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Abstract. Surfaces of general type with positive second Segre number s2 :=
c21 − c2 > 0 are known by results of Bogomolov to be algebraically quasi-
hyperbolic i.e. with finitely many rational and elliptic curves. These results
were extended by McQuillan in his proof of the Green-Griffiths conjecture for
entire curves on such surfaces. In this work, we study hyperbolic properties
of minimal surfaces of general type with minimal c21, known as Horikawa sur-
faces. In principle these surfaces should be the most difficult case for the above
conjecture as illustrate the quintic surfaces in P3. Using orbifold techniques,
we exhibit infinitely many irreducible components of the moduli of Horikawa
surfaces whose very generic member has no rational curves or even is alge-
braically hyperbolic. Moreover, we construct explicit examples of algebraically
hyperbolic and quasi-hyperbolic orbifold Horikawa surfaces.

1. Introduction

Our motivations are the following conjectures of Green-Griffiths and Lang:

Conjecture 1 (Lang [23]). Let X be a complex variety of general type. Then a
proper Zariski closed subset Z of X contains all its subvarieties not of general type.
In particular, X has only a finite number of codimension-one subvarieties not of
general type.

Even in the case of surfaces, this conjecture is still open, except in some specific
cases such as surfaces of general type with irregularity at least two [25]. It has
attracted a lot of attention because of its important conjectural links with arith-
metic: according to the Bombieri-Lang conjecture, the rational points on a variety
of general type defined over a number field should not be Zariski dense.

A surface satisfying Conjecture 1, i.e. with finitely many rational and elliptic
curves, is said to be algebraically quasi-hyperbolic. Following the terminology of
Demailly [12], a projective variety X ⊂ Pn is called algebraically hyperbolic if there
exists a positive real number ε such that

2g(C)−2 ≥ ε degC

2000 Mathematics Subject Classification. 14J25, 32Q45, 14J29.
Key words and phrases. Hyperbolicity, Green-Griffiths-Lang conjecture, Horikawa surfaces,

Orbifolds.
The first author is supported by grant FCT SFRH/BPD/72719/2010 and project Geometria

Algébrica PTDC/MAT/099275/2008. The second author is supported by the Agence Nationale
de la Recherche (ANR) through projects POSITIVE (ANR-10-BLAN-0119) and COMPLEXE
(ANR-08-JCJC-0130-01).

1



2 XAVIER ROULLEAU, ERWAN ROUSSEAU

for each reduced irreducible curve C ⊂ X, where g(C) and degC are the geometric
genus and the degree of the curve C ↪→ X respectively.

The analytic version of Conjecture 1 is:

Conjecture 2 (Green-Griffiths [17], Lang [23]). Let X be a variety of general
type. Then a proper Zariski closed subset of X contains all images of entire curves
f : C→ X.

A projective variety satisfying Conjecture 2 is said to be quasi-hyperbolic and a
variety that contains no non-constant entire curve is said to be hyperbolic.

Let us recall that minimal surfaces of general type X are classified according to
their Chern numbers. These Chern numbers c21, c2 satisfy the two famous inequal-
ities of Noether and Bogomolov-Miyaoka-Yau (see for example [1]):

1

5
(c2 − 36) ≤ c21 ≤ 3c2.

If c21 = 3c2 then, by Yau [41], X is a quotient of the unit ball. Therefore X is
hyperbolic.

A striking overhang toward Conjecture 1 is its proof by Bogomolov for surfaces
whose Segre number s2 = c21−c2 is positive [3]. The key point in Bogomolov’s proof
is that for surfaces with positive Segre number, the sufficiently high symmetric
differentials have global sections.

An extension of Bogomolov’s result to its analytic version was obtained by Lu
and Yau [26] proving conjecture 2 for surfaces with c21 > 2c2.

Then McQuillan [28] proved Conjecture 2 for surfaces with positive second Segre
number.

For surfaces with s2 ≤ 0 there is no such a good result. Demailly and El Goul
[13] proved Conjecture 2 for some surfaces with 13c21 > 9c2.

In the extreme case, a surface that reaches the equality c2 = 5c21 + 36 if c21 is
even and c2 = 5c21 + 30 otherwise is called a Horikawa surface. Thus the Horikawa
surfaces are the one for which the Segre number s2 = c21 − c2 is the most negative
as possible in the geography of (minimal) surfaces of general type.

As the previous list of results suggests, one is naturally lead to believe that it is
for these surfaces that the above conjectures will be the most difficult to establish.

Even for hypersurfaces in P3, (which have s2 < 0), we are far from complete
results. The case of quintics (c21 = 5, c2 = 55) is particularly difficult to treat
and this may be explained by the fact that they are Horikawa surfaces, thus with
minimal second Segre number. Indeed, a conjecture by Kobayashi predicts that
generic quintics should be hyperbolic. We know by Geng Xu [40] that a very
generic surface of degree d ≥ 5 in P3 contains no curve of geometric genus 0 or 1.
But we still do not know that they are hyperbolic, even algebraically hyperbolic.

Moreover, we have very few examples of hyperbolic surfaces of low degree. A
striking fact is that no example of hyperbolic surface is known for d = 5.

In this paper we investigate the hyperbolic properties of Horikawa surfaces using
their very interesting geometric properties. Indeed, we know that most Horikawa
surfaces realizing the equality c2 = 5c21 + 36 appear as ramified coverings [19].
Therefore it is very natural to associate to such surface an orbifold. Our philosophy
is to use this orbifold to study the geometry of curves in Horikawa surfaces.
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We will see that ”orbifold” techniques as systematically introduced by Campana
([7], [8], see also [33]) are useful in this context.

Let N ≥ 0 be an integer and let FN be the N th Hirzebruch surface. The surface
FN has a natural fibration FN → P1. We denote by F a fiber, and by T the section
of this fibration such that T 2 = N . Any divisor D on FN is numerically equivalent
to aT + bF for a, b integers. We denote by (a, b) the equivalence class of D. The
holomorphic Euler characteristic of a surface is χ :=

c21+c2
12 . Horikawa obtained the

following classification [19]: a Horikawa surface with even c21 is either
(1) a double covering of P2 branched along an octic (χ = 4),
(2) a double covering of P2 branched along a curve of degree 10 (χ = 7),
(3) a double covering of FN branched along a curve of type (6, 2a), (2a ≥ −N)

(χ = 3N + 2a− 1).
Here the branch curve has at most ADE singularities. We show:

Theorem 3. (1) Let X be a very generic Horikawa surface of type (1). Then
X has no rational curves.

(2) Let X be a very generic Horikawa surface of type (2). Then X is alge-
braically hyperbolic, in particular X has no rational or elliptic curves.

(3) Let X be a very generic Horikawa surface of type (3) with a = 3 and
χ = 3N + 5. Then X has no rational curves.

Here, the terminology “very generic” is used to indicate that the property is satis-
fied outside a countable union of algebraic subsets in the moduli space. This result
is obtained as a consequence of more general results on the algebraic hyperbolicity
of branched covers which may be of independent interest.

