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Abstract. These lecture notes are based on a mini-course given
at the fifth KAWA Winter School on March 24-29, 2014 at CIRM,
Marseille. They provide an introduction to hyperbolicity of com-
plex algebraic varieties namely the geometry of entire curves, and
a description of some recent developments.

Résumé. Ces notes sont issues d’un mini-cours donné à la cin-
quième Ecole d’Hiver KAWA du 24 au 29 Mars 2014, au CIRM
à Marseille. Elles donnent une introduction à l’hyperbolicité des
variétés algébriques complexes à savoir la géométrie des courbes
entières, ainsi qu’une description de certains développements récents.
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1. Introduction

Hyperbolicity of algebraic varieties is the study of the geometry of
entire curves. There is a conjectural picture claiming that positivity
properties of the canonical line bundle control the distribution of ra-
tional and holomorphic curves. After Green, Griffiths and Lang, we
expect that entire curves are not Zariski dense in varieties of general
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type. Recent works confirm this picture in the case of generic pro-
jective hypersurfaces of large degree using jet differentials techniques
developed since Bloch by Green and Griffiths, Demailly, Siu...

In these lecture notes, we will introduce in section 2 the problem to
characterize which projective varieties are Kobayashi hyperbolic. Ac-
cording to Brody’s criterion, a compact complex space X is Kobayashi
hyperbolic if and only if there is no non-constant holomorphic curve
C → X from the complex plane. We explain how to develop a tran-
scendental intersection theory between holomorphic curves and line
bundles.

In section 3, we present the fundamental tool of this intersection the-
ory: the Tautological inequality of McQuillan. As applications of this
inequality, we explain how to recover many classical results: hyperbol-
icity of compact Riemann surfaces of genus g ≥ 2, of varieties with
ample cotangent bundle... Finally, we introduce the Green-Griffiths-
Lang conjecture and prove several results confirming it in different cases
for surfaces.

Next in section 4, we discuss jets spaces, one of the main tool to
attack the above conjecture. We explain in detail the strategy, and why
it may fail in some cases like quotient of bounded symmetric domains.

Finally, in section 5, we describe alternative strategies for these ex-
amples.

2. Entire curves and diverging sequences of discs

Let X be a compact complex manifold equipped with a hermitian
metric. If there exists an entire curve i.e a non-constant holomorphic
map f : C→ X such that f ′(0) 6= 0, then one can construct a sequence
of discs diverging in the following sense. Take fn : ∆→ X where ∆ is
the unit disc and fn(z) = f(nz), then ||f ′n(0)|| → ∞.

Conversely, from such a sequence of discs, one can construct an entire
curve.

Theorem 2.1 (Brody’s lemma). Let fn : ∆ → X, ||f ′n(0)|| → ∞
be a diverging sequence of discs. Then there exists a sequence (rn)
of reparametrizations of C such that, after passing possibly to a sub-
sequence, fn ◦ rn converges locally uniformly towards a non-constant
entire curve f : C → X such that ||f ′|| ≤ 1. Such a curve is called a
Brody curve.

Proof. Without loss of generality, one can suppose that fn extends to
∆. Consider

φn := ||f ′n||(1− |z|),
and an the point where φn(an) := Mn is maximum.

Then Mn ≥ φn(0) = ||f ′n(0)|| and therefore this sequence goes to
infinity. Now, consider the disc D(an, εn) where 2εn := 1 − |an|. On
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this disc, φn(z) ≤ φn(an) = Mn therefore εn||f ′n(z)|| ≤ 2εn||f ′n(an)||
and ||f ′n(z)|| ≤ 2||f ′n(an)||.

One can now define rn(z) = an + εn
Mn
z and gn = fn ◦ rn. Then on

the disc D(0,Mn), ||g′n(z)|| = εn
Mn
||f ′n(an + εn

Mn
z|| ≤ 2εn

Mn
||f ′n(an)|| = 1.

The sequence (gn) is equicontinuous and by Ascoli (possibly taking
a subsequence) it converges locally uniformly to a holomorphic map
f : C → X. Finally, remark that ||g′n(0)|| = εn

Mn
||f ′n(an)|| = 1

2
||, and

therefore f is not constant. �

An immediate consequence, is the following characterization of the
Kobayashi hyperbolicity for compact complex manifolds. Recall that
the Kobayashi pseudo-metric is defined as follows

kX(p, v) = inf{1

r
|∃f : ∆→ X, f(0) = p, f ′(0) = rv}.

X is said to be Kobayashi hyperbolic if its Kobayashi pseudo-metric
is non-degenerate. A consequence of Brody’s lemma is the following.

Corollary 2.2. Let X be a compact complex manifold. X is Kobayashi
hyperbolic if and only if X does not contain Brody curves.

Indeed, “kX degenerates” means exactly that there is a sequence of
discs diverging in the above sense.

A difficult problem is the localization of the entire curve produced by
this process. Take a diverging sequence of discs fn : ∆→ X, fn(0) = p,
||f ′n(0)|| → ∞. Then there is a Brody curve f : C→ X but f(C) could
be far from p as shows the following example of Winkelmann [Win07].

Example 2.3. There is a projective manifold X obtained as a blow-up
of an abelian threefold Y such that every Brody curve g : C→ X lies
in the exceptional divisor E ⊂ X. However entire curves can be dense
in X.

The notion of diverging sequence of discs leads to the concept of
Ahlfors currents, but one needs to change the definition of diverging
sequence. Recall that a current T on X is a differential form on X
whose coefficients are distributions. The pairing < T, ω >→

∫
X
T ∧ ω

identifies the vector space of currents of type (p, q) on X with the
topological dual of the vector space of smooth (n−p, n−q)−forms with
compact support on X. Any smooth subvariety Y of X of codimension
m defines a current [Y ] of type (m,m) by the formula< [Y ], ω >=

∫
Y
ω.

