
FOLIATIONS, SHIMURA VARIETIES AND THE
GREEN-GRIFFITHS-LANG CONJECTURE

Abstract. Foliations have been recently a crucial tool in the study of the degeneracy of
entire curves on projective varieties of general type. In this note, considering the Green-
Griffiths locus, we explain how to deal with the case where there is no natural foliation to
start with. As an application, we show that for most quotients of classical bounded symmetric
domains, the Green-Griffiths locus is the whole variety.

1. Introduction

Foliations are known to play an important role in the study of subvarieties of projective
varieties. One beautiful example is the proof of the following theorem of Bogomolov.

Theorem 1.1 ([1]). Let X be a projective surface of general type such that c2
1 > c2. Then X

has only finitely many rational or elliptic curves.

The numerical positivity c2
1 > c2 gives the existence of global symmetric tensors on X and

reduces the problem to the study of rational or elliptic algebraic leaves of foliations on a
surface of general type. This result fits into the general study of hyperbolic (in the sense of
Kobayashi) properties of algebraic varieties as illustrated by the famous Green-Griffiths-Lang
conjecture

Conjecture 1.2. Let X be a projective variety of general type. Then there exists a proper
Zariski closed subset Y ( X such that for all non-constant holomorphic curve f : C → X,
we have f(C) ⊂ Y .

Although this is still largely open, even for surfaces, McQuillan has extended Bogomolov’s
theorem to transcendental leaves proving Green-Griffiths-Lang conjecture for surfaces of gen-
eral type with positive second Segre number c2

1 − c2 [6].
Due to ideas which can be traced back to Bloch, it is now classical that algebraic differential

equations can be used to attack such problems as follows. Holomorphic maps f : U ⊂ C→ X
canonically lift to projectivized jets spaces f[k] : U → P (JkX). Let A be an ample line bundle
on X, pk : P (JkX) → X the natural projection and Bk,l ⊂ P (JkX) be the base locus of
the line bundle OP (JkX)(l) ⊗ p∗kA

−1. We set Bk =
⋂
l∈NBk,l and GG =

⋂
k∈N pk(Bk), the

Green-Griffiths locus. The strategy is based on the fundamental vanishing theorem

Theorem 1.3 (Green-Griffiths, Demailly, Siu-Yeung). Let f : C → X be a non constant
holomorphic curve. Then f[k](C) ⊂ Bk for all k. In particular, we have f(C) ⊂ GG.

On the positive side of this strategy, there is the recent result by Demailly which for our
purposes can be stated as follows.
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Theorem 1.4 ([2]). Let X be a projective variety of general type. Then for some k ≫ 1,
Bk 6= P (JkX).

In other words, all non-constant holomorphic curves f : C → X in a projective variety of
general type satisfy a non-trivial differential equation P (f, f ′, . . . , fk) ≡ 0.

On the less optimistic side, it is recently shown in [3] that one cannot hope GG 6= X in
general.

From [3] Theorem 1.3, one can extract the following criterion

Theorem 1.5. Let X be a projective variety endowed with a holomorphic foliation by curves
F . If the canonical bundle of the foliation KF is not big then GG = X.

This produces examples of (hyperbolic!) projective varieties of general type whose Green-
Griffiths locus satisfies GG = X (see [3] for details).

Example 1.6. Let X = C1×C2 a product of compact Riemann surfaces with genus g(Ci) ≥ 2.
Then X is of general type, hyperbolic and GG = X.

Example 1.7. Let X = ∆ × ∆/Γ be a smooth compact irreducible surface uniformized by
the bi-disc. X is naturally equipped with 2 non-singular foliations F and G with Kodaira
dimension −∞. Then X is of general type, hyperbolic and GG = X.

Example 1.8. Let X = ∆n/Γ be a (not necessarily compact) quotient of the polydisc by an
arithmetic lattice commensurable with the Hilbert modular group. Then X any compactifica-
tion satisfies GG = X.

In all previous examples we have natural foliations on the manifold that one uses in a crucial
way to obtain that the Green-Griffths locus is the whole manifold. It is therefore tempting
to think that the absence of these natural foliations could be an obstruction to the Green-
Griffiths locus covering the whole manifold. In fact in [3], using analytic techniques inspired
by [7], we show that projective manifolds uniformized by bounded symmetric domains of rank
at least 2 satisfy GG = X.

The goal of this note is to study the example of quotients of irreducible classical bounded
symmetric domains, also in the non-compact case, using the arithmetic data of the Shimura
varieties associated to these quotients.

2. Arithmetic lattices in classical groups

Let D be an irreducible symmetric bounded domain in CN and Γ a torsion-free lattice in
the simple real Lie group G = Aut0(D). Let X be a compactification of X = D/Γ. Let us
recall the description of the irreducible classical bounded symmetric domains D = G/K:

• DI
p,q = {Z ∈M(p, q,C)/Iq − Z∗Z > 0},

• DII
n = {Z ∈ DI

n,n/Z
t = −Z},
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• DIII
n = {Z ∈ DI

n,n/Z
t = Z},

• DIV
n = {Z ∈ SL(2n,C)/ZtZ = I2n, Z

∗JnZ = Jn}.
The group G can be described as follows:

• DI
p,q: G is the special unitary group of a hermitian form on Cp+q of signature (p, q),

q ≤ p.
• DII

n : G is the special unitary group of a skew-hermitian form on Hn.
• DIII

n : G is the special unitary group of a skew-symmetric form on R2n.
• DIV

n : G is the special unitary group of a symmetric bilinear form on Rn+2 of signature
(n, 2).