One of the most natural examples of surfaces with s2 < 0 are hypersurfaces in
P3. In [5], Bogomolov and De Oliveira studied the hyperbolicity of hypersurfaces of
degree d > 5 with sufficiently many nodes. Translated into the langue of orbifold,
their key observation is that for such a surface X, the natural structure of orbifold
X has positive orbifold Segre number s2(X ) > 0. We investigate hyperbolic prop-
erties of the quintic surfaces that are degree 5 cyclic covers of P2 branched over 5
lines in general position. In this study, we develop the theory of jet differentials in
the orbifold setting and, as an application, prove

Theorem 4. Let X be a quintic surface that is a degree 5 cyclic cover of P2

branched over 5 lines in general position. Then any entire orbifold curve f : C→ X
satisfies a differential equation of order 2.

Using Nevanlinna theory and constructions of Persson [32] of Horikawa sur-
faces with maximal Picard number, we exhibit some explicit examples of quasi-
hyperbolic Horikawa orbifold surfaces.

Theorem 5. For χ equal to 4 and 2k − 1 (for any integer k > 2), there exists
quasi-hyperbolic orbifold Horikawa surfaces whose minimal resolutions have Euler
characteristic χ.

To finish this introduction, let us remark that in characteristic p > 0 the ana-
log of the Lang conjecture is false. In [24], unirational Horikawa surfaces are
constructed over fields of positive characteristic, these unirational surfaces have
maximal Picard number.
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The paper is structured as follows. In section 2 we recall the definition of
orbifolds and the classical results we will use. In section 3 we prove our main
Theorem 3 and some further results on surfaces that are cyclic ramified covers
of the plane. In section 4 we prove Theorem 4. Section 5 is devoted to the
construction of quasi-hyperbolic Horikawa orbifold surfaces.
Acknowledgements. Part of this research was done during the authors stay

in Strasbourg University. We thank Matthias Schütt for many discussions on
singularities of quintic surfaces, Julien Grivaux for discussions on orbifolds, Benoît
Claudon and Jevgenija Pavlova for their drawings. We also thank the referee for
his remarks and suggestions.

2. Orbifold set-up

2.1. Orbifolds. As in [16], we define orbifolds as a particular type of log pairs.
The data (X,∆) is a log pair if X is a normal algebraic variety (or a normal
complex space) and ∆ =

∑
i diDi is an effectiveQ-divisor where theDi are distinct,

irreducible divisors and di ∈ Q.
For orbifolds, we need to consider only pairs (X,∆) such that ∆ has the form

∆ =
∑
i

(
1− 1

mi

)
Di,

where the Di are prime divisors and mi ∈ N.

Definition 6. An orbifold chart on X compatible with ∆ is a Galois covering
ϕ : U → φ(U) ⊂ X such that

(1) U is a domain in Cn and ϕ(U) is open in X,
(2) the branch locus of ϕ is d∆e ∩ ϕ(U),
(3) for any x ∈ U ′′ := U \ ϕ−1(Xsing ∪ ∆sing) such that ϕ(x) ∈ Di, the

ramification order of ϕ at x verifies ordϕ(x) = mi.

Definition 7. An orbifold X is a log pair (X,∆) such thatX is covered by orbifold
charts compatible with ∆.

Remark 8. (1) In the language of stacks, we have a smooth Deligne-Mumford
stack π : X → X, with coarse moduli space X.

(2) More generally, Campana introduces geometric orbifolds in [7] as pairs of
this type but which are not necessarily locally uniformizable.

Example 9. Let X be a complex manifold and ∆ =
∑

i(1 −
1
mi

)Di with a sup-
port d∆e which is a normal crossing divisor, i.e. for any point x ∈ X there is a
holomorphic coordinate system (V, z1, . . . , zn) such that ∆ has equation

z
(1− 1

m1
)

1 . . . z
(1− 1

mn
)

n = 0.

Then (X,∆) is an orbifold. Indeed, fix a coordinate system as above. Set

ϕ : U → V, φ(x1, . . . , xn) = (xm1
1 , . . . , xmn

n ).

Then (U, φ) is an orbifold chart on X compatible with ∆.

In the case of surfaces we have more examples of orbifolds looking at singularities
that naturally appear in the logarithmic Mori program.
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Definition 10. Let (X,∆), ∆ =
∑

i

(
1− 1

mi

)
Ci, be a pair where X is a normal

surface andKX+∆ is Q-Cartier. Let π : X̃ → X be a resolution of the singularities
of (X,∆), so that the exceptional divisors, Ei and the components of ∆̃, the strict
transform of ∆, have normal crossings and

KX̃ + ∆̃ +
∑
i

Ei = π∗(KX + ∆) +
∑
i

aiEi.

We say that (X,∆) is klt (Kawamata log terminal) if mi < ∞ and ai > 0 for
every exceptional curve Ei.

Thanks to a result of [30] (see also the appendix of [9]), we have

Example 11. Let (X,∆), ∆ =
∑

i

(
1− 1

mi

)
Ci, be a klt pair with X a surface,

then (X,∆) is an orbifold.

2.2. Chern classes. Let π : X → (X,∆) be a two dimensional orbifold. Let S be
the singular points of X and of the divisor d∆e, ∆ =

∑
(1− 1

mi
)Di. The orbifold

canonical line bundle is: KX = π∗(KX + ∆), therefore:

c1(X ) = −π∗(KX +
∑

(1− 1

mi
)Di).

To each point p of S, there is a well defined integer β(p), the order of the isotropy
group, such that by the orbifold Gauss-Bonnet formula [37]:

c2(X ) = e(X)−
∑

(1− 1

mi
)e(Di \ S)−

∑
p∈S

(1− 1

β(p)
).

Let p ∈ S be a smooth point of X.

Lemma 12. Suppose that p is an ADE singularity of d∆e. We have :
Type β(p)
A1 mimj

A2n
2

2n+1( 1
mi

+ 1
2n+1 −

1
2)−2

A2n−1
4
n( 1

mi
+ 1

mj
+ 1

n − 1)−2, n ≥ 2

D2n+2
4
n( 1

mi
+ 1

mj
+ 1

nmk
− 1)−2

D2n+3 2(2n+ 1)m2
i , n ≥ 1

E7 96
where the branches are as follows:

r
mi mj r

mi

rmk

mi mj r mi

2

r
2

2

A2n+1 A2n D2n+2 D2n+1 E7

Figure 2.1. ADE singularities and conditions on the multiplicities
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Proof. See [39] Table 2.3, [38], [9] and [21]. �

Let C1, . . . be disjoint reduced divisors on X whose irreducible components are
(−2)-curves. There exist a surface X ′ and map X → X ′ such that the Ci’s are
contracted onto ADE-singularities and that is an isomorphism outside. Let an
(resp dn, en) be the number of An (resp. Dn, En) singularities on X ′.