Let X be a complex manifold admitting an entire curve f : C→ X.
Let A(r) = area(f(D(0, r)) and L(r) = length(f(∂D(0, r)). Then we
have

Lemma 2.4 (Ahlfors lemma). There exists a sequence rn → ∞ such

that L(rn)
A(rn)

→ 0.
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Proof. Let g|dz| be the pull-back of some metric ω on X by f . Then

L(r) =
∫ 2π

0
g(reiθ)rdθ and A(r) =

∫ frm−epi
0

∫ r
0
g2(teiθ)tdtdθ. So A′(r) =∫ 2π

0
g2(teiθ)rdθ. Now by Cauchy-Schwartz, one has L(r)2 ≤ A′(r)2πr

and therefore (L
A

)2 1
2πr
≤ A′

A2 .
Integrating one obtains∫ +∞

1

(
L

A

)2
dr

2πr
≤ 1

A(1)
≤ +∞,

which certainly implies that lim infr→+∞
L
A

= 0. �

Now, suppose that we are given a sequence of discs ∆n in X di-

verging in the following sense: L(∆n)
A(∆n)

→ 0. Then (possibly taking a

subsequence) one obtains a closed positive current

T = lim
n→+∞

[∆n]

A(∆n)
,

called an Ahlfors current.
These current play a crucial role in the proof by McQuillan of the

Green-Griffiths conjecture for surfaces of general type with positive
second Segre number. One of their interest, is that we can use them to
present Nevanlinna theory as an intersection theory of these currents.

To introduce the classical quantities of this theory, one needs to
slightly modify the above definition and adapt the proof of Ahlfors
lemma. Let f : C→ X be an entire curve. Then one defines

Tf,r(ω) =

∫ r

0

A(t)
dt

t
:=

∫ r

0

dt

t

∫
D(0,t)

f ∗ω,

Sf,r(ω) :=

∫ r

0

L(t)
dt

t
.

Then one gets the corresponding Ahlfors lemma

Lemma 2.5. There exists a sequence rn →∞ such that
Sf,rn (ω):

Tf,rn (ω)
→ 0.

One also obtains in the same way Ahlfors currents. Let η ∈ A2(X) be

a 2-form. Let Φr(η) :=
Tf,r(η)

Tf,r(ω)
. This defines a family of positive currents

of bounded mass from which one can extract a closed postive current
Φ := limrn Φrn . The closedness follows from compactness of X and
Stokes: if β ∈ A1(X) is a one-form then |Tf,r(dβ)| ≤

∫ r
0
dt
t

∫
∂D(t)

|f ∗β| ≤
CSf,rω.

A nice result of Duval [Duv08] gives a version of Brody’s lemma in
this setting.

Theorem 2.6 (Duval). Let X be a compact complex manifold. If there

is a diverging sequence of discs in the sense that L(∆n)
A(∆n)

→ 0. Then there

is a non-constant entire curve f : C→ X.
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A consequence is a characterization of Kobayashi hyperbolicity in
terms of isoperimetric inequalities.

Corollary 2.7. Let X be a compact complex manifold. Then holo-
morphic discs in X satisfy an isoperimetric linear inequality, i.e. there
exists a constant C such that area(∆) ≤ C · length(∂∆) if and only if
X is Kobayashi hyperbolic.

The idea now is to use Ahlfors currents to obtain a transcendental
intersection theory between holomorphic curves C → X and divisors
or line bundles on X.

Let f : C→ X be an entire curve and [Φ] ∈ H1,1(X,R) the class of
an Ahlfors current associated to it. The classical first main theorem of
Nevanlinna theory can be interpreted as follows.

Proposition 2.8. Let Z ⊂ X be an algebraic hypersurface. If f(C) 6⊂
Z then [Φ].[Z] ≥ 0.

Proof. Let Z = {s = 0}, and h a hermitian metric on the line bundle
O(Z). By Poincaré-Lelong formula

ddc ln ||s||2 = Z −Θh.

Therefore

Tf,r(Θ) = −
∫ r

0

dt

t

∫
D(t)

ddc ln ||s◦f ||2+
∑

z∈D(r),f(z)∈Z

ordz(s◦f) ln

(
r

|z|

)
.

Using Jensen’s formula, one obtains

Tf,r(Θ) = − 1

2π

∫ 2π

0

ln ||s(f(reiθ))||dθ + log ||s(f(0))||+Nf (Z, r),

which is nothing else than the First Main Theorem of Nevanlinna the-
ory

Tf,r(Θ) = mf (Z, r) +Nf (Z, r) +O(1),

relating respectively the characteristic function, the proximity function
and the counting function. Rescaling, one may suppose that

||s|| ≤ 1,

which implies [Φ].[Z] ≥ 0.
�

3. The Tautological inequality and some applications

3.1. The inequality. Now we describe, the crucial tool called “Tau-
tological inequality” by McQuillan [McQ98]. The picture to keep in
mind which summarizes the setting is the following.
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P(TX)

π

��
C

f //

f ′
<<

X

Let us denote L = OP(TX)(−1), Φ and Φ′ the Ahlfors currents nor-
malized so that π∗Φ

′ = Φ.

Theorem 3.1 (McQuillan).

[Φ′].L ≥ 0.

This theorem can be seen as a generalization of the following easy
remark.

Remark 3.2. Let C ⊂ X be a smooth algebraic curve with lifting C ′ ⊂
P(TX). Then L|C′ = π∗TC and L.C ′ = χ(C) ≥ 0 if and only if C is
rational or elliptic i.e. if there exists a non-constant map f : C→ C.

Before giving the proof of the Tautological inequality, we need the
following easy lemma whose proof is left to the reader:

Lemma 3.3. (1) Let g be a continuously differentiable, increasing
function on [0,+∞[ with g(r) → ∞. Then for δ > 0, we have
g′(r) ≤ g(r)1+δ for all r > 0 outside a set Eδ of finite linear
measure.

