC§ := 1.

Expanding the determinarﬁf} along its first line, and expanding again the obtained
block-determinants, one easily convinces oneself of thadtion formulas:

(18) ) = C[f] eh ) — Cg] el y+ ng Chg—r,

the last term in this expansion being eitf(e%l)"*lc%] C% . whenJ > n or else
(—1)7-1 054 el whenJ < n.

In the proof of Theorem 5.1, the study of the monomi&ils -~ ul» will appeara poste-
riori to be exactly the same as the study of the monorhila@ couln andclhlu{1 . u#

Generally speaking, fixing with 1 < ¢ < n and exponents,, ..., i, € N satisfying
i1+---+ig=n+/l(n—1) =dim Xy, let us therefore study the reduction, in term of the
degreed of X, of the specific monomia’! - - u' "} u’. We write it asQ 'uf, where
Qﬁ;l =l ujf:f is a(K, K)-form living on X,_; with K + i, = n + {(n — 1).

If iy < n — 2, thenQ’ ! vanishes form degree-form reasons.lf= n — 1, then a
fiber-integration give® tup 1 = Q41 =i tel

J
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Lemma 5.1. For any ¢ with 1 < ¢ < n, given any(K, K )-form Qfgl at level/ — 1 and
any integeri, withi, > n — 1 andi, + K = dim X}, the reduction oﬂigl uy’ down to
level¢ — 1 precisely reads:

-1 -1 (-1
GRS RPN e
0—1 iy _ ip—n+1 yf—1 1 A c[[:”
D uyf = (=1) O 1 ig—n
0 0 .ol
= (Dot e
Proof. Assume first that, = n and use (16) to get:
1, n _ =1 [(=1] n-1 (-1 [0=1]  n—2 -1 -1
O uy = Qg ¢ "y f—QK cy Ou? — = QF ol }o
_ _Of-1p-1
=-Q  C .

Reasoning by induction, assume now that the lemma holddlfdraith » < i), < i, for
somei, > n. Take an arbitrary L, L)-form Q5! on X,_; with L + i, + 1 = dim X,
multiply (16) by Q51w 17" to get:

QeLfl u;‘/“ = —QeLfl (c[f_l] u}’ + c[;_l] u;‘f*l + c[;‘” uff'*? + - )
= (—1)lFien+l Q(?L—l (0[11?—1] ef;lnﬂ _ 6[24—1] efy_,ln + 6[34—1] ef[:ln—l _ .. )
= (_1)““_”“ QZLi1 65;4-11—17,+1a
thanks to (18), which gives the claimed reduction for theosemti, + 1. O
Applying this lemma to the monomiadil1 e uz"ujﬁf we thus reduce it to
uft - UEZUZH = (=)t u? ez{gﬂ—nﬂ .

To obtain effective estimations, we will need to furtheruee such a Jacobi-Trudy de-
terminant@fw7,%rl from level ¢ down to levell — 1. A whole program begins. In the

application we have in mind, one should think tiiff = (—1)%+—"+14i" ... 4 and
thatJ = ipyq —n + 1.

Lemma 5.2. At an arbitrary level? with 1 < ¢ < n — 1, consider the Jacobi-Trudy
determinam(?f} of an arbitrary sizeJ x J with1 < J < dim X, and furthermore, Ieﬂf}(
be any(K, K)-form on X, whose degred( satisfiesK' + J = dim Xy = n + ¢(n — 1).
Then the reduction cﬂzﬁ(ef} down to level — 1 relies upon the following formulas:

V€l = Ve[ + CHAT + CTAT; + -+ € AL,
in which, for anyk with 1 < k£ < J, one has set:
Al = X1 = XeC Ty + -+ (- )FTIXCT

where theX-terms here gather all the terms aftef ! in a convenient rewriting of15)
under the following form:

[-Zfll]w + Aj2 c[efuuf + A qu

=l Aj1¢i P2

J J

defy, o
= Xj

with the convention that’ = 0 for any;j > n + 1.
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Proof. Naturally, we should expand the Jacobi-Trudy determinaqguiestion after insert-
ing in it the relation (15). This is based on linear algebrasigerations and we shall drop
QY% in the computations.

