
ON THE LOGARITHMIC KOBAYASHI CONJECTURE
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Abstract. We study the hyperbolicity of the log vari-
ety (Pn, X), where X is a very general hypersurface of de-
gree d ≥ 2n + 1 (which is the bound predicted by the
Kobayashi conjecture). Using a positivity result for the
sheaf of (twisted) logarithmic vector fields, which may be
of independent interest, we show that any log-subvariety of
(Pn, X) is of log-general type, give a new proof of the alge-
braic hyperbolicity of (Pn, X), and exclude the existence of
maximal rank families of entire curves in the complement
of the universal degree d hypersurface. Moreover, we prove
that, as in the compact case, the algebraic hyperbolicity of
a log-variety is a necessary condition for the metric one.

1. Introduction

A complex manifold V is hyperbolic in the sense of S. Kobayashi if
the hyperbolic pseudodistance defined on V (see section 2 for precise
definitions) is a distance. A necessary condition for the hyperbolicity of
a complex manifold is the constancy of holomorphic maps from C to V .
Hyperbolic complex manifolds have been studied in the two following
contexts. One is the hyperbolicity of a compact complex manifold,
in which case, thanks to a criterion due to R. Brody [1], the above
necessary condition is also sufficient to guarantee the hyperbolicity of
V . The other is the hyperbolicity of a compact complex manifold with
an ample divisor removed. In the case of complements of projective
hypersurfaces we have the Kobayashi conjecture [14]:

Conjecture 1. The complement Pn\X of a general hypersurface X ⊂
Pn of degree degX ≥ 2n+ 1, n ≥ 2, is hyperbolic.
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Notice that the lower bound in Conjecture 1 is sharp, since, as no-
ticed first by M. Zăıdenberg [26], there exists a line intersecting a gen-
eral degree 2n hyperpersurface in two points. (For the Kobayashi con-
jecture on the hyperbolicity of a general hypersurface of high degree,
and the related results, we refer the reader to §2.2).

In the present paper we study questions related to Conjecture 1
(which is proved for n = 2 and d ≥ 15 in [10]), by extending to the
logarithmic setting (part of) the techniques and ideas successfully used
in the compact case.

Let V be a variety with a normal crossing divisor D. The pair (V ,D)

is called a log-variety. Let V = V \D. We denote by T
∗
V = T ∗

V
(logD)

its log-cotangent bundle and by KV = ∧dim(V ) T
∗
V = KV (D) its log-

canonical bundle. In the third section, in order to study the algebraic
hyperbolicity properties of the log-variety (Pn, X), where X is a very
general hypersurface, we prove the following non-vanishing result.

Theorem 2. Let X be a very general hypersurface of arbitrary degree d
in Pn. Let Y be a k-dimensional subvariety in Pn meeting X properly,

D := Y ∩ X the induced divisor and ν : Ỹ → Y a log-resolution

of (Y,D) i.e Ỹ is smooth, ν is a projective birational morphism and
ν−1(D) + Exc(ν) is a normal crossing divisor. Then

h0(Ỹ ,K Ỹ ⊗ ν∗OPn(2n+ 1− k − d)) 6= 0,

where K Ỹ denotes the log-canonical bundle of the log-variety (Ỹ , ν−1(D)).

In particular we deduce :

Corollary 3. Let X ⊂ Pn be a very general hypersurface of degree
d ≥ 2n + 2− k, k ≥ 1. Then any k-dimensional log-subvariety (Y,D)
of (Pn, X), for Y not contained in X, is of log-general type, that is,

any log-resolution ν : Ỹ → Y of (Y,D) has big log-canonical bundle
KỸ (ν−1(D)).

Corollary 4. Let X ⊂ Pn be a very general hypersurface of degree
d ≥ 2n+ 1, and C ⊂ Pn a curve not contained in X. Then

2g(C̃)− 2 + i(C,X) ≥ (d− 2n) degC

where ν : C̃ → C is the normalization of C, g(C̃) its genus, and i(C,X)
is the number of distinct points in ν−1(X).