(2) Let g and h be continuous functions on [0,+∞[ with g > 0.
For δ > 0, suppose h(r) ≤ δg(r) for all r > 0 outside a set
Eδ of finite linear measure. Then h(r) = o(g(r))|| as r → ∞,
where || means that the estimate holds for r > 0 outside some
exceptional set of finite linear measure.

Let us now prove the Tautological inequality.

Proof. df
dz

defines a section s ∈ H0(C, (f ′)∗L). By Poincaré-Lelong
formula:

ddc ln ||s||2 = (s = 0)− (f ′)∗Θ.

Integrating and using Jensen’s formula as well as the concavity of log,
one obtains

−Tf ′,r(Θ) ≤
∫ r

0

dt

t

∫
D(t)

ddc ln ||df
dz
||2 ≤ C+

1

2
ln

(∫ 2π

0

||df
dz

(reiθ)||2 dθ
2π

)
.

Now, one can write∫ 2π

0

||df
dz

(reiθ||2 dθ
2π

=
1

r

d

dr

(
r
d

dr
Tf,r(ω)

)
.

From the above lemma, one has

−Tf ′,r(Θ) ≤ C +
1

2
ln

(
1

r

d

dr
rTf,r(ω)1+δ

)
||
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≤ C +
1

2
ln
(
rδTf,r(ω)(1+δ)2

)
||

≤ (1 + δ)2

2
lnTf,r(ω) +

δ

2
ln(r) +O(1) ≤ o(Tf,r(ω))||.

One can choose the metric on P(TX) of the form ω̃ = π∗ω− εΘ, with
ε small enough. Then the last inequality implies that [Φ′].L ≥ 0.

�

3.2. Applications. To illustrate the importance of the previous in-
equality, let us show that one can recover many classical results.

3.2.1. Riemann surfaces. Let C be a compact Riemann surface of genus
g ≥ 2. We want to show that C is Kobayashi hyperbolic. Suppose
that there is an entire curve f : C → C. Then P(TC) ' C and
O(−1) ' TC = −KC < 0. Therefore [Φ].O(−1) < 0 contradicting the
tautological inequality [Φ].O(−1) ≥ 0.

3.2.2. Symmetric differentials. Let us see why the presence of many
symmetric differentials on a projective manifold imposes strong con-
ditions on entire curves. Let X be a projective manifold, A → X an
ample line bundle and f : C→ X an entire curve. Suppose we have a
section ω ∈ H0(X,SmT ∗X ⊗A−1). Let us prove that ω(f, f ′) ≡ 0 which
means that any entire curve has to satisfy the first-order differential
equation defined by ω.

Recall the isomorphism π∗O(m) ' SmT ∗X . Therefore ω can be seen as
a section of mO(1)−π∗A and its zero locus defines a divisor Z ⊂ P(TX).

Z = (ω = 0) ⊂ P(TX)

π

��
C

f //

f[1]
66

X

We want to prove that f[1](C) ⊂ Z. Suppose it is not the case, then
by proposition 2.8, [Φ1].[Z] ≥ 0, i.e. [Φ1].(mO(1) − π∗A) ≥ 0. But
from the tautological inequality 3.1, [Φ1].O(1) ≤ 0 and −[Φ].A < 0,
which gives a contradiction. Therefore f[1](C) ⊂ Z i.e. ω(f, f ′) ≡ 0.

We have just proved that the lifting f[1] of any entire curve has to
lie in the base locus of (mO(1)− π∗A) for any ample line bundle A.

Proposition 3.4. Let X be a projective manifold, A → X an ample
line bundle and f : C→ X an entire curve. Suppose there is a section
ω ∈ H0(X,SmT ∗X ⊗ A−1). Then ω(f, f ′) ≡ 0

Corollary 3.5. Let X be a projective manifold, A→ X an ample line
bundle and f : C→ X an entire curve. Then

f[1](C) ⊂ Bs(O(m)− π∗A).

This immediately proves that varieties with ample cotangent bundle
are Kobayashi hyperbolic.
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Corollary 3.6. Let X be a projective manifold. If T ∗X is ample then
X is hyperbolic.

Proof. If T ∗X is ample then for m large enough O(m) − π∗A is ample.
Therefore Bs(O(m)− π∗A) = ∅. �

3.2.3. The Green-Griffiths-Lang conjecture. One of the main open prob-
lem concerning the geometry of entire curves is the following

Conjecture 3.7 (Green-Griffiths-Lang). Let X be a projective variety
of general type. Then for every entire curve f : C → X, the Zariski
closure of the image f(C) is a proper subset of X.

Even for surfaces this conjecture is still open in general. It is known
to be true under conditions on Chern classes as in the following result
of Lu and Yau [LY90].

Theorem 3.8. Let X be a smooth algebraic surface of general type
such that c2

1 > 2c2. Then every entire curve f : C→ X is algebraically
degenerate.

Proof. Under the hypothesis c2
1 > 2c2, one obtains that T ∗X is big.

Indeed, by Riemann-Roch

χ(X,SmT ∗X) =
m3

6
(c2

1 − c2) +O(m2).

Therefore h0(X,SmT ∗X) + h2(X,SmT ∗X) > cm3. Now, by Serre du-
ality and the isomorphism KX ⊗ TX = T ∗X , we have h2(X,SmT ∗X) =

h0(X,K
(1−m)
X ⊗SmT ∗X) ≤ h0(X,SmT ∗X). The last inequality comes from

the fact that X is of general type and in particular, Km
X is effectif for

large m. Finally, we obtain h0(X,SmT ∗X) > c
2
m3 and T ∗X is big.

So we are in the situation of proposition 3.4: we have a section ω ∈
H0(X,SmT ∗X ⊗ A−1), where A is an ample line bundle. If f : C → X
is an entire curve, ω(f, f ′) ≡ 0.