Proposition 13. ([27], 1.8). The surface X ′ has a natural structure of orbifold
X and its Chern numbers are c21(X ) = c21(X) and:

(2.1)

c2(X ) = c2(X)−
∑

(n+ 1)(an+dn+en) +
∑ an

n+ 1
+

dn
4(n− 2)

+
e6
24

+
e7
48

+
e8

120
.

The denominators 4(n − 2), 24, 48, 120 are the order of the binary dihedral
BD4(n−2), the binary tetrahedral, the binary octahedral, and the binary icosahe-
dral group respectively.

2.3. Orbifold Riemann-Roch. Let L be an orbifold line bundle on the orbifold
X of dimension n. We will use Kawazaki’s orbifold Riemann-Roch theorem [20] or
Toën’s for Deligne-Mumford stacks [37] using intersection theory on stacks.

Theorem 14 ([37]). Let X be a Deligne-Mumford stack with quasi-projective
coarse moduli space and which has the resolution property (i.e every coherent sheaf
is a quotient of a vector bundle). Let E be a coherent sheaf on X then

χ(X , E) =

∫
X
c̃h(E)T̃ d(TX ).

From this formula, we obtain the asymptotic:

χ(X , Lk) =
c1(L)n

n!
kn +O(kn−1),

using orbifold Chern classes.
It should be remarked that we use here the fact that we work only with effective

orbifolds: the stabilizers are generically trivial therefore the correction terms of
the orbifold Riemann-Roch do not affect the leading term.

We will apply this result to the case of orbifold surfaces X of general type with
big orbifold cotangent bundle ΩX . Indeed, let TX be the orbifold tangent bundle.
Then P(TX ) is naturally an orbifold and we can apply the previous Riemann-Roch
formula to the tautological line bundle OP(TX )(1). Orbifold Serre duality gives

h2(X , SmΩX ) = h0(X , SmΩX ⊗K1−m
X ) ↪→ h0(X , SmΩX ).

As a corollary, if c21(X )− c2(X ) > 0 then

H0(SmΩX ) ≥ c.m3

for a positive constant c.
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2.4. Orbifold hyperbolicity. In the context of manifolds, complex hyperbolicity
is concerned with the geometry of rational, elliptic curves and more generally entire
curves i.e. holomorphic maps from C. For orbifold hyperbolicity, algebraic curves
are replaced by orbifold Riemann surfaces C i.e. the data of a Riemann surface C
of genus g ≥ 0 and r points p1, . . . , pr ∈ X marked by orders of stabilizer groups
m1, . . . ,mr ≥ 2 corresponding to the Q-divisor ∆ =

∑
i

(
1− 1

mi

)
pi.

Definition 15. An orbifold Riemann surface C is rational (resp. elliptic) if
deg(KC) < 0 i.e. 2g − 2 +

∑
i

(
1− 1

mi

)
< 0 (resp. deg(KC) = 0).

Example 16. A case-by-case check gives that (C,∆) is elliptic if it is isomorphic
to one of the following orbifold curves:

2 (E, ∅) where E is an elliptic curve.
2 (P1,

(
1− 1

m1

)
{0}+

(
1− 1

m2

)
{1}+

(
1− 1

m3

)
{∞} where (m1,m2,m3) is

either (2, 3, 6), (2, 4, 4), (3, 3, 3).
2 (P1,

(
1− 1

2

)
{0}+

(
1− 1

2

)
{1}+

(
1− 1

2

)
{p3}+

(
1− 1

2

)
{∞} with p3 ∈ C \

{0, 1}.

Recall that an orbifold map between orbifolds f : X1 → X2 is a map between the
underlying spaces X1 and X2 which lifts to an equivariant map in orbifold charts.

Definition 17. An orbifold map p : X1 → X2 is an orbifold covering if every
x ∈ X2 is in some U ⊂ X2 such that for every component V of p−1(U) the
corresponding orbifold chart φ1 : Ṽ → V verifies that p◦φ1 : Ṽ → U is an orbifold
chart for U .

Definition 18. Let X be an orbifold. An orbifold rational (resp. elliptic) curve
in X is the image of an orbifold map f : C → X where C is rational (resp. elliptic).

A hyperbolic orbifold should not have rational and elliptic curves and more
generally:

Definition 19. An orbifold X is (Brody-)hyperbolic if there is no non-constant
orbifold map f : C → X . An orbifold X is quasi-hyperbolic if the Zariski closure
of the union of the images of orbifold maps f : C→ X is a proper sub-variety.

Example 20. From the uniformization theorem available in the orbifold setting
(see for example [15]), we have that an orbifold curve C is hyperbolic if and only
if deg(KC) > 0.

In the algebraic setting, we can generalize the notion of algebraic hyperbolicity
to orbifolds:

Definition 21. A compact orbifold X , with ω an orbifold hermitian metric, is
algebraically hyperbolic if there exists ε > 0 such that for any orbifold morphism
f : C → X with C compact,

deg(KC) ≥ ε
∫
C
f∗ω.

We suggest the following generalization of Green-Griffiths-Lang conjecture in
the orbifold context
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Conjecture 22 (Orbifold Green-Griffiths-Lang conjecture). Let X be an orbifold
of general type. Then there exists a proper sub-orbifold Z ⊂ X which contains the
image of all holomorphic maps f : C→ X .

Even in the setting of manifolds, this conjecture is widely open. An important
result was obtained by McQuillan [28] with the confirmation of the conjecture for
surfaces of general type with c21 − c2 > 0. The positivity of the second Segre
number ensures by a Riemann-Roch computation as already explained above that
H0(SmΩX) > cm3. McQuillan has extended his result to 2-dimensional Deligne-
Mumford stacks with projective moduli [29] (see also [33] and [34]).

Since orbifolds are examples of DM stacks, a consequence of his result that we
shall use is

Theorem 23. Let X be an orbifold surface of general type with positive orbifold
second Segre number

c21(X )− c2(X ) > 0.

Then there exists a proper sub-orbifold Z ⊂ X which contains the image of all
orbifold maps f : C→ X , in other terms: the orbifold X is quasi-hyperbolic.

Let C → X be an orbifold rational or elliptic curve. The subjacent space to C is
P1 or a smooth elliptic curve, thus such a curve gives rise to an entire orbifold curve
C→ X . Therefore a quasi-hyperbolic orbifold is algebraically quasi-hyperbolic in
the sense that it has only finitely many rational and elliptic orbifold curves.

Example 24. Following [5] (see also [33]), we see that nodal surfaces in P3 of
degree d with l nodes provide examples of orbifolds with positive orbifold second
Segre number if

l >
8

3

(
d2 − 5

2
d

)
.

It should be remarked that this numerical condition can be satisfied only for d ≥ 6.
Moreover, in [5], the authors claim that a subspace H0(X , SmΩX ) of symmetric
orbifold differentials can be extended to the resolutions of such surfaces but it
seems to us that there is a gap in the argument of [5] Lemma 2.2.

2.5. Orbifold jet differentials. Since Bloch [2], jet differentials have turned out
to be a useful tool to study hyperbolic properties of complex manifolds. We would
like to use these technics in the orbifold setting extending the construction of
Demailly [12] for manifolds to this situation.