More precisely, let us write down the determin&jtwe have to expand:

c[le] c[;] e c{f] Xt + c[lz_l] c[;] o
I I SO I A M R
J=1 . . . = . . .
0 0 - 0 0 -

by emphasizing the induction dhwhich represents its first column naturally as the sum
of two columns. As already devised, we expand it by lineagetting:

X{ ey o e
4 4 /4 4
o | 0 A
o S
0 0 . 0 0 .

and just afterwards immediately, we expand the first detaantialong its first column,
while at the same time, in the second column of the secondmdigi@nt, we again empha-
size the induction o#:

c[lzfl] Xg + c[;fl] c:[f] e c!f]

1 X‘i + c[lgfl] c[;] e c!f}_l

eb=xt-et +| o o+1 AT A
0 0 0 -

Next, we similarly expand by linearity the obtained deteramt, realizing again that its
second column is a sum of two columns:

I
1 Xf 0[2? e c‘[ill
e =xt.e  + 0 0 c[l} CBLQ
0 0 0 c

c[f’” C[qu] c:[f} o c[f}
-1 l

e

+ 0 1 c[la 65172 ,
0 0 0 s
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and evidently again, we must expand the first obtained d@tamhalong its second col-

umn, getting:

1] C[Qe_u

1
0 1
0 0

Ja

(]

&
T2 xd

o

-1
G
Xg + c[2€ )
X{ + e

0+1

and we are supposed to iterate once again the same two scess

Ch=X{ €)= X5 1€, +X{ €€,

Jda
1 C[g_l] 1 J-3
+ X5 - 0 Y : :
(]
0 c[1
4] (4]
, | deu e ! €J-3
_X2. 1 2
0 1 i
0 )
4] (4
, A1 Je-1] ‘1 €r-3
X T : :
! 0 c[lg]
6[13—1] 0[2@—1] cge_u Xt +c£f_” 6[531
1 c[le_l} 0[26_1} X4 + cz[f_l} cg]
0 1 0[16—1} X4+ [251} c%]
—1
+ 0 o0 Xt
o 0o 0o o0+1 I
0 0 0 0 0
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At this point where things start to become clearer, we magddhowing general obser-
vation. Consider the determinant that one obtains afterite fimmber of steps:

1] -1 1 -1 ¢ ¢
L A g

L g gy Xiita g oy

0 0 T 0[1671} Xg + cgil] cg] T C!f}—kw

0 0 e 1 Xei + c[lzfl] c[;] e C!f}—k-i—l ’

0 0 0 0+1 ! A

0 0 0 0 0 s

where the central-looking column is tieth one, for some: with 1 < k£ < J. Write
this determinant as a sum of two determinants by linearity, @xpand the first obtained
determinant, let us call i\, along itsk-th column in which are present all the's. We
thus get that the first determinant is equal to:

1 ... Cgf*;]
Ap= (DI 0 e,
0 ... 1
c[lefl] ke *
[—1]
0 1 - e
s R I S e
0 0 1
-1 0[24—1] . .
1 c[f_l] *
X, 0 0 1 e g el
0 0 0 1
e e
et I
0 R

while the second determinant is of the same kind as the onaasted with, except that
the X’s are now located in thék + 1)-th column. Thus after mild simplifications, what
we called the first determinant equals:

A= (—DMIXE 1€y + (D)X et e+
F(=DMEXE e e 4 XTI ey,

= Aﬁeg—k'
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In conclusion, the initial Jacobi-Trudy determinaiit we started with now equals:
6[14—1] o cgz_u
Clr=A1+  +Dp+-+A;+| 1,
0o ... c?‘”
where the last written determinant, equalﬁgi‘1 and living at the(¢ — 1)-th level, is

the remainder determinant after aliterms are removed by expansion. Summing the
Ay, = AL €Y _,, we obtain the formula announced in the lemma. O

As J varies, the formulas given by this lemma:
el =cCrt+efAl +eiAl + -+ eh Al

are still imperfect, for their right-hand sides still invel Jacobi-Trudy determinants at the
level £. So necessarily, we must perform further reductions.

Lemma 5.3. For any J with 0 < J < dim Xy and any/ with 1 < ¢ < n, one has:
; :

J
- (X X AL Al

j=0 v=1 ki+-+hy=j
gy ky>1

with the convention that fof = 0, the empty sum in parentheses equals

Proof. First, for J = 0, recall that by conventio®) = €5~! = 1. Next, forJ = 1, we
start from the formula of the preceding lemma and we perfamevadent computation:

Cf = €1 + COAT = €1 IEH(A) + €5 'S (A),
if, generally speaking, we denote for convenient abbrmnat