Z = (ω = 0) ⊂ P(TX)

π

��
C

f //

f[1]
66

X

We can suppose that Z is an irreducible horizontal surface.
Let us prove that O(1)|Z is big. In the Picard group, Z = O(m) +

π∗L. Since it is effective, we have an injection L∗ ↪→ SmT ∗X . From the
semistability of T ∗X , we have c1(L).c1(X) ≤ m

2
c2

1(X).
Moreover c2

1(O(1)|Z) = c2
1(O(1)).(O(m)+π∗L) = m(c2

1−c2)−c1.L ≥
m
2

(c2
1 − 2c2) > 0.

Therefore either O(1)|Z or O(−1)|Z is big. The last possibility is
excluded. Indeed, (O(−1)|Z).(π∗(KX)|Z) = c1c1(L)−mc2

1 ≤ −m
2
c2

1 < 0.
As we may suppose that X is minimal i.e. KX nef, its intersection with
a big line bundle cannot be negative.
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We know that the lifting f[1] : C → Z gives an entire curve in
Z. Let s be a global section of (O(m) − A)|Z . Then f[1](C) ⊂ C =
(s = 0) following the same proof as proposition 3.4. Indeed, let [Φ] be
the Ahlfors current associated to f[1]. Then [Φ].[O(m)|Z ] ≤ 0 by the
Tautological inequality, therefore [Φ].(O(m)−A)|Z < 0. If f[1](C) 6⊂ C
then [Φ].C = [Φ].(O(m)− A)|Z ≥ 0 which gives a contradiction.

Finally f(C) ⊂ π(C) and f is algebraically degenerate. �

In fact there is a strong version of the above conjecture.

Conjecture 3.9 (Strong Green-Griffiths-Lang conjecture). Let X be
a projective variety of general type, then there exists a proper Zariski
closed subset Y ( X such that for all non constant holomorphic curves
f : C→ X, f(C) ⊂ Y.

In the case of surfaces, one may find this locus Y under conditions
on the Chern classes following a result of Bogomolov [Bog77].

Theorem 3.10. Let X be a projective surface of general type such that
c2

1 > c2 then there are only finitely many rational or elliptic curves in
X.

Proof. Let f : C → X be a rational or elliptic curve. Following the
beginning of the proof of Theorem 3.8, we are reduced to the same
picture.

Z = (ω = 0) ⊂ P(TX)

π

��
C

f //

f[1]
66

X

If π(Z) 6= X we are done, so let us suppose that π(Z) = X. Then
Z is equipped with a tautological holomorphic foliation by curves: if
z ∈ Z is a generic point, a neighbourhood U of z induces a foliation on
a neighbourhood V of x = π(z). Indeed, a point in U ⊂ P(TX) is of
the form (w, [t]) where w is a point in X and t a tangent vector at this
point. This foliation lifts through the isomorphism U → V induced
by π. Leaves are just the derivatives of leaves on V . Tautologically,
f[1] : C → Z is a leaf. So the problem is reduced to the following one:
let (Z,F) be a foliated surface of general type, then there are only
finitely many algebraic leaves which are rational or elliptic. Therefore
one can conclude using a theorem of Jouanolou [Jou78]: either Z has
finitely many algebraic leaves or it is a fibration. But in our case, Z is
of general type and cannot be ruled or elliptic. �

An immediate corollary is

Corollary 3.11. The strong Green-Griffiths-Lang conjecture is true
for projective surfaces of general type such that c2

1 > 2c2.



10 ERWAN ROUSSEAU

Proof. Thanks to Theorem 3.8, any entire curve f : C → X is alge-
braically degenerate so its Zariski closure is a rational or elliptic curve.
Therefore from Theorem 3.10, it lies in the finite set of elliptic and
rational curves. �

One of the major recent breakthrough in this subject, is the following
result of McQuillan [McQ98] which relaxes the hypothesis on Chern
classes.

Theorem 3.12. The strong Green-Griffiths-Lang conjecture is true for
projective surfaces of general type such that c2

1 > c2.

As we have explained in the proof of Theorem 3.10, this result can be
seen to be a consequence of the following one in the setting of foliated
surfaces. Recall that a foliation F on a smooth variety X is given by
a saturated subsheaf TF ⊂ TX stable under Lie bracket.

Theorem 3.13 (McQuillan [McQ98]). Let X be a smooth projective
surface of general type with a (possibly singular) foliation F . Let f :
C → (X,F) be an entire curve tangent to F . Then f is algebraically
degenerate i.e. its image is not Zariski dense.

Let us give the proof only in the case where F is a smooth foliation.
The foliation is given by a subbundle TF ⊂ TX which fits into an exact
sequence

(1) 0→ TF → TX → NF → 0,

where NF is the normal bundle of the foliation. One also introduces
the canonical bundle of the foliation KF := (detTF)∗.

For the proof, we need the following proposition about the normal
bundle of the foliation.

Proposition 3.14. There exists a smooth closed 2-form α on X such
that [α] = c1(N ∗F) and α vanishes on leaves of the foliation.

Proof. Let (Ui) be a covering of X. The foliation is defined by forms
ωi ∈ H0(Ui,Ω

1
X) satisfying relations ωi = gijωj with gij ∈ H0(Ui ∩

Uj,O∗X). (gij) defines a cocycle representing N ∗F . From Frobenius inte-
grability, one has dωi = βi ∧ ωi.

Therefore βi ∧ ωi = dωi = dgij ∧ ωj + gijdωj =
(
dgij
gij

+ βj

)
∧ ωi.

So
(
dgij
gij

+ βj − βi
)
∧ ωi = 0, and

dgij
gij

+ βj − βi ∈ H0(Ui ∩ Uj,N ∗F).

Let ηi be a C∞ section of N ∗F over Ui such that
dgij
gij

+βj−βi = ηi−ηj
over Ui ∩ Uj.

Then α = d(ηi+βi) defines a smooth closed form over X representing
c1(N ∗F).
ηi vanishes on leaves of the foliation. dβi is a holomorphic 2-form.