Start with an orbifold X and an orbifold subbundle V ⊂ TX . Then we consider
the orbifold X̃ := P(V) with its natural orbifold line bundle

OX̃ (−1).

We have an orbifold map π : X̃ → X . We define

Ṽ := π−1∗ OX̃ (−1) ⊂ TX̃ ,
here π∗ is the differential map between TX̃ and π∗TX (see [14]).

Therefore, as in the case of manifolds, we have an inductive process which gives
the orbifold Demailly-Semple jet bundles:

(X0,V0) = (X ,V), (Xk,Vk) = (X̃k−1, Ṽk−1).
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Taking V0 := TX0 , one can define jet differentials Ek,m as the direct image sheaf

Ek,m := (π0,k)∗OXk
(m),

where π0,k := Xk → X is the natural projection map.

Remark 25. Alternatively, following [12] one could construct Green-Griffiths jet
differentials EGGk,m on orbifolds and define Ek,m as the subbundle of orbifold jet
differentials which are invariant under the reparametrization of germs of orbifold
curves.

One can use the orbifold Riemann-Roch to compute the Euler characteristic. In
the case of orbifold surfaces, one obtains

χ(X , Ek,m) = mk+2(αkc
2
1 − βkc2) +O(mk+1),

where c1 and c2 denote the orbifold Chern classes and αk, βk are just real numbers
depending on k.

Using the semi-stability of TX with respect toKX , which is also true for orbifolds
([21] and [36]), one can control the higher cohomology as in [17]. In particular,
one obtains for an orbifold surface of general type [12]

(2.2) h0(X , E2,m) ≥ m4

648
(13c21 − 9c2) +O(m3).

In the case of smooth hypersurfaces of degree d of P3, one obtains that

h0(X,E2,m) ≥ C.m4

for d ≥ 15 (and C > 0). In general, the bigger c21/c2 is, the easier it is to obtain
global jet differentials. This is another illustration that Horikawa surfaces are the
most difficult cases to deal with. Therefore, for smooth surfaces in P3 of degree
d = 5, one has to take k much larger. In contrast, we will provide below an example
of an orbifold surface of P3 of degree 5 where h0(X , E2,m) ≥ C.m4 (for C > 0).

As in the case of manifolds, one obtains as a consequence of Ahlfors-Schwarz
lemma:

Theorem 26 ([29], [34]). Let π : X → X be a projective orbifold and an ample
line bundle A on X such that H0(Xk,OX̃k

(m) ⊗ π∗0,kA−1) ' H0(X , Ek,m ⊗ A−1)
has a non-zero section P . Then every orbifold entire curve f : C→ X must satisfy
the algebraic differential equation P (f) = 0.

The generalization of jet differentials to orbifolds can be applied to classical
problems which are not yet solved by Nevanlinna theory. Among these problems,
we suggest the following one. Consider f : C → Pn a holomorphic curve which
ramifies with multiplicity divisible by mi over H1, . . . ,Hq, hypersurfaces of degrees
di of Pn in general position. Then it defines an orbifold entire curve f : C→ (Pn,∆)

where ∆ :=
∑

i

(
1− 1

mi

)
Hi. The condition

KPn + ∆ > 0,

is equivalent to ∑
i

(
1− 1

mi

)
di > n+ 1.

In this setting, Conjecture 22 takes the following form
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Conjecture 27. Let H1, . . . ,Hq be hypersurfaces of degrees di of Pn in general
position. Assume that f : C → Pn is a holomorphic curve which ramifies over Hi

with multiplicity divisible by mi and that∑
i

(
1− 1

mi

)
di > n+ 1,

then f is algebraically degenerate i.e. its image is contained in a proper algebraic
hypersurface.

2.6. Horikawa orbifolds. Let us recall that for minimal surfaces of general type,
we have the inequalities 5c21 + 36 ≥ c2 if c21 is even, 5c21 + 30 ≥ c2 if c21 is odd.
Surfaces realizing the equalities are called Horikawa surfaces. Horikawa gave a
classification of these surfaces [19]:

Theorem 28. Let Z be a Horikawa surface with c21 even, then there is a birational
map Z → X ′ where X ′ is a surface branched along a curve with ADE singularities,
more precisely X ′ is either

(1) a double covering of P2 branched along an octic (χ = 4),
(2) a double covering of P2 branched along a curve of degree 10 (χ = 7),
(3) a double covering of FN branched along a curve of type (6, 2a), (2a ≥ −N)

(χ = 3N + 2a− 1).

In the sequel, we will say that a Horikawa surface is of type (i) according to the
above classification.

It is therefore natural to associate orbifolds to Horikawa surfaces.

Definition 29. We say that an orbifold X = (X,∆) is Horikawa if there is a
Horikawa surface Z with a birational map Z → X ′ where X ′ → X is a branched
covering with ramification divisor ∆.

Example 30. From Horikawa’s theorem (P2,
(
1− 1

2

)
C) where C is a curve of

degree 8 or 10 with at most ADE singularities is a Horikawa orbifold.
It is possible to construct Horikawa surfaces with c21 = 5 as the (resolutions of)

5-fold covers of P2 branched along five lines. More generally, examples of Horikawa
orbifolds are provided by (P2,

(
1− 1

5

)
C) where C is a curve of degree 5 with at

most nodes.

3. Algebraic hyperbolicity

3.1. Horikawa surfaces with even first Chern number. Having in mind
Lang’s conjecture claiming that there are only a finite number of curves of genus 0
or 1 on surfaces of general type, the aim of this section is to provide a lower bound
on the genus of a curve on some explicit surfaces.

To study curves in Horikawa surfaces, one strategy is to study orbifold curves
in Horikawa orbifolds. Using this philosophy, we will prove

Theorem 31. (1) Let X be a very generic Horikawa surface of type (1). Then
X has no rational curves.

(2) Let X be a very generic Horikawa surface of type (2). Then X is alge-
braically hyperbolic, in particular X has no rational or elliptic curves.
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(3) Let X be a very generic Horikawa surface of type (3) with a = 3 and
χ = 3N + 5. Then X has no rational curves.

This theorem will be a consequence of more general results which we establish
now.

3.2. Covers of the plane. Let D = ∪Dk ⊂ P2, where Dk is a very general curve
of degree dk. For n > 1 dividing d =

∑
dk , let us consider p : X → P2 the n-cyclic

covering branched along D (for the construction of cyclic cover see [1]).
The singularities of D are the intersection points of the Dk’s. For such a sin-

gularity, there exist local coordinates z1, z2 such that ∆ has equation z1z2 = 0 ;
the singularity on the cover is therefore {tn = z1z2} it is a An−1. The map p is an
orbifold covering between X and (P2,∆) where ∆ =

(
1− 1

n

)∑
Di.