Each of the ± symmetric/hermitian forms is isotropic, and if t = rankR(G), the maximal
dimension of a totally isotropic subspace is t = q, [n

2
], n, 2 in the cases I, II, III, and IV

respectively.
A deep theorem of Margulis states that if rankR(G) ≥ 2, then any discrete subgroup Γ ⊂ G

is arithmetic. That means that there is an algebraic Q-group G with Γ ⊂ GQ ⊂ GR = G and
a rational representation ρ : GQ → GL(VQ) such that ρ−1(GL(VZ)) and Γ are commensurable.

So, from now on, we suppose that we are in the situation where G is a Q-group such that
GR = G is one of the above classical real Lie group and of real rank at least 2.

We shall prove that in this situation the Green-Griffiths locus GG(X) = X (except in a
few cases that we cannot deal with yet described below).

Let us explain the idea to prove such a result. Recall that in the case of the polydisc
D = ∆r, we used in an essential way the existence of natural holomorphic foliations on the
manifold coming from factors of the polydisc.

So, to prove such a result for quotients of irreducible domains (e.g. Siegel modular varieties),
we need to find something which replaces the existence of natural foliations. The idea is to use,
instead of foliations on D, the existence of many embedded polydiscs. This is motivated by the
polydisc theorem ([7] ch.5, thm.1) which tells that there exists a totally geodesic submanifold
E of D such that (E, g|D) is isometric to a Poincaré polydisc (∆t, g∆t), and D = K.E where K
is a maximal compact subgroup of G and g is the Bergman metric. If M ⊂ G is the hermitian
subgroup associated to E, to deduce that the restriction Γ ∩M induces the existence of an
algebraic subvariety we need some arithmetic conditions. In particular, it is sufficient that M
comes from a reductive Q-subgroup M ⊂ G (see for example [5]). So, one reduces the problem
to the existence of Q-subgroups inducing a dense subset of subvarieties whose universal cover
are polydiscs.

Let us recall the classification of classical Q-groups of hermitian type. They are obtained
by restriction of scalars G = Resk|QG′ for an absolutely simple G′ over k a totally real number
field. The classification is the following (see [8] and [9]):

(1) Unitary type:
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U.1) G′ = SU(V, h), where V is an n-dimensional K-vector space, K|k an imaginary
quadratic extension, and h is a hermitian form. Then G(R) ∼=

∏
SU(pν , qν),

where (pν , qν) are the signatures at infinite places.
U.2) G′ = SU(V, h) where D is a division algebra of degree d ≥ 2, central simple over

K with a K|k-involution and V is an n-dimensional right D-vector space with
hermitian form h. Then G(R) ∼=

∏
SU(pν , qν).

(2) Orthogonal type:
O.1) G′ = SO(V, h), V a k-vector space of dimension n+2, h a symmetric bilinear form

such that at an infinite place ν, hν has signature (n, 2) and G′ν(R) ∼= SO(n, 2).
O.2) G′ = SU(V, h), V a right D-vector space of dimension n, h is a skew-hermitian

form, D is a quaternion division algebra, central simple over k, and at an infinite
place ν, either

(i) Dν
∼= H and G′ν(R) ∼= SO(n,H), or

(ii) Dν
∼= M2(R) and G′ν ∼= SO(2n− 2, 2).

(3) Symplectic type:
S.1) G′ = Sp(2n, k) and G′(R) ∼= Sp(2n,R)
S.2) G′ = SU(V, h), where V is an n-dimensional right vector space over a totally

indefinite quaternion division algebra, and h is a hermitian form on V . Then
G′(R) ∼= Sp(2n,R).

We shall prove the following result.

Theorem 2.1. Let X = D/Γ be an irreducible arithmetic quotient of a bounded symmetric
domain of real rank at least 2. If X is of type U.1, O.1 (n ≥ 4), O.2)(i), S.1, or S.2 then the
Green-Griffiths locus GG(X) = X.

In other words, the only cases remaining are U.2 and O.2)(ii).

3. The case of Siegel modular varieties

An interesting case is the case of Siegel modular varieties corresponding to the symplectic
case S.1 in the above classification. The proof of the following result will be very explicit
giving the ideas of the general result.

Theorem 3.1. Let X = D/Γ, where D = DIII
n and Γ ⊂ Sp(2n,R) commensurable with

Sp(2n,Z), n ≥ 2, then the Green-Griffiths locus GG(X) = X.