Finally, α vanishes on leaves of the foliation. �
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Let us now give the proof of Theorem 3.13 for smooth foliations.

Proof. Let us suppose that f is Zariski dense and we will derive a
contradiction. The foliation F defines a surface X ′ ⊂ P(TX) such that
O(−1)|X′ = π∗TF |X′ .

X ′ ⊂ P(TX)

π

��
C

f //

f[1]
99

X

Now we can apply the Tautological inequality 3.1 upstairs i.e. for
f[1] : C→ X ′.

0 ≤ [Φ′].O(−1)|X′ = [Φ].TF = −[Φ].KF .

From the exact sequence (1), one obtains the relation

KX = N ∗F ⊗KF .
From proposition 3.14, one has [Φ].N ∗F = 0. Therefore,

[Φ].KX = [Φ].KF + [Φ].N ∗F ≤ 0.

But KX is big, so it is the sum of an ample and an effective line
bundle, KX = A+ E. This gives a contradiction:

[Φ].KX = [Φ].A+ [Φ].E ≥ 0

by proposition 2.8.

In the general (singular) case, the sheme of the proof is the same: one
can generalize both inequalities [Φ].KF ≤ 0 and [Φ].N ∗F ≤ 0. Neverthe-
less, the presence of singularities make the proof much more difficult.
First, one has to “resolve” the singularities in the sense of Seidenberg,
and then make a local analysis at singular points. We refer to [McQ98]
and [Bru99] for details. �

4. Jets spaces

4.1. Definitions. Following the setting presented by Demailly in
[Dem97], we introduce the important tool of jets spaces. We put our-
selves in the category of directed manifolds i.e. pairs (X, V ) of complex
manifolds and V ⊂ TX holomorphic subbundles.

Let X̃ = P(V ) the projectivized bundle of lines of V . Then we
define π : X̃ → X and Ṽ := π−1

∗ OX̃(−1). In other words Ṽ ⊂ TX̃ is
the holomorphic subbundle with fibers

Ṽ(x,[v]) =
{
ξ ∈ TX̃ (x,[v])|π∗ξ ∈ Cv

}
.

It fits into the exact sequence

0→ TX̃/X → Ṽ → OX̃(−1)→ 0,
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and rank Ṽ = rankV = r.
Given a holomorphic map f : ∆R → (X, V ), i.e. a holomorphic map

from the disc of radius R to X and tangent to V , there is a natural
lifting f̃ : ∆R → (X̃, Ṽ ) given by (f(t), [f ′(t)]).

Inductively, we define the projectivized k-jet bundle: X0 = X, V0 =

V , Xk = X̃k−1 and Vk = Ṽk−1. There are natural “vertical divisors”
Dk := P(TXk−1/Xk−2

).

4.2. The Green-Griffiths locus. The picture to keep in mind for the
study of entire curves in complex manifolds is the following

Xk

��
X1

��
C

f //

f[k]

DD

X0 := X

The idea is that the study of entire curves f : C→ X will go through
the study of lifted curves f[k] : C→ Xk in jets spaces.

Let us see some applications of the Tautological inequality 3.1 in this
setting. The first obvious one is the following.

Proposition 4.1. Let X be a smooth projective variety and f : C→ X
an entire curve. Take the k-jet lifting f[k] : C→ Xk and [Φk] its Ahlfors
current. Then

[Φk].OXk(1) ≤ 0.

Corollary 4.2. Let V ⊂ Xk be the Zariski closure of f[k](C). Then
OXk(1)|V is not big.

Proof. From the previous proposition 4.1, we have [Φk].OXk(1) ≤ 0.
Now if OXk(1)|V is big, then [Φk].OXk(1) > 0, which gives a contradic-
tion. �

This naturally leads to the following definition of the Green-Griffiths
locus. Let A be an ample line bundle on X and πk : Xk → X. Let
Bk,l ⊂ Xk be the base locus of OXk(l)⊗π∗kA−1. We set Bk :=

⋂
l∈NBk,l.

The we define the Green-Griffiths locus as

GG :=
⋂
k∈N

πk(Bk).

Remark 4.3. (1) In fact, one should remove all vertical divisors Dk

in the definition of GG, but we omit this point for simplicity.
(2) The definition of the Green-Griffiths locus GG does not depend

on the chosen ample line bundle A.

As a consequence of what we have already seen, this locus contains
all entire curves.
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Proposition 4.4. Let X be a smooth projective variety and f : C→ X
an entire curve. Then f[k](C) ⊂ Bk for all k. In particular, f(C) ⊂
GG.

Proof. If there exists k such that f[k](C) 6⊂ Bk, then there exists a
divisor D, zero locus of a section of OXk(l)⊗π∗kA−1 such that f[k](C) 6⊂
D.

From the Tautological inequality 4.1, [Φk].OXk(l) ≤ 0. On the other
hand, [Φk].OXk(l) = [Φk].(D + π∗kA) > 0. �

These results lead to a natural strategy to attack the proof of the
Green-Griffiths-Lang conjecture: prove that the Green-Griffiths locus
is a proper subvariety.

This was successfully proved in the case of hypersurfaces of high de-
gree in the projective space by Diverio, Merker and Rousseau [DMR10].

Theorem 4.5. Let X ⊂ Pn+1 be a generic hypersurface. If degX ≥
2n

5
then GG 6= X. In particular, the strong Green-Griffiths-Lang con-

jecture is true for X.

Remark 4.6. After these notes were written, some important improve-
ments have been obtained on the hyperbolicity of generic complete in-
tersections of large degree in the projective space. Brotbek, Darondeau
[BD15] and independently Xie [Xie15] have proved the ampleness of the
cotangent bundle of generic complete intersections of high enough codi-
mension and high enough degree. For hypersurfaces, Brotbek [Bro16]
has obtained the hyperbolicity of generic hypersurfaces of high enough
degree which has been made effective by Deng [Den16].