Theorem 32. Let f : C → X be an orbifold compact curve in X not contained in
the branch locus D. Then

deg(KC) ≥ (d− d

n
− 4) degC,

where degC is the degree of C computed as deg p(f(C)).
For d > 4 and (d, n) 6= (5, 5), (6, 2), (6, 3), (8, 2), the surface X is algebraically
hyperbolic modulo the rational and elliptic curves in the branch locus of p : X → P2.
For (d, n) = (5, 5), (6, 3) or (8, 2), X has no rational curves except the rational
curves in the branch locus.

Remark 33. Of course, if X is smooth, every curve f : C → X is an orbifold curve.

Remark 34. If there are no rational or elliptic curves in d∆e, then there are no
rational or elliptic curves in the branch locus.

Remark 35. The Chern numbers of the desingularisation of X are:

c21 = n(−3 + (1− 1
n)d)2

c2 = 3n+ (n− 1)(d2 − 3d).

For (d, n) = (6, 2), the surface X is K3 : such a surface contains an infinite
number of elliptic curves [17]. The three other cases (d, n) = (5, 5), (6, 3) or (8, 2)
are Horikawa surfaces. The case (5, 5) is a quintic surface. For (d, n) = (6, 3), we
have c21 = 3 and 5c21 + 30 = c2 = 45. The case (d, n) = (8, 2) is a Horikawa surface
of type (1).

For the proof of Theorem 32, we use the main Theorem of Xi Chen in [10] (see
also [31]):

Theorem 36. Let D = ∪Dk ⊂ P2 be as above. For all reduced curve C ⊂ P2, we
have:

(3.1) 2g(C)− 2 + i(C,D) ≥ (d− 4) degC,

where d =
∑
dk and i(C,D) is the number of distinct points of ν∗D if ν : C ′ → C

is the normalization.
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Proof. (Of Theorem 32). Let f : C → X be an orbifold map. We have the
following commuting diagram:

C
f //

h
��

X

p
��

(C ′1,∆
′) g

// (P2,∆)

where C1 = p(f(C)), C ′1 is the desingularisation of C1, and g is an orbifold mor-
phism. Let

g∗(Dj) =
∑i(C1,D)

i=1 ti,jpi,

g∗(D) =
∑i(C1,D)

i=1 tipi.

Now, let ∆̃ =
∑i(C1,D)

i=1

(
1− 1

m̃i

)
pi be the minimal orbifold structure on C ′1 such

that g : (C ′1, ∆̃)→ (P2,∆) is an orbifold morphism. The conditions for g to be an
orbifold morphism are n|m̃i.ti,j for all j. Therefore the minimal orbifold structure
is given by

m̃i = lcmj

(
n

gcd(n, ti,j)

)
.

As ti =
∑

j tij , we have gcd(n, tij) ≤ ti for all i, j, thus:

n

ti
≤ n

gcd(n, ti,j)
≤ lcmj

(
n

gcd(n, ti,j)

)
= m̃i.

So, we have:
i(C1,D)∑
i=1

(
1− 1

m̃i

)
≥

i(C1,D)∑
i=1

(
1− ti

n

)
= i(C1, D)− d

n
degC1.

Now, inequality 3.1 of [10] gives:

2g(C ′1)− 2 + i(C1, D) ≥ (d− 4) degC1,

therefore:

2g(C ′1)− 2 +

i(C,D)∑
i=1

(
1− 1

m̃i

)
≥ (d− d

n
− 4) degC1.

To conclude, we observe that

deg(KC) ≥ 2g(C ′1)− 2 +

i(C,D)∑
i=1

(
1− 1

m̃i

)
because C is a uniformisation of C ′1. �

This implies (1) and (2) of Theorem 31.
When n = d, the surface X is the degree d hypersurface in P3 defined by:

X = {xd4 −G(x1, x2, x3) = 0},

where G is a homogeneous polynomial in x1, x2, x3 of degree d defining the curve
C ⊂ P2. We can apply the above results to X:
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Corollary 37. If C is very generic and d ≥ 6, then the smooth algebraic surface
X is algebraically hyperbolic. If C is very generic and d = 5, then X contains no
curves of geometric genus 0.

This result should be compared to results of Clemens, Ein, Pacienza, Voisin
establishing the algebraic hyperbolicity of very general hypersurfaces of Pn of large
degree (see [14] for a survey).

Moreover let us mention that, even if here we are interested in surfaces, since
inequality 3.1 of Chen generalizes to higher dimension (see [10] and [31]), the proof
above immediately generalizes to

Theorem 38. If D ⊂ Pn is a very generic hypersurface of degree d and d ≥
2n+2, then the degree d branched cover X ⊂ Pn+1 ramified over D is algebraically
hyperbolic.

3.3. Covers of Hirzebruch surfaces FN , Algebraically hyperbolic Horikawa
surfaces. In order to prove Theorem 31 (3), we study covers of Hirzebruch sur-
faces.

For N ≥ 0, let FN := P(O ⊕O(N)) be the Hirzebruch surface and let T and F
the divisors on FN generating Pic(FN ) with T 2 = N , T.F = 1 and F 2 = 0.
Let D = ∪Dk ⊂ FN where each Dk is a very general member of a base point free
complete linear series. And let D ∼ aT + bF with a(N − 1) + b ≥ 0.

Theorem 39. (Chen, [11] Corollary 1.12). We have:

(3.2) 2g(C)− 2 + i(C,D) ≥ min(a− 3, b− 2) degC

for all reduced irreducible curves C ⊂ FN with C 6⊂ D where degC = (T+F ).C.

As before, for n dividing a and b, we consider p : X → FN a n-cyclic covering
branched along D. Then we have

Theorem 40. Let f : C → X be an orbifold compact curve in X not contained in
the branch locus. Let c, d be the integers such that p(f(C)) = C1 ∼ cT + dF , then:

deg(KC) ≥ min(a− 3, b− 2)(c(N + 1) + d)− 1

n
(bc+ ad+ acN).

Proof. We follow the notations and proof of theorem 32 : C ′1 is the desingularisation
of C1. First we remark that

degC1 = c(1 +N) + d, C1.D = bc+ ad+ acN.

Then, using the inequality 3.2, we obtain:

2g(C ′1)− 2 +

i(C,D)∑
i=1

(
1− 1

m̃i

)
≥ min (a− 3, b− 2) (degC1)−

C1.D

n
.

�

We wish to apply Theorem 40 to the Horikawa surfaces (for which a = 6, n = 2).
To obtain a non-trivial result, we need b ≥ 3 if N ≥ 1 and b ≥ 6 if N = 0 (recall
that a(N − 1) + b ≥ 0). Recall moreover that b must be divisible by 2. The case
b = 4 gives :

deg(KC) ≥ c(N + 1) + d− 1

2
(bc+ 6d+ 6cN) = c(−1− 3N)− 2d,



14 XAVIER ROULLEAU, ERWAN ROUSSEAU

and therefore is not interesting. If b ≥ 6, we have:

deg(KC) ≥ 3(c(N + 1) + d)− 1

2
(bc+ 6d+ 6cN) = c(3− b

2
),

thus we obtain deg(KC) ≥ 0 for a = 6, b = 6.
Let us suppose that D ∼ 6T + 6F on FN (N ≥ 0) is a very general member of

a base point free complete linear series. The double cover of FN ramified over D
is a Horikawa surface X with χ = 3N + 5. That implies (3) of Theorem 31.