(19) S4(A) =Z > AL AL

v=1 ky+-+hy=j
Fqyeoky>1

with of courseX((A) = 1. Thesex)(A) satisfy useful induction formulas:
j
E?(A) = A? + Z Z A£1A£2 e Ai,,

v=2 kitko+--+kyp=j
k1,kg,. . ky =1

J
=A§+Z<A‘{ S AL AL FAL DT AL AL+
v=2

ko4 tky=5—1 ko,..oy ky=j—2
koy..ny ky>1 ko, ky>1
4—---+—A§_1 E Aﬁ2---A£y>
ko+-+ky,=1
(20) AN
j—1 Jj—2
_ Al ¢ ¢ ¢ ¢ ¢ ¢
=A; +A] E E Ak, - AL, T Ay E E AL, - AL+
V=2 kot tky=j—1 v=2 kot fhy=j—2
ko, ky>1 ko,..oky =1
2
¢ EE: EE: ¢
+ tet + Aj—l Ak,g
v=2 ko=1
ko>1

= ASS0(A) + AT S (A) + ALSE S (A) + -+ AL S(A).
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Next, for J = 2, starting again from the known (imperfect) formula and gsivhat has
just been seen:

G5 = G5!+ CHAS + CIA]
=Cy '+ Cy AL+ [CTTISG(A) + 65 TR (A) A
= C5IEG(A) + €1 [Z5(AAT] + €5 [ST(A)AT + A
= €57 Zh(A) + €I (A) + €5 (A).
Suppose now by induction that we have already proved that:
Yl = 5N (A) + €L S(A) + 5L E5(A) + -+ eI RS (A),

for all J' with 0 < J’ < J, for someJ > 2. Then we apply the known general (imperfect)
formula with J replaced by/ + 1 in it, and afterwards, we use the induction hypothesis,
which gives:
€1 = €53 + CoAT 1 + CIAT + -+ € AL + CA]
= CRAT6(A)+
[Gg ESG(A)] AT+
+[C1TE0(A) + €5 ST (A)] AG+

+mﬁw%M+%gﬂMH@?§ﬂM+ GG (A)] AL
+ [€7TE6(A) + €T RI(A) + CTEE5(A) o+ G IS (A) + G5 RS (A)]AT
A necessary and natural reorganization then gives:
e§+1 = €§+11 [EO(A)} +
+C5 [SG(A)AT]+
+ €5 [SHAAL + Z(A)AS] +
+ €L [ZS(A)AL + SHAAL + ZH(A)AL]+

+CHTH[BS(A)AL + 25 (A)AL + 55 5(A)AL + - 4+ 5 (A)Afﬂﬂ
= CLSE(A) + C5IR{(A) + 55 (A) + €T TLEE(A) + -+ GRS L (A),

where at the end, one applies the formulas (20) just seernceéNmssimthat the number
of terms in:¢(A) is equal to27~* for all j > 1. O

5.2. Upper reduction operator. The reduction process, after several elimination com-
putations involving (15) and (16) and at the end (8), tramsfa general monomial of
the formhlus! - ui with I + 41 + - - - + i, = n? into a polynomialR (h!uf' - - - uir) of
degree< n + 1 in d, where the symbolR” stands for ‘reductior.

From now on, complete explicit algebraic computations moll be conducted anymore,
and instead, to tame their complexityequalitieswill be dealt with.

For our majoration purposes, we now introduce an impomg@per reduction operator
R+ which by definition, at each computational step of the reidagbrocess, while going
down in the Demailly’s tower, always replaces any incomiigns —" by a sign “+”.

Accordingly, for any two monomialalu* - - - ui» andh!w’! - -, we shall say that;

RJr(hl i zn) gt (hl ul ulr:n)a
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and write more briefly:
R iy g -,
if the corresponding two (upper) reduced polynomial ;’é pi - d* and ZZ*& pl, - dF
have all their coefficients satisfying:
(0<)pr <pj foreveryk=0,1,...,n+1.

Then obviously the absolute values of the coefficients ofeldection are smaller than the
(nonnegative) coefficients of the upper reduction:

|coeff g [Rluit -+ ulr]| < coeff g [RT (Rluf - - uir)] .
To obtain the desired bound™’2"" we need to handle the Jacobi-Trudy determinants
seen above. The following lemma will be useful.
Lemmab5.4. Forany Ay, Ao, ..., A\, Withn = Ay + 29 + - -+ + n),, one has:
ciq (6(2])>\2 o (eg)kn <t (‘32 .
Proof. Aninspection of the determinafif. shows that one may view all the pure monomi-
alsc), (G%)AQ, ,(G%)A’“ as diagonal subblocks of the corresponding sizes lyinglénsi
€Y. Since the operatdR* expands the determinants and replaces all the minus signs by

plus signs, it is then clear that there are more terms in gie-fiand side than there are in
the left-hand side, which completes the proof. O

The same arguments yield determinantal inequalities atewey.