Coming back to the general Green-Griffiths-Lang conjecture, Green
and Griffiths proved [GG80] that for projective surfaces of general type
there exists k sufficiently large such that Bk 6= Xk.

The generalization to higher dimensions is a recent result of Demailly
[Dem11].

Theorem 4.7. If X is a projective variety of general type, then OXk(1)
is big on Xk for some k sufficiently large. In particular Bk 6= Xk. In
other words, all non-constant holomorphic curves f : C → X into X
satisfy a non-trivial differential equation P (f, f ′, . . . , f (k)) ≡ 0.

To obtain the Green-Griffths-Lang conjecture from this statement
would require to eliminate the derivatives f ′, . . . , f (k) in the equation
and show that these curves satisfy non-trivial algebraic equations.

This has motivated the following question of Lang [Lan86].

Question 4.8. Is GG 6= X for varieties of general type ?

It turns out that foliations are very useful to answer this question as
recently shown in [DR15] and illustrated by the following result.
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Theorem 4.9. Let (X,F) be a projective manifold foliated by curves.
If KF is not big then GG = X.

Proof. Let A→ X be an ample line bundle and suppose for simplicity
that F is a smooth foliation corresponding to an exact sequence

0→ TF → TX → NF → 0.

We consider the directed manifolds (X,TF) ⊂ (X,TX). The in-
ductive procedure described above starts with Z0 = X = X0, Z1 =
P(TF) ⊂ X1 = P(TX) and gives k-jets spaces Zk ⊂ Xk. At each step
Zk is obtained projectivizing a rank 1 vector bundle, so all Zk are in
fact isomorphic to X: Zk ' X.

Now, we have the following isomorphisms

OXk(−1)|Zk ' OZk(−1) ' π∗0,kTF .

Therefore

OXk(m)⊗ π∗0,kA−1
|Zk
' π∗0,kKmF ⊗ A−1.

The last bundle has no non-zero holomorphic sections by hypothesis.
So, Zk ⊂ Bk for all k which proves that GG = X.

In the general case where F is not necessarily smooth, one argues
as above on the dense open subset U where F|U is smooth, which
shows that U ⊂ GG. Since GG is a closed set, one obtains again that
GG = X. �

4.3. Examples. Let us see now several examples where we can prove
that the Green-Griffiths locus covers the whole variety.

4.3.1. Products. Let X = C1 × C2 be a product of two compact Rie-
mann surfaces of genus g(Ci) ≥ 2. Then X is hyperbolic, of gen-
eral type. Nevertheless, taking one of the tautological foliation by
curves coming from one factor and applying Theorem 4.9, one sees
that GG = X. This means that hyperbolicity of this product cannot
be proved by the previously described strategy using jets spaces.

4.3.2. Product-quotients. Let X = C1×C2/G be a quotient by a finite
group. The minimal resolution S → X is a called a product-quotient
surface following [BCGP12]. One easily gets that GG = X but if the
action is not free, Green-Griffiths-Lang conjecture does not seem to be
known in this case.

4.3.3. Hilbert modular surfaces. Let X = ∆×∆/Γ be a smooth com-
pact irreducible surface uniformized by the bi-disc, Γ ⊂ SL2(R) ×
SL2(R). Then GG = X. Indeed, X has two natural foliations, F , G
such that kodKF = kodKG = −∞. This can be seen as a consequence
of the following lemma.
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Lemma 4.10. Let η = f(z, w)(dz)m be a symmetric differential of
degree m on ∆z ×∆w. Suppose that η is Γ-invariant. Then η vanishes
identically.

Proof. (z, w) → |f(z, w)|(1 − |z|2)m is a Γ-invariant smooth function
thus descends on the compact quotient X = ∆ × ∆/Γ. It attains its
maximum at p ∈ X. Let {(zj, wj)} ⊂ ∆ × ∆ be the preimage of p.
For each j, the map zj ×∆w : w → f(zj, w) attains a maximum at the

interior point wj. It is constant. Therefore ∂f
∂w

(zj, w) = 0. Γ has dense

image in SL2(R) so {zj} is dense in ∆ and ∂f
∂w
≡ 0. η only depens on z:

it is a symmetric differential of degree m on ∆z, invariant by a dense
subgroup of SL2(R). It has to vanish identically: η ≡ 0. �

Remark 4.11. If S is a smooth projective surface of general type and F
a (possibly singular, with at most reduced singularities) holomorphic
foliation by curves whose canonical bundle KF is not big then the bi-
rational classification of foliations obtained by Brunella and McQuillan
(see [Bru97], [McQ08] and [Bru04]) tells us that F is necessarily of the
following two types:

• A Hilbert modular foliation, and thus S is a Hilbert modular
surface, if κ(KF) = −∞.
• An isotrivial fibration of genus ≥ 2, if κ(KF) = 1.

Remark 4.12. One may remark that such surfaces X = ∆×∆/Γ satisfy
c2

1 = 2c2 and appear as a limit case of Theorem 3.8 where the technique
of jets spaces was enough to conclude under the hypothesis c2

1 > 2c2.

Remark 4.13. Generalizations to non-compact quotients ∆n/Γ of finite
volume are discussed in [DR15].

4.3.4. Siegel modular varieties. This example will differ from the pre-
ceding ones since we will not have natural foliations to use. The idea
will be to use the existence of totally geodesic polydiscs.

Theorem 4.14. Let X = Hg/Γ, where Hg is the Siegel upper-half space
of rank g and Γ ⊂ Sp(2g,R) commensurable with Sp(2g,Z), n ≥ 2, then
the Green-Griffiths locus GG(X) = X.

Proof. There is a totally geodesic polydisk ∆g ↪→ Hg,

z = (z1, . . . , zg)→ z∗ = diag(z1, . . . , zg)

of dimension g consisting of diagonal matrices

{Z = (zij)/zij = 0 for i 6= j} ⊂ Hg.