The proof of Theorem 31 is now complete.
We would like to emphasize here the fact that this result is valid for a very

generic surface in some irreducible component of the moduli space of Horikawa
surfaces.

3.4. Quintic surfaces. Our starting point was the fact that we do not know
quasi-hyperbolic quintics. Consider 5 lines L1, . . . , L5 in general position on P2.
The degree 5 ramified cover of P2 branched over the Li’s is a quintic surface X in
P3. If `i = `i(x1, x2, x3) is an equation of Li, an equation of X is :

X = {x54 − `1`2`3`4`5 = 0}.

As the five lines are in general position, their union is a degree 5 curve D with 10
nodal singularities. Over such a singularity p, there exists local coordinates x, y
such that the equation of D is xy = 0. The equation of the singularity of X over p
is then z5 − xy = 0 and the surface X contains therefore 10 A4. We consider this
surface X as an orbifold. A corollary of Theorem 32 is

Corollary 41. X has no orbifold rational curves except over the 5 lines of the
ramification locus.

As X is an orbifold of general type, a natural question is

Problem 42. Show that X has only finitely many (orbifold) elliptic curves.

A first result toward this is

Theorem 43. The image in P2 of any orbifold elliptic curve f : C → X is not
rational. More precisely, it is mapped in P2 to a singular genus one curve which
intersects every line Li with multiplicity divisible by 5.

Proof. As above, we have the following diagram:

C
f //

h
��

X

p
��

(C ′1,∆
′) g

// (P2,∆)

where C1 = p(f(C)), C ′1 is the desingularisation of C1, and g is an orbifold
morphism. Therefore (C ′1,∆

′ =
∑(

1− 1
mi

)
pi) is an orbifold elliptic curve i.e.

KC′
1

+ ∆′ = 0. A case-by-case check gives that (C ′1,∆
′) is isomorphic to one of the

following orbifold curve:
2 (E, ∅) where E is an elliptic curve
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2 (P1,
(

1− 1
m1

)
{0}+

(
1− 1

m2

)
{1}+

(
1− 1

m3

)
{∞} where (m1,m2,m3) is

either (2, 3, 6), (2, 4, 4), (3, 3, 3)
2 (P1,

(
1− 1

2

)
{0}+

(
1− 1

2

)
{1}+

(
1− 1

2

)
{p3}+

(
1− 1

2

)
{∞} with p3 ∈ C \

{0, 1}.
Let

g∗(Lj) =
∑i(C1,L)

i=1 ti,jpi.

g∗(L) =
∑i(C1,L)

i=1 tipi.

The conditions for g to be an orbifold morphism are 5|mi.ti,j for all j. As
gcd(5,mi) = 1 by the preceding case-by-case analysis, we conclude that 5|ti,j .
Therefore g : C ′1 → (P2,∆) is an orbifold morphism. From theorem 32, we deduce
that this excludes the case C ′1 = P1. Therefore in the above list, only the first
case one can occur. So C1 is a genus one curve. The condition 5|ti,j implies that
deg(C1) =

∑
j tij is divisible by 5 and C1 cannot be a smooth elliptic curve. �

Therefore we have reduced the problem of counting orbifold elliptic curves in
these quintics to counting genus one curves in P2 which intersects every line Li
with multiplicity divisible by 5.

Remark 44. The following computation shows that it is natural to believe that
there are finitely many of these curves.

The Severi variety V d,δ of plane curves of degree d and δ nodes has dimension
3d + g − 1. Let C ∈ V d,δ be a curve which intersects Li in

∑
j βj points with

multiplicity 5j. The total number of conditions is

D :=
5∑
i=1

li∑
j=1

βj(5j − 1),

with
∑

j 5jβj = d. Then D =
∑

i(d −
∑

j βj), et
∑
βj ≤ d

5 . Therefore D ≥∑
i d(1 − 1

5) = 4d. Thus for g ≤ 1 the number of conditions is greater than the
number of parameters.

4. Analytic hyperbolicity

4.1. Nevanlinna theory. Nevanlinna theory can be used to study entire curves in
ramified covers. We will briefly recall in this context the truncated defect relation
of Cartan following the notations of [22] to which we refer for details.

Let f : C→ Pn be a linearly-non degenerate entire curve andD1, . . . , Dq be q hy-
perplanes in general position. Let us denote as usual N [n](f, r,Di) and T (f, r,Di),
the truncated counting function and the characteristic function.

The defect is defined by

δ[n](f,Di) := lim inf
r−>∞

(
1− N [n](f, r,Di)

T (f, r,Di)

)
.

Then we have the truncated defect relation of Cartan:

Theorem 45.
∑
δ[n](f,Di) ≤ n+ 1.

We can apply this to ramified covers of the plane. Let X ⊂ P3 be the degree d
cover of P2 ramified over d lines Di.
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Theorem 46. If d ≥ 6 then X is a quasi-hyperbolic orbifold.

Proof. Composing with the projection, we obtain an orbifold map g : C→ (P2,∆).
If g is linearly degenerate then from Theorem 32, its image lies in the branch locus.
Let us suppose that it is linearly non-degenerate. By the First Main Theorem of
Nevanlinna theory, we have

d

2
N [2](f, r,Di) ≤ N(f, r,Di) ≤ T (f, r,Di).

Therefore

δ[2](f,Di) ≥ 1− 2

d
,

which implies ∑
δ[2](f,Di) ≥ d− 2,

contradicting Cartan’s relation if d ≥ 6. �

Unfortunately we see in the previous proof that we cannot say anything for
d = 5, the case of the quintics we studied. An interesting question is to prove
that we have again algebraic degeneracy of entire curves in this case. Note that,
according to Conjecture 27, this should be true sinceKP2 +∆ = O(1). Surprisingly,
it seems that this problem is still open.

Problem 47. Prove that any entire curve f : C → P2 intersecting 5 lines in
general position with multiplicity at least 5 is algebraically degenerate.

Nevertheless, we can use Nevanlinna theory to construct some hyperbolic orb-
ifold Horikawa surfaces.

Theorem 48. Let a ≥ 3 be an integer. Then there exists a quasi-hyperbolic orbifold
Horikawa surface whose minimal resolution has χ = 2a− 1.

Proof. Let F0 = P1 × P1. Consider the divisor

∆ =

(
1− 1

2

) 6∑
i=1

Gi +

(
1− 1

2

) 2a∑
i=1

Hi,

where the Gi are fibers of the first projection p1, and the Hi are fibers of the second
projection p2. Then (F0,∆) is an Horikawa orbifold. The corresponding Horikawa
surface has χ = 2a− 1.

Let f : C → (F0,∆) be an orbifold entire curve. Then h := p1 ◦ f : C → P1 is
an entire curve with multiplicity at least 2 over the 6 points ai := p1(Gi). Then∑

δ[1](h, ai) ≥ 6

(
1− 1

2

)
.