Lemma 5.5. For any two.Jy, Jy with 0 < Jl, Jo < dim X, satisfying in addition/; +
Jo < dim Xy, and for anyj; with 0 < j; < n satisfying in additionj; + J5 < dim X/,
one has the two majorations:

RE (- €5, - €5,) < RT (V- €hyppy)  and RF (e -] €5,) <R (e €5,1,),

whereQ4. is any(K, K)-form living onX, completing talim X, the degree, namely with
K+ J; + Jo and with K + j; + Jo both equal talim X,.

If J1 +Js <0orif Jy +Jo > dim Xy, and ifj; + J5 < 0 orif j; + Jo > dim X, the
two sides vanish in both inequalities, which hence hold suttrestriction.
Lemma 5.6. These coefficients; ;_;, =
in (15) satisfy the uniform majoration:
‘)\j,jsz‘ < 2” = )\
expressed in terms of the dimensioonly.

(")*k”)! (k! ___ appearing

Gk = G—k—D(n—j+1)!

Proof. Indeed, the absolute value of the differengg_, = X, , — A7, _; of two non-
negative mtegers is less than the Iargest one, and we n®&jang appearing binomial
coefficient- =1 OF Z,,l(n// ) with n’ < n andn” < n plainly by 2™, O

In the subsequent majorations, while applying the uppeoratpn operatofR™, we
shall also replace any incominyg ;. by this majorant\ = 2". As a result, we define
a generalized upper majoration operatfﬂrj*" which both replaces any minus sign by a
plus sign and any; ;_, by A = 2".

Also, when executing inequalities, we shall sometimes nutevthe left differential
form Q% which completes talim X, the total degree of the considered forms, for one
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knows well now that forms to be reduced always have degreal éguhe dimension of
the level on which they sit, unless they vanish identicadilydegree-form reasons.

Lemmab.7.Forall k =1,2,...,n,0ne has thé%j majorations:
¢ (— 0— k
Ab Sgr FA(CTyue + Couf + -+ ).

Proof. Starting from the evident majoration of thé§ that were defined at the end of

Lemma5.2:
x& <IR'; /\(cg.e:ll}ug + cg.e:;}u% I ué)’

J
we may perform majorations of an arbitraky also defined there:
Al = XICT) = X5€ T, + X560y — o+ (- 1) TIXE
Sqp D €23+ el e+ uf)] €T + [A(eyue o THd ) e+

SR N C T e e R 1)) [

+ug| Tl SR Lo [T
+uj [ ei__lg+---+c£f__;]€€‘1]+
e +
+ uIZ[ 6671]).

Now, we use the majoration of an arbitrary product of a Jadobdly determinant by a
Chern class that was provided in advance by Lemma 5.5 torpbtai

AL <gg A(uelk- €T +u [k —1)- €8] + - + uf[efY])
Sqp RA(CTue + € T5uf + - +up),
as was to be proved. O

We now have to majorate conveniently thepolynomialsZ?(A) defined by (19) in
terms of Jacobi-Trudy determinants living at the inferievdl ¢ — 1, and in terms of,
too. For this purpose, let us define what will play the role obavenient majorant:

Of 1= CTjue + G Thuf + o+ g
and let us keep in mind that the lemma just proved providedrta;arationsAi <3zj
kX ©¢. To majorate products d;’s, we majorate products @;’s.

Lemma 5.8. For anykq, ko, ..., k, with ki, ko, ..., k, > 1 whose sunky + ko + -+ - +
k, = j equalsj, one has the majoration:

0 Al ¢ ¢
Ok Ok, Ok, St Frkz2 Ky Oy g,
Proof. In greater length, the considered product writes:
(€ e+ ) (O e o uf?) o (€ et - ),
and the total number of terms, after expansion, is hencelgleak ks - - - k,. Using the

already known inequalitg’ ' - €' <5 €f 1, we may majorate as follows any
A
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monomial appearing after expansion:

e[—l k"

l—1pl0—1 (-1, k"
@kﬁ Gké ek; uz <ij\r ki+"'+l€{, U[ y

wherek] + kb + -+ kI, + K = k1 + k2 + - - - + k, = j of course, which completes the
proof. O

At last, we can state and prove the main useful majoratiopgsition which will enable
us to achieve the proof of Theorem 5¢i,the program launched just before Lemma 5.2.