This corresponds to an embedding SL(2,R)g ↪→ Sp(2g,R):

M = (M1, . . . ,Mg)→M∗ =

(
a∗ b∗

c∗ d∗

)
,
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whereMi =

(
ai bi
ci di

)
, and a∗ = diag(a1, . . . , ag) is the corresponding

diagonal matrix.
More generally, taking A ∈ GL(g,R) one can consider the map ∆g ↪→

Hg, given by
z = (z1, . . . , zg)→ Atz∗A.

In order to take quotients, one defines

ΓA := {M ∈ Sl(2,R)n/

(
At 0
0 A−1

)
M∗

(
At 0
0 A−1

)−1

∈ Γ}.

Indeed we have a modular embedding

φA : ∆g/ΓA → X.

Considering a totally real number field K/Q of degree g with the em-

bedding K ↪→ Rn, ω → (ω(1), . . . , ω(g)), the matrices A = (ω
(j)
i ) where

ω1, . . . , ωn is a basis of K have the property that ΓA is commensurable
with the Hilbert modular group of K [Fre79].

These matrices A are obviously dense in GL(g,R).
As explained in the preceding examples 4.3.3 and 4.13, we have that

φA(∆g/ΓA) ⊂ GG(X). By density, we finally get

GG(X) = X.

�

4.4. All or nothing principle. All preceding examples are related
to quotients of bounded symmetric domains. In fact, the following
Theorem [DR15] tells us that in this case we have a dichotomy for the
Green-Griffiths locus.

Theorem 4.15. Let X be a projective manifold uniformized by a bounded
symmetric domain Ω. Then, either Ω ' Bn, T ∗X is ample and thus
GG(X) = ∅, or GG(X) = X.

Let us give the ideas of the proof of this theorem and refer to [DR15]
for details.

As we have seen in the proof of Theorem 3.13 directions given by
leaves of the foliation were used to define a subvariety of the projec-
tivized tangent bundle. In the case where we have no foliations to
start with, Mok has introduced in [Mok89] a nice tool: the character-
istic bundle S ⊂ P(TX). It is defined by taking the directions given by
characteristic vectors i.e. minimizing the holomorphic sectional curva-
ture.
S is equipped with a smooth tautological foliation F whose leaves

are lifting of minimal discs i.e. tangent to characteristic vectors. We
have KF = O(1)|S.

The crucial property of this foliation reminiscent of the Hilbert mod-
ular case is the following one.
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Proposition 4.16.

kod(S,KF) = −∞.

Proof. We proceed by contradiction and suppose that there exists an
integer m > 0 and a non zero section σ ∈ H0

(
S,OS(m)

)
. By a slight

abuse of notation, we still call h the restriction of the natural hermitian
metric h on OP (TX)(−1) to OS(−1). Then, g := (hm+σ⊗σ)1/m defines
a hermitian metric on OS(−1) which still has semi–negative curvature,
since σ is holomorphic.

In this situation, g = C · h for some positive constant C as ex-
plained in [DR15] following ideas of [Mok89]. It implies that ||σ||h−m
is constant. If it were a non zero constant this would imply that σ
never vanishes and thus OS(m) is holomorphically trivial. But this is
impossible since the following inequality holds:∫

S
c1

(
OP (TX)(1)

)
∧ νdimS−1 > 0,

where ν is the Kähler form on P (TX) given by c1

(
OP (TX)(1), h−1

)
+π∗ω.

But then ||σ||h−m ≡ 0 and σ is identically zero, too. �

Then Theorem 5.3 is an easy consequence of Theorem 4.9.

4.5. Strong general type. In order to overcome the difficulty de-
scribed in the preceding section when using the jets spaces techniques,
Demaiily has very recently introduced in [Dem14] a condition called
“strong general type” property related to a certain jet-semistability
property of the tangent bundle.

Let us describe briefly these ideas using the same notations as above
for jets spaces and refer to [Dem14] for details. If (X, V ) is a directed
manifold, we say that it is of general type if KV is a big line bundle.
If Z ( Xk is an irreducible subvariety, there is a natural structure
W ⊂ TZ induced by Vk. The linear subspace W ⊂ TZ ⊂ TXk |Z is
defined to be the closure W := TZ′ ∩ Vk, taken on a suitable Zariski
open set Z ′ ⊂ Zreg where the intersection TZ′ ∩ Vk has constant rank
and is a subbundle of TZ′ .

We say that (Z,W ) is of general type modulo Xk → X if either
W = 0 or rankW ≥ 1 and there exists p ∈ Q+ such that KW⊗OXk(p)|Z
is big over Z.

Definition 4.17. Let (X, V ) be a directed pair where X is projective.
We say that (X, V ) is strongly of general type if it is of general type and
for every irreducible Z ( Xk, Z 6⊂ Dk := P(TXk−1/Xk−2

) that projects
onto X, the induced directed structure (Z,W ) ⊂ (Xk, Vk) is of general
type modulo Xk → X.

All examples of section 4.3 provide examples which are of general
type without being strongly of general type. The nice fact about
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this condition is that it enables using jets spaces to obtain the Green-
Griffiths-Lang conjecture as explained in [Dem14].

Theorem 4.18. Let (X, V ) be a directed pair that is strogly of general
type. Then the Green-Griffiths-Lang conjecture holds true for (X, V )
namely there exists a proper algebraic variety Y ( X such that every
non constant holomorphic curve f : C → X tangent to V satisfies
f(C) ⊂ Y.

5. Quotients of bounded symmetric domains

5.1. Hyperbolicity modulo the boundary. Let us illustrate this
setting with the classical case of Riemann surfaces.

By the uniformization theorem, compact Riemann surfaces of genus
≥ 2 are quotient of the disc ∆/Γ and therefore hyperbolic.

Now, consider X = C\{a, b}. It is again uniformized by the disc but
if we take its compactification X = P1, it is obviously non-hyperbolic.
So the compactification process can change hyperbolic properties.