Proof. There is a totally geodesic polydisk ∆n ↪→ D,

z = (z1, . . . , zn)→ z∗ = diag(z1, . . . , zn)

of dimension n consisting of diagonal matrices {Z = (zij)/zij = 0 for i 6= j} ⊂ D. This cor-

responds to an embedding Sl(2,R)n ↪→ Sp(2n,R): M = (M1, . . . ,Mn)→M∗ =

(
a∗ b∗

c∗ d∗

)
,

where Mi =

(
ai bi
ci di

)
, and a∗ = diag(a1, . . . , an) is the corresponding diagonal matrix.
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More generally, taking A ∈ Gl(n,R) one can consider the map ∆n ↪→ DIII
n , given by

z = (z1, . . . , zn)→ Atz∗A.

In order to take quotients, one defines

ΓA := {M ∈ Sl(2,R)n/

(
At 0
0 A−1

)
M∗

(
At 0
0 A−1

)−1

∈ Γ}.

Indeed we have a modular embedding

ϕA : ∆n/ΓA → X.

Considering a totally real number field K/Q of degree n with the embedding K ↪→ Rn,

ω → (ω(1), . . . , ω(n)), the matrices A = (ω
(j)
i ) where ω1, . . . , ωn is a basis of K have the

property that ΓA is commensurable with the Hilbert modular group of K [4].
These matrices A are obviously dense in Gln(R).
Now, take a global jet differential of order k, P ∈ H0(X,EGG

k,mT
∗
X

). Taking the pull-back,
ϕ∗AP we obtain a k jet differential on a manifold uniformized by a polydisc. Therefore, from
example 1.8, we obtain that ϕA(∆n/ΓA) ⊂ GG(X). By density, we finally get

GG(X) = X.

�

4. The isotropic case

The case of Siegel modular varieties is a particular case of the situation where G is isotropic
and rankQ(G) ≥ 2.

Theorem 4.1. If rankQ(G) ≥ 2 then the Green-Griffiths locus GG(X) = X.

Proof. Let G = SU(D, h), where D is a division algebra over Q and h is a non-degenerate
hermitian or skew hermitian form on Dm. rankQ(G) coincides with the Witt index of h, i.e.
with the dimension of a maximal totally isotropic subspace in Dm see [9]. Let H ′1 =< v > be
a totally isotropic subspace of dimension 1 on D. Then we can find v′ such that H1 =< v, v′ >
is a hyperbolic plane i.e. with respect to a properly chosen basis h|H is given by the matrix(

0 1
1 0

)
. Since rankQ(G) ≥ 2 we can find a second hyperbolic plane H2 ⊂ H⊥1 . Then

N ∼= SU(D, h|H1)× SU(D, h|H2)

is a subgroup of G. Therefore we have found a Q-group N = N1 ×N2 ⊂ G. ΓN := Γ ∩NQ is
an arithmetic subgroup giving a subvariety

ϕN : XΓN
= DN/ΓN ↪→ XΓ := X,

whose universal cover DN is a product D1 ×D2 corresponding to N1(R)×N2(R) ⊂ GR.
Now, take a global jet differential of order k, P ∈ H0(X,EGG

k,mT
∗
X

). Taking the pull-back,
ϕ∗NP we obtain a k jet differential on a manifold uniformized by a product. Therefore we
obtain that ϕN(XΓN

) ⊂ GG(X).
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Consider g ∈ GQ then we have a suvariety

ϕgNg−1 : XΓgNg−1 = g(DN)/ΓgNg−1 ↪→ XΓ := X.

Since G is connected GQ is dense in G = GR (see Theorem 7.7 in [9]). We finally get

GG(X) = X.

5. Proof of Theorem 2.1

As the proof of the two previous results made clear, the key point is to find a product of
Q-groups in G. If G = SU(V, h) is of type U.1, since G is simple, G is compact at all but one
infinite place where G(Kv) = SU(p, q). We can diagonalize h and find as above two planes
H1, H2 where h is of signature (1, 1). The corresponding Q-group is N1 = SU(h|H1)×SU(h|H2)
such that N1(R) ∼= SU(1, 1)× SU(1, 1) ∼= SL2(R)× SL2(R).

Of course, the same reasoning can be applied when G is of type O.1 (with n ≥ 4) replacing
the hermitian form by the symmetric bilinear form. This provides a Q-subgroup N2 such that
N2(R) ∼= SO(1, 2)× SO(1, 2) ∼= SL2(R)× SL2(R).

Now suppose G = SU(V, h) is of type O.2)i). Recall that the real rank is equal to
rankR(G) = [n

2
]. So our hypothesis on the real rank implies n ≥ 4. We can therefore

find again two planes H1, H2 and a Q-subgroup N3 = SU(h|H1) × SU(h|H2), such that
N3(R) ∼= SO(2,H)× SO(2,H) ∼= SL2(R)× SL2(R) (modulo compact factors SU(2)).

Finally if G = SU(V, h) is of type S.2, the hypothesis on the real rank implies n ≥ 2. So
we can find two spaces H1, H2 one-dimensional over the quaternion algebra and consider as
before the Q-subgroup N4 = SU(h|H1)× SU(h|H2), such that N4(R) = Sp(2,R)× Sp(2,R) ∼=
SL2(R)× SL2(R).

�
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