Proposition 5.1. At any level with1 < ¢ < n—1, consider the Jacobi-Trudy determinant
€4 of an arbitrary sizeJ x J with 1 < J < dim X, and furthermore, lef2%; be any
(K, K)-form on X, the degreeX’ of which satisfied + J = dim X, = n + ¢(n — 1).
Then the upper reductioﬂij(o) of Qﬁ(ef} in which any incoming\; ;_;, is replaced by
A = 2" > |\ ;x| enjoys the following majoration in the right-hand side ofisth
notably, all the appearing Jacobi-Trudy determinants ktdevel/ — 1:

€y <y T2 22 Qf [ € e+ T

Proof. Recall that

J J J
-y e, mm -y (Y X ALeaL).
j=1

§=0 v=1 ki+-+hky=j
Epyenky>1

Using the last two lemmas, we deduce that for &ny. .., k, > 1 with ky + - -- + k, the
sum of whichk; + - - - + k,, equalsj, we have the majoration:

AL AL g kieeky N e ---oL [Lemma 5.7]
2
<ij (kl T k,,) A @£1+...+k,j [Lemma 5.8]

20 i AL

Since there are’~! < 27 terms in the sund_/_; > &, +..+x.~;, We receive the useful

. . kqyeenky>1
majoration:

J
SIOED DEED DR

v=1 kit thy=j
Fopyeesky>1

<pr 257N ;.
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In conclusion, starting from Lemma 5.3 and using Lemma 5éivay lastly perform the
following (not optimal) majoration:

€Y = €5+ T NI (A) + CTLS5(A) + - + €IS (A) + - 4 5 E5(A)
Sgr €571+ CYT 2120 [ug] + €T52%2M0% [ g + ]
+oep L 2T BN [y + -+
o ey 2T AT (@ g 4+ -+ ]
Sap PEN[EST O] + 22002 €+ €
+oe 25N [ g+ - 4 €5
o+ 2l PPN e+ ]

gt J- 27 J* N [Gf}‘l + e e+l + -+ T

where the introduction of supplementary terms in the brisckiens at producing a uniform
right-hand side. O

5.3. Proof of Theorem 5.1. The vanishing of the-coefficient comes from the fact that
after reduction to the ground levél= 0, one gets a sum of homogeneous monomials of
the formhle}lcy? - - - c)n with [ + Ay + 2\g + - - - +n)\, = n, and then after expressing
eachc, in terms ofd through (8), one always has the povir= d of h in factor.

Notice that the integer of the Proposition 5.1 will always be less than or equal to
dim X,,_1 = n? — n + 1. To simplify the computations and to receive at the end as
simple majorants as possible, we shall apply the followilegnentary majoration, using
J<n2—n+1:

J- 2J X JQJ . 2nJ — (n+1)J . JQJ-I—I

N

2

2
2n3+1 (7’L2 —n4+ 1)2n272n+3
2n3 (n2)2n

N

because (n? — n + 1)2"—2n+3 < 2 (p2)2n* 2043 < (n2)27% for anyn > 2 (an assump-
tion of Theorem 5.1). Let us temporarily denote this bound by
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As expected, we can now perform a uniform upper majoratiocancérbitrary monomial

uft -+ uln with iy + - - - + 4, = n? down to levell = 0 as follows:
it = Y
7 in—2 In—1
gﬂ%j\— N .ull C Uy Up g [en —n+1 + 87 ,—nUn—1
e G2yl 4l 1”“] [Proposition 5.1]

i1 ln 2 n 7n 1
<R+ N - Uy - [e% 7n+1 n—1 + - o
n—2 n—1 in—1+in—n+1
ezn 141, —2n+2 un 1[ 4t n—1 ]

S<zp N Cup [ i —amte F O o U
RS u;"_—ll"'zn_""'l]
<zt N 1y u;n__;[ i —zna2 TG g o €1
+ -+ 62;21+i“72n+2} [Lemma 5.1]
gﬁi N n? ul . 7” e 21+Zn72n+2 [Lemma 5.5]
<z: (N n?)? el er S finduction]
gﬂz;’ (N n2)3 : uzf Uy ?;,__43-4-7:”,_24_1'”_1_,_1'”_4”_5_4 [induction].

In the third line, we exhibit the general case whigye; can be< n — 1, we underline the
terms vanishing for degree-form reasons and we point oufiltee-integration ofu”1;
wheni,,_; > n— 1, the underlined terms are absent. In the sixth line, we ratgglainly
by n? the number of terms inside the brackets. (Recall that hereobyention again,
€4 =o0ifeitherJ < 0or.J > dim X/, so that some of the writte®’; might well vanish,
depending ony, . .., i,.) A now clear induction down to levél= 1 therefore yields:

71 Tn—1 in 2 71 1
Uy - Uy lun SR'*' (N?’L) : eler “+in—(n—1)n+n—1
2\ n—2
ot (NN By b
2n— 1}

+ Coul” 1f+ ol

<qr (Nn2)" e,

n

It only remains to majorat€2. This last reduction using only (8) without any ;_, let
us denote b}RZIL the upper reduction operator restricted to lef/el 0.