Finally consider X = H/SL2(Z) the moduli space of elliptic curves.
It is well-known that X ' C. The phenomenon which causes this loss
of hyperbolicity is the torsion.

As we have recalled in section 2, every complex variety Y can be
equipped with the Kobayashi pseudo-metric KY . Its integrated form
dY is the Kobayashi pseudo-distance. It is the largest pseudo-distance
such that all holomorphic map f : (∆, dP )→ (Y, dY ) from the Poincaré
disc is distance decreasing: f ∗dY ≤ dP .

Definition 5.1. Let W ⊂ Y . Y is Kobayashi hyperbolic modulo W if
dY (p, q) = 0 for p 6= q implies that p, q ∈ W .

Remark 5.2. One has the obvious implication that if Y is hyperbolic
modulo W then any entire curve f : C→ Y has its image f(C) ⊂ W :
it is Brody hyperbolic modulo W . But if W 6= ∅ the converse analogous
to Corollary 2.2 is not known.

The problem we are interested in is the following. Let Ω ⊂ Cn

be a bounded symmetric domain, Γ ⊂ Aut(Ω) an arithmetic group.
X = Ω/Γ a quotient of finite volume. What can be said about the
hyperbolicity of X ?

The following result is recently obtained in [Rou15].

Theorem 5.3. There exists a subgroup Γ1 ⊂ Γ of finite index such
that X1 := Ω/Γ1 is Kobayashi hyperbolic modulo D1 := X1 \X1.

Example 5.4. LetX = H/SL2(Z) and Γn := ker(SL2(Z)→ SL2(Z/nZ)).

Then Xn := H/Γn has genus ≥ 2 if n ≥ 7 [Shi94].

Remark 5.5. The preceding theorem is a generalization of a result of
Nadel [Nad89] who gives Brody hyperbolicity in the same setting.
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Let us give the ideas of the proof of Theorem 5.3 refering to [Rou15]
for details. In order to control the degeneracy of the Kobayashi pseudo-
distance, we will construct pseudo-distances on X = Ω/Γ satisfying the
distance-decreasing property.

There is a natural metric to start with: the Bergman metric g on Ω
normalized so that Ricci g = −g. Its holomorphic sectional curvature
is known to be negative ≤ −γ (γ ∈ Q+).

From [Mum77], we know that g induces a good singular metric h :=
(det g)−1 on KX +D. Two facts will be particularly useful for us.

(1) g has Poincaré growth near D = X \X. In local coordinates, if
D = {z1 . . . zk = 0}, g = O(gP ) where gP is the Poincaré metric

gP =
k∑
i=1

dzi ⊗ dzi
|zi|2 log2 |zi|2

+
n∑

i=k+1

dzi ⊗ dzi.

(2) if s is a section of KX +D, then ||s||h = O(log2N |z1 . . . zk|) (N
is an integer > 0).

The idea now is to construct a function ψ : X → R+ such that ψ.g
will extend and define a pseudo-metric on X.

Such a function will be obtained thanks to the following proposition.

Proposition 5.6. Let s ∈ H0(X, l(KX +D)) be such that

• s(x) 6= 0.
• s vanishes on D with multiplicity m > l

γ
.

Take ψ := ||s||2
(γ−ε)
l

h , γ − ε > l
m
. Then there exists β > 0 such that

g̃ := β.ψ.g is a distance decreasing pseudo-metric pseudo-metric on X.
In particular, the Kobayashi pseudo-distance is bounded below:

dg̃ ≤ dX .

Proof. The two facts described above easily show that ψ.g extends as a
pseudo-metric on X. Now, we have to achieve the distance decreasing
property. Let f : ∆→ X be a holomorphic map.

i∂∂ log f ∗g̃ ≥ (γ − ε)f ∗Ricci g + γf ∗g

≥ −(γ − ε)f ∗g + γf ∗g = εf ∗g ≥
(

ε

supψ

)
.f ∗ψg.

Therefore one can choose β := ε
supψ

. �

As we have just seen, one is reduced to find sections of l(KX + D)
with the desired properties. This is achieved thanks to the following
result of Kollár [Kol97].

Theorem 5.7. Let Z be a smooth projective variety of dimension n,
L nef and big over Z. Let x ∈ Z be a point such that any irreducible
subvariety containing x has positive degree with respect to L. Then for
any m >

(
n+1

2

)
, there exists s ∈ H0(Z,KZ +mL) such that s(x) 6= 0.
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One can apply this theorem with Z = X, L = KX + D and x ∈
X. Then there exists s0 ∈ H0(X,KX + (

(
n+1

2

)
+ 1)(KX + D)) =

H0(X, (
(
n+1

2

)
+ 2)(KX +D)−D).

So s0 is a section of (
(
n+1

2

)
+ 2)(KX +D) vanishing on D such that

s(x) 6= 0. Now, according to Mumford [Mum77], for any positive integer
m there exists Γ1 ⊂ Γ such that the induced map π : X1 → X is
ramified at order ≥ m along D1. To finish the proof one can take

m >
((n+1

2 )+2)

γ
, and s := π∗s0 ∈ H0(X1, (

(
n+1

2

)
+ 2)(KX1

+D)−mD).

5.2. Siegel modular varieties. As an application of the preceding
method, let us take Ω = Hg the Siegel upper-half space, Γ = Sp(2g,Z),
and Γ(n) := ker(Sp(2g,Z) → Sp(2g,Z/nZ)). One usually denotes
Ag(n) := Hg/Γ(n) and we can take γ = 2

g(g+1)
.

In this case, one obtains (see [Rou15] for details):

Theorem 5.8. Ag(n) is Kobayashi hyperbolic modulo D if n > 6g.

Remark 5.9. In the case g = 1, one recovers n ≥ 7 as in Example 5.4.

Remark 5.10. This improves the bound obtained by Nadel [Nad89] for

Brody hyperbolicity n ≥ max(g(g+1)
2

, 28).
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