The truncated defect relation (i.e. Nevanlinna Second Main Theorem in this
case), which gives the upper bound 2 for the sum of the defects, implies that p1 ◦f
is constant since . Therefore f has its image contained in a fiber of p2 and has
multiplicity at least 2 over 2a points of this fiber. This implies again that f is
constant since 2a ≥ 6. �
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We can apply this kind of construction to numerical quintics. A quintic surface
has c21 = 5 and c2 = 55. Horikawa [18] proved that a surface with c21 = 5 and
c2 = 55, called a numerical quintic, is either a quintic or a double cover.

Let us consider surfaces of the second type with their attached natural geometric
orbifolds (X,∆).

Theorem 49. There exists a numerical quintic whose geometric orbifold is quasi-
hyperbolic.

Proof. Let F0 = P1 × P1. Consider the divisor

∆ =

(
1− 1

2

) 5∑
i=1

Gi +

(
1− 1

2

)
(H1 +H2 + C +D1 +D2),

where the Gi are fibers of the first projection p1, the Hi are fibers of the second
projection p2, C is a curve of type (2, 1), and the Di are curves of type (1, 1) such
that:

(1) G1, H1, C and D1 meet in a point a.
(2) G1, H2, C and D2 meet in a point b.

Then d∆e is a curve of type (6, 8) with two quadruple points lying on a single fiber
of F0.

(F0,∆) is a numerical quintic orbifold.
Let f : C → (F0,∆) be an orbifold entire curve. Then p1 ◦ f : C → P1 is

an entire curve with multiplicity at least 2 over 5 points. The truncated defect
relation (i.e. Nevanlinna Second Main Theorem in this case) implies that p1 ◦ f is
constant. Therefore f has its image contained in a fiber of p2. For a generic fiber
i.e. not G1, f has multiplicity at least 2 over at least 5 points of this fiber. This
implies again that f is constant. Therefore the image of f is contained in G1. �

One can remark that Cartan’s theorem unfortunately says nothing in the case
of Horikawa surfaces which are degree 2 covers of the plane P2.

4.2. Jet differentials. As we have just seen, applications of Nevanlinna theory are
quite limited. This is one motivation to develop the tool of orbifold jet differentials.

Let us illustrate it in the case of quintics X that are Z/5Z-covers of the plane
ramified over 5 lines in general position. First one could think of using jets of order
1 to apply Theorem 23.

As already mentioned in paragraph 3.4, the surface X has a natural structure
of orbifold X = (X, 0).

Proposition 50. The Chern numbers of X are:

c21(X ) = 5
c2(X ) = 7,

Proof. By paragraph 3.4, X contains 10A4 singularities. Let us denote by X ′ → X
the minimal resolution of these singularities. The Chern numbers of X ′ are equals
to the Chern numbers of a smooth quintic (Brieskorn resolution Theorem [6]) i.e.
K2
X′ = 5, e(X ′) = 55. We have K2

X = K2
X = 5 and c2(X ) = e(X ′)−10 ·(5− 1

5) = 7
(see Proposition 13). �
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Therefore the orbifold second Segre number is negative and we cannot apply
Theorem 23.

Turning to jet differentials of order 2, one sees that

13c21(X )− 9c2(X ) = 2 > 0.

Therefore by inequality (2.2):

Corollary 51. We have:

h0(X,E2,m ⊗ L−1) ≥ 2.
m4

648
+O(m3),

for L an ample line bundle on X. As a consequence (see (2.2) and Theorem 26),
any entire orbifold curve f : C→ X satisfies a differential equation of order 2.

There are many known quintic surfaces with quotient singularities (see e.g. [35]),
but as far as we know, the surfaces that are Z/5Z-covers of the plane ramified over
5 lines in general position are the only one such that the associated orbifold satisfies
13c21(X )− 9c2(X ) > 0.

This result can also be seen as a first step toward problem 47.

5. Persson-Horikawa surfaces

Let us recall some notations. For N a positive integer, the N th Hirzebruch
surface is FN = P(OP1⊕OP1(N)). We denote by F denote a fiber of the P1-bundle
FN → P1 and by T a section s.t. T 2 = N . We denote by (a, b) a divisor equivalent
to aT + bF in the Néron-Severi group.

Recall (see Theorem 28) that a Horikawa surface is the double cover of the plane
branched along an octic (case χ = 4), or a curve of degree 10 (case χ = 7) or a
double cover of FN branched over a curve D of type (6, 2a), with 2a ≥ −N . In
this section we will exhibit quasi-hyperbolic Horikawa orbifolds of each type.

5.1. Horikawa surfaces with χ = 2k−1. Let us prove the following Proposition:

Proposition 52. For any integer k > 2, there exists a quasi-hyperbolic Horikawa
orbifold X whose minimal resolution has Euler characteristic equals to χ = 2k−1.

Proof. The divisor −2(F + T ) is the canonical divisor on Hirzebruch surface F0 =
P1 × P1. Following Persson’s construction in [32] Lemma 4.5, there exists on F0 a
Q-divisor:

∆ = (1− 1

k
)(F1 + F2) + (1− 1

2
)(C1 + C2 + E0 + E1 + E2 + E3)

such that the orbifold (F0,∆) is uniformizable for all k ≥ 2 and the desingularisa-
tion of the uniformization is a Horikawa surface with Chern invariants χ = 2k− 1
and c21 = 2χ − 6. The curves C1, C2 are (1, 1)-curves meeting with multiplicity 2
into one point. The curves F1, F2 are fibers of the first projection P1×P1 → P1, the
curves Ei are sections of this fibration. The singularities of d∆e are 6A1+4D4+D6.

Let us use the results of subsection 2.2. Two singularities of type A1 are on
branches with multiplicities mi equal to 2 (thus β(p) = 4), 4A1 are on branches
with multiplicities 2 and k (with β(p) = 2k), the branches of the 4D4 have the
same multiplicities : 2, 2, k (giving β(p) = 4k2) and the branches of the D6 point
have multiplicities 2, thus β(p) = 32 by Lemma 12.
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E3

E2

E0

E1

F1 F2

C1

C2

Let us compute the orbifold Chern numbers of the associated orbifold X . We
have:

(K + ∆)2 = (T + (1− 1

k
)F )2 = T 2 + 2(1− 1

k
)TF + (1− 1

k
)2F 2 = 2(1− 2

k
)

because F 2 = 0, FT = 1, T 2 = N = 0 (see section 3.3). For the second Chern
number of X , (2.1) gives:

c2(X ) = 4− 2(1− 1
k )(2− 4)− 1

2(3(2− 3) + (2− 2) + 2(2− 4))
−(2(1− 1

4) + 4(1− 1
2k ) + 4(1− 1

4k2
) + (1− 1

32))

and
c2(X ) =

33

32
− 2

k
+

1

k2
.