Lemma 5.9. Then x n Jacobi-Trudy determinarj enjoys the majoration:

eO

<IR; 2n2+2nn! n™ [dnJrl +dv —I—d].

Proof. The number of monomials in the universalk n determinanﬂaﬂ is< n!(andis
< n! when some:] are zero). Hence:

O <.+ n! max M2t
noOSRG A1+2A2+4FnAp=n L2 "

Th | bi ial fficieit %) which in (8)is | h abto?

e general binomial coefficiert’}*) which appears in (8) is less than or equ ,

so that:
¢j S 2R [d 4+ d+ 1.
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We majorate as follows the products of these basic polynsrinai:
[+t d 1 [d? 4o+ d 1] <gp guie[dR 4+ d 1],

and we therefore deduce a majorant for the general homogsEgree: monomial in
the ground Chern classes:

ci\lcgz L C7>’\Ln <ij (2n+2))\1+)\2+-..+)\n 1AM19%2 L pAn pATF2Ae et nAn
. [d)\1+2)\2+'"+ﬂ)\n 4ot d+ 1]
<IR; (2n+2)"n)\1+)\2+---+)\n 158 [dn 4t d+ 1]
ngd* 2n2+2nnnd[dn++d+1]
which completes the proof. O

Applying this lemma to the last obtained inequality:
u’f R This <R§ (Nn?)"t 92 1 [d”Jrl +d"+ -+ 1],
we then obtain the announced bourfd’ 27" as follows:

|coeff g [U? el | < (2"3 nin* n2)n_1 272 |

/

2n4—n3+n2+2n n4n3—4n2—|—2n—2 nn nn

4n3 2n4

NN

n

By an inspection of the final inequalities which enabled usléscend from the top of
Demailly’s tower to its ground level, one easily convince®self that the monomials
Riwlt - ulr andey hlu! - - - uf satisfy exactly the same upper bound reduction:

and

n

1 i1 in 2\n—1 50

Ryt - uy <9§r (Nn) C
1 1 n—1

clhlujll . u%" ng;\r (N n2) 62,

since the forms)! andc; k! do intervene only at the very end of the process. This com-
pletes the proof of Theorem 5.1. At the same time, Theorensdane. O

6. EFFECTIVE BOUNDS IN DIMENSIONS4 AND 5
THROUGH THE INVARIANT THEORY APPROACH

The goal of this section is to obtain sharper effective beumuthe minimal degree of
generic hypersurface¥ ¢ P"*! such that the strong Green-Griffiths conjecture is true,
using Demailly’s invariants ([4, 5, 16, 14]). Indeed, itrtgrout that a good knowledge of
the full algebra of germs of invariantjet differentials at a point € X:

*
Z = @ Ek’ymTX,a:

m=0

provides better bounds than the approach which uses thsent®n product (11).
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6.1. Algebras of invariant k-jet differentials. Up to now, A} is understood only for
n < 4; it is known to be finitely generated by an explicit set of gaters in dimensions
n = 1,2,3,4, but not in any dimensiom > 5. The difficulty in studyingA]’ comes,
among other things, from the fact that it is an algebra of paoigials invariant under a
certain unipotent action, therefore not a reductive afg16, 14]). Let(zy,...,z,) be
local coordinates centeredate X and letf = (f1,..., fn): (C,0) — (X, x) be agerm
of holomorphic curve.

Theorem 6.1. The following three algebraic descriptions hold.

e [4] Indimensiore, A3 = C[f1, f5, f1 /5 — f{ f3].
e [16] In dimensiors,
‘Ag:C[fz/v wij7w£€jv ]7
where the indices satisfy < « < j < 3and1 < k& < 3, wherelV is the
3-dimensional Wronskian:

fonof

W= ff 8,
" n "
1 2 3

and where:
L plplt 1" el k . pl[plpn " et 0T pl el 1" el
wij = [ i ifja Wy = fk[fi j ifj] —3fk [fi 5 ifj]'

e [14] In dimension4, the algebraAj is finitely generated bg835 explicit poly-
nomials. Moreover, there arg6 fundamental, mutually independent bi-invariant
polynomials sharing1 (grobnerized) syzygies.

The result in dimensior2 rapidly follows from the observation that in this case the
underlying group action is the action of the complete urépbgroup whose algebra of
invariants is classically known to be constituted of thecRéiian algebra, whence the
appearance of the Wronskian. Dimensi8@asd4 were obtained using nontrivial invariant
theory. Observe that the complexity of the algebra of irarag increases dramatically as
soon as > 4. In [14], one finds a complete algorithm to generate all Déyr&emple
invariants in arbitrary dimension > 1 and for arbitrary jet ordek > 1.

6.2. Riemann-Roch computations.Remember from Theorem 2.2 that the first step to-
wards the algebraic degeneracy of entire curyjesC — X consists in proving the
existence of nonzero global sections 8f (X, Ej, ,,,7% ® A~'), for some ample line
bundle A — X. So one basic strategy is to firstly compute the Euler chariatt
x(X, Ex,»T%) and secondly, to control the even cohomology grol§(X, Ej ,T%)
fori > 1.

Granted the algebraic results described above, one caevacthis strategy up to di-
mensiord. Indeed, one deduces from the characterizatiaA pthe following decompo-
sition of Gr* E,, ,,, T into irreducible Schur representatioEéT;‘(.

Theorem 6.2. Let X be a compact complex manifold and tete N.
e [4] If dim X = 2 then

Gr* BTk = P 5" ¥Tx ® K.
0<j<m/3



EFFECTIVE ALGEBRAIC DEGENERACY 37

e [16] If dim X = 3 then

Gr® Eg,mT)*( _ @ Iw(a+b+2c+d,b+c+d,d)T)*('
a+3b+5c+6d=m
e [14] If dim X = 4 then

Cr® By T = P

(a,by...,n)ENTAN\ (O U---U0yq)
o+3a+---+21In+10p=m

o+a+2b+3c+d+2e+3f+2g9+2h+3i+45+3k+3l+4m' +5n+p
a+btct+ddet f4+29+2h+2i+2j+2k+31+3m' +3n+p
d+e+f+h+i+j+2k+20+2m +2n+p

p

*
Ty,

where the 41 subsefs;, i = 1,2,...,41, of N'* 5 (a,b,...,1,m’, n) are explic-
itly defined in[14].

Then with electronic assistance, one can perform Eulemd@oé characteristics com-
putations.

Theorem 6.3. Let X c P"*! be a smooth hypersurface of degrke

e [4] Forn = 2:
m4
X(X, By T%) = o d (4d* — 68d + 154) + O(m?).
e [16] Forn = 3:
9
*\ mi 3 2 _

X(X, BsmTx) = 1618 107 ¢ (389d” — 20739d” + 185559d — 358873)
+O(m®).

e [14] Forn = 4:

ml6

= - d
1313317832303894333210335641600000000000000
- (50048511135797034256235 d*—

— 6170606622505955255988786 d° —
— 928886901354141153880624704 d+

+ 141170475250247662147363941 d>+
+ 1624908955061039283976041114)
+ O (m15) .

X (X, BamTx)

In order to prove the existence of nonzero elemen®& X, £, ,,T% ), we must con-
trol the higher cohomology groups. In dimensi2nthis is achieved using the following
vanishing theorem of Bogomolov.

Theorem 6.4([2]). If X is a smooth projective surface of general type, then:
H*(X, S"T%) =0
forall m > 3.

It has been shown by the third-named author [17] that in dgizen 3,
H? (X, Eg,mT;() = 0 does not vanish. Fortunately, a suitable majoration holds.
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Proposition 6.1([17]). Let X be a smooth hypersurface of degrem P*. Then:

h2 (X, D2 As) 7y

3(A1+ Ao + Ag)?
2
In dimensiond the same proof provides the new estimate:

< d(d+13)

(A1 = A2)(A1 = A3) (A2 — Az) + O(|AP).

Proposition 6.2. Let X be a smooth hypersurface of degrem P5. Then:
h2 (X, F(Xl,)\Q,)\g,L;)T;()

< 8—10 d (A = X2)(A1 = Ag)(Ar — Aa) (A2 — Az) (A2 — M) (As — )

(O A2+ As + M) [BAadid® 4 13200 A1d + 132X\ Aad + Ao hgd?
+ 132X0\ad + 5had? Ay + 1320 \ad + 53\ 0d? 4 5\ A3 d?

+ 132X3\4d + 132X0)3d + 1308\ \; + 64873 + 648)\3

+ T203d + 64807 4 T203d + 1308\ Ay + BA1d?Ag + 1308A0)04

+ 1308A2A3 + 648)] + T2A3d + 13081 A3 + 72A3d + 1308A3A4]
+O(IAP).

We do not have to care about (X, I*1:A223.2)7%) since we have the following
vanishing theorem which generalizes Bogomolov’s vangphireorem.