Therefore :
c1(X )2 − c2(X ) =

31

32
− 2

k
− 1

k2
,

and the orbifold X is quasi-hyperbolic for k > 2 by Theorem 23. �

Remark 53. Let X → F0 be the Z/2Z × Z/kZ-cover of F0 branched over ∆.
The desingularisation of X is a Horikawa surface. The surface X has only ADE
singularities and has a natural structure of orbifold X ′. The map X ′ → X is an
orbifold covering, in particular c1(X ′)2 = 2kc1(X )2 and c2(X ′) = 2kc2(X ).

5.1.1. Generalization : a family of quasi-hyperbolic Horikawa orbifold with χ =
2k − 1, k ≥ 4. Let us consider the configuration of curves on F0 in figure 5.1.

The two (1, 1)-curves C1, C2 in F0 are in general position. The singularities of
∆ are 7A1 + 5D4. One D4 with multiplicities (2, 2, 2), 4D4 with multiplicities
(2, 2, k), 4A1 with (2, k) and 3A1 with (2, 2).

Let X be the associated orbifold. By subsection 2.2, its Chern numbers are:
c1(X )2 = 2(1− 2

k ) and

c2(X ) = 4− 2(1− 1
k )(2− 4)− 1

2(3(2− 3) + (2− 2) + 2(2− 5))
−(3(1− 1

4) + 4(1− 1
2k ) + 4(1− 1

4k2
) + (1− 1

16))
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E3

E2

E0

E1

F1 F2

C1

C2

Figure 5.1. The divisor ∆ on F0.

thus c2(X ) = 21
16 −

2
k + 2

k2
and

c1(X )2 − c2(X ) =
11

16
− 2

k
− 2

k2
.

It is positive if k ≥ 4 and then the orbifold X is quasi-hyperbolic by Theorem 23.

5.2. Horikawa surfaces with χ = 4k − 1. Let us give another construction of
quasi-hyperbolic Horikawa surfaces:

Proposition 54. For every integer k > 1, there exists a quasi-hyperbolic orbifold
Horikawa surface X with

c21(X ) = 4(1− 1
k )

c2(X ) = 17
12 −

2
k −

1
k2
.

The desingularisation of the Z/2Z × Z/kZ-cover of the subjacent space to X is a
Horikawa surface with χ = 4k − 1.

Proof. The canonical divisor on F2 isKF2 = −2T . Let k > 1 be an integer. Persson
([32] Proposition 4.7) constructed on F2 a divisor :

∆ = (1− 1

k
)(F1 + F2) + (1− 1

2
)(A+B + C)

whose irreducible components Fi, A,B,C have the following configuration : F1

and F2 are fibers, C has type (1,−2), A has type (2, 0), B has type (3, 0).
We have e(A) = e(B) = 0, CA = CB = 0 and FiA = 2, FiB = 3. The common

points to A and B are 2A11 singularities of d∆e.
The singularities on ∆ are 2A1 + 2A11 with multiplicities (2, 2) , 4A1 with multi-
plicities (2, k), and 4D4 with multiplicities (2, 2, k) (see figure 5.2).
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B

A

C

F1 F2

Figure 5.2. The divisor ∆ on F0.

Let us compute the orbifold Chern numbers of X = (F2,∆):

c21(X ) = (KF2 + ∆)2 =

(
(1− 1

k
)(0, 2) + (1− 1

2
)(6,−2) + (−2, 0)

)2

= 4(1− 1

k
),

and
c2(X ) = 4− 2(1− 1

k )(2− 4)− 1
2((0− 4) + (0− 8) + 0)

−(2(1− 1
4) + 2(1− 1

24) + 4(1− 1
2k ) + 4(1− 1

4k2
)).

Therefore : c2(X ) = 31
12 −

2
k + 1

k2
and

c1(X )2 − c2(X ) =
17

12
− 2

k
− 1

k2

is positive for k > 1 and by Theorem 23, X is quasi-hyperbolic. �

5.3. Examples of quasi-hyperbolic orbifold double octic.

5.3.1. First construction. The Horikawa surfaces with χ = 4 are double cover of
the plane ramified over an octic with at most ADE singularities.

Proposition 55. There exists a quasi-hyperbolic orbifold Horikawa surface whose
minimal resolution has χ = 4.

Proof. Let X be the orbifold whose subjacent variety is P2 and with ∆ = 1
2(Q +

L1 + L2 + L3 + L4) where Q is the Steiner quartic (the unique quartic curve with
3 cusps, see [32]), L1, L2, L3 are the tangents to the 3 cusps and L4 is the unique
bitangent of Q (see figure 5.3).

The 2 points where L4 is tangent to Q are A3 singularities of d∆e. The sin-
gularity of d∆e at the cusp Q have type E7. The three lines L1, . . . , L3 meet at
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Q

L2

L4

L1 L3

Figure 5.3. The Steiner quartic, its bitangent and the 3 tangents
to its cusps.

a unique point, giving a D4 singularity. The singularities of the curve d∆e are
6A1 + 2A3 +D4 + 3E7. We have:

c21(X ) = (−3 + (1− 1

2
)8)2 = 1.

Moreover:

c2(X ) = 3− 1

2
(e(Q \ S) +

∑
i

e(Li \ S))−
∑
p∈S

1− 1

β(p)
,

where S is the set of singularities of d∆e. Therefore:

c2(X ) = 3− 1

2
(2− 8 + 3(2− 4) + (2− 5))− 12 +

6

4
+

2

8
+

1

16
+

3

96
=

11

32
,

and c21(X ) − c2(X ) = 21
32 > 0. By Theorem 23, X is quasi-hyperbolic. The

desingularisation of the degree 2 cover ramified over d∆e is a Horikawa surface
with χ = 4. �

5.3.2. Second construction: a pencil of quasi-hyperbolic Horikawa surfaces.

Proposition 56. There exists a pencil of quasi-hyperbolic orbifold Horikawa sur-
faces whose minimal resolutions have χ = 4.

Proof. Let us consider the curve in Proposition 55, and replace the line L3 by a
generic line L′3 going through the intersection point of L1 and L2.

That gives a degree 8 curve ∆ with singularities

9A1 + 2A3 +D4 + 2E7

For which c2(X ) = 3
4 and c21(X ) − c2(X ) > 0. By Theorem 23, X is quasi-

hyperbolic. �
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5.4. A family of quasi-hyperbolic double covers branched over a degree
10 curve. Let us prove:

Proposition 57. There exists a 4 dimensional family of quasi-hyperbolic Horikawa
orbifolds whose minimal resolutions have χ = 7.

Proof. Let C be the degree 10 curve that is the union of the degree 8 curve in
Proposition 55 and two lines in general position. It has singularities:

23A1 + 2A3 + d4 + 3E7.

The orbifold Chern classes of X = (P2, C) are :

c21(X ) = (−3 +
10

2
)2 = 4

and

c2(X ) = 3− 1

2
(2−16+3(2−6)+(2−7)+2(2−9))−29+

23

4
+

2

8
+

1

16
+

3

96
=

83

32
,

thus : c21(X )− c2(X ) > 0 and by Theorem 23, X is quasi-hyperbolic. The moduli
of 2 lines in P2 is 4 dimensional. �
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