Theorem 6.5([4]). Let X be a projective algebraic manifold; = dim X, and let
L be a holomorphic line bundle ovek. Assume thatKx is big and nef and let
a = (ai,...,an) € Z", a1 > --- > a,, be a weight. If either. is pseudo-effective
and|a| =) a; > 0, or L is big and|a| > 0, then

HO(X,T%Tx ® L*) = 0.

From such controls of higher cohomology groups, one dedegetence of global
algebraic differential equations canalizing all entiréonoorphic maps. For the sake of
completeness, we recall here what is known in dimensicsrsd 3.

Theorem 6.6. Let X C P"*! be a smooth hypersurface of degidand let A be any
ample line bundle ovek.

o [4] Forn = 2:
4
1O(X, EymTi ® O(—A)) > (%8 d (4d® — 68d + 154) + O(m?);
o [17] Forn = 3:
m9

0 iy — Z e
WX, BsmTk ® 0(=4)) > 45e510000000

— 7075491 d — 105837083) + O(m®).

In particular, if d > 15 (resp.d > 97) thenE, ,,T% @ O(—A) (resp. B3 ,, T ® O(—A))
admits non trivial sections far large, and every entire curvg: C — X must satisfy the
corresponding algebraic differential equations.

d - (1945 d* — 103695 d*

In dimensiord, we therefore present the following new result.
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Theorem 6.7. Let X be a smooth hypersurface of degeeim P° and letA be any ample
line bundle overX. Then:

(X, By mT% @ O(—A))

m16

> .
~ 1313317832303894333210335641600000000000000 d
. [ — 867659678949860838548185438614

— 93488069360760785094059379216 d
— 1369327265177339103292331439 d>
— 6170606622505955255988786 d°
+ 50048511135797034256235 d']

+ O(mls).

In particular, if d > 259 thenEy ,,,T% ® O(—A) admits non trivial sections fom large,
and every entire curvg: C — X must satisfy the corresponding algebraic differential
equations.

6.3. Effective algebraic degeneracy of entire curvesAccording to Theorem 2.5, in
dimensionn, the maximal pole order of a meromorphic frame on the spacestical
n-jets of the universal hypersurface parametrizing all degrhypersurfaces oP”+! is
equal ton? + 2n. Then one applies the same arguments as in [18], pp. 381-e38@ t
Schur bundle decomposition provided in [14] and one usesriheration for theh? of
an arbitrary Schur bundle explicited above. As a resulthkbao effective computations
executed independently on two digital computers by therse@md by the third named
author using different codes, one obtains in dimengidhe new effective lower bound
deg X > 3203 of Theorem 1.2.

Finally, for dimensionss and 6, we simply carry out the same strategy as in the
general case, but with a choice of weight different frarh introduced in Subsec-
tion 4.4. Our choice specific for these two dimensions are- (54,18,6,2,1) and
a = (162,54,18,6,2,1), that is to say: the minimal choice in order to have relative
nefness of the weighted (anti)tautological line bun@le (a), n = 5,6 (cf. [4, 6]); also,
we chooseé = ffj% andé = %. The bound is then obtained thanks to computer cal-
culations withGpP/PARI, (cf. [6] for the code). The same method, in dimension 4 (resp. 3),
would have producedeg X > 6527 (resp.> 1019), less sharp thadeg X > 3203
(resp.> 593).

In dimensionn. = 5, here are the corresponding two polynomidjgd) andP,(d) the
length of which confirms the incompressible complexity @& thduction process:

Psa.18,6,21 (d) = 82970555252684668951323755447424 d°—
— 69092357692382960198316008279615424 d°—
— 37591957313184629697218108831955927744 d* —
— 2161144497516080476955607837671278699584 d°—

— 20767931723173741117548555837243163806144 d° —
— 23736461779038166246115958304551871056384 d.

(1)
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and:
Phais.6.2.1(d) = —81064936492382180549906181650347200 d°—
— 25619265529443874657362851013713227200 d° —
22) — 1138360224016877254137407566642735778400 d* —

— 2649407942988198539201176162753240634400 d°+

+ 70399558265933283202949942118101580280800 d>+
+ 90355953106499854530169310985578945008800 d.

We believe that the sequence of weights= (2 - 3"72,...,6,2,1) instead ofa* should
work in any dimension, and that it should provide betterafie estimates in all dimen-
sions, though we suspect the bound should remain expohentizonclude, we collect
our three effective estimates in a comparative table

dim X Theorem 1.2 Theorem 1.1

3 593 23°
4 3203 o4
5 35355 95°
6 172925 26°
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