The inequality in Corollary 4 has been previously proved by Xi Chen
in [3] by means of a delicate degeneration argument (see also [24], The-
orem 3.10, where it is proved that any C intersects a general hyper-
surface of degree d = 2n − 2 + r, r ≥ 3, in at least r points, as well
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as [2] and [25] for the case n = 2). Note that, as a consequence, one
gets that there is no entire curve f : C → Pn \ X in the complement
of a very general hypersurface of degree d ≥ 2n + 1, n ≥ 2, if the
Zariski closure f(C) is an algebraic curve. Notice moreover that both
Corollaries 3 and 4 are sharp: the latter by the result of Zăıdenberg
we have quoted above, and the former by a natural generalization of
Zăıdenberg’s result, which we present at the end of §3.

In the fourth section we prove that, as one expects, the hyperbolicity
of a log-variety implies its algebraic hyperbolicity, thus answering a
question raised by Xi Chen in [3].

Theorem 5. Let X be a projective manifold and D an effective divisor
on X such that X \D is hyperbolic and hyperbolically imbedded. Let ω
be a hermitian metric on X. Then there exists ε > 0 such that

2g(C̃)− 2 + i(C,D) ≥ ε degω(C)

for every compact irreducible curve C ⊂ X with C * D, where C̃ is

the normalization of C, g(C̃) its genus and degω(C) =
∫

C
ω.

In the last section we strenghten the conclusion of Corollary 4, and
prove that there is no entire curve, varying in a family of maximal rank,
in the complement of a general hypersurface of degree at least 2n+ 1,
without assumptions on the Zariski closure of the entire curve.

Theorem 6. Let U → PNd := PH0(Pn,OPn(d)) be an étale cover of an
open subset of PNd, and let Φ : C×U → Pn×U be a holomorphic map
such that Φ(C× {t}) ⊂ Pn \Xt for all t ∈ U . If d ≥ 2n + 1, the rank
of Φ cannot be maximal anywhere.

The above theorem is of course a consequence of Conjecture 1, and
represents the logarithmic analog of the main result of [8]. Again,
by Zăıdenberg’s example, our result is sharp, as for d = 2n one can
consider the family of the exponential maps associated to the family of
lines `t intersecting the hypersurface Xt in two points :

expt : C× {t} → C∗ = `t \ (`t ∩Xt) ⊂ Pn \Xt.

We denote by X ⊂ Pn × PNd the family of degree d hypersurfaces.
The proofs of Theorems 2 and 6 use the global generation of the sheaf of
(twisted) vector fields on the log variety (Pn×PNd ,X ) (see §3, Propo-
sition 11 for the precise statement). Once the logarithmic framework
is set, our approach allows natural proofs, which are formally equal
to those of the corresponding hyperbolicity properties of X ⊂ Pn. In
that sense, it unifies the compact and the logarithmic cases. Notice
moreover that the analogous global generation result in the compact
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case is the first step in Y.-T. Siu’s proof of the hyperbolicity of a very
general hypersurface X ⊂ Pn, for d� n (see [21], Lemma 4, and [22],
Proposition 1.1). It seems then plausible that using a generalization
of Proposition 11 to logarithmic jet bundles and following the strategy
outlined in [21], one could prove Conjecture 1 for very high degree :
this has been done for n = 3 in [20].

2. Preliminaries

2.1. Log-manifolds. Let V be a complex manifold with a normal
crossing divisor D. The pair (V ,D) is called a log-manifold. Let V =
V \D be the complement of D.

Following [13], the logarithmic cotangent sheaf T
∗
V = T ∗

V
(logD) is

defined as the locally free subsheaf of the sheaf of meromorphic 1-forms
on V , whose restriction to V is T ∗V and whose localization at any point
x ∈ D is given by

T
∗
V,x =

l∑
i=1

OV ,x

dzi

zi

+
n∑

j=1+1

OV ,xdzj

where the local coordinates z1,..., zn around x are chosen such that
D = { z1...zl = 0}.

Its dual, the logarithmic tangent sheaf T V = TV (− logD) is a locally
free subsheaf of the holomorphic tangent bundle TV , whose restriction
to V is TV and whose localization at any point x ∈ D is given by

T V,x =
l∑

i=1

OV ,xzi
∂

∂zi

+
n∑

j=1+1

OV ,x

∂

∂zj

.

Recall that starting with an arbitrary divisor, Hironaka’s theorem
on resolution of singularities [12] guarantees that we can replace it by
a normal crossing one after performing some blowing-ups.

Theorem 7. Let V be an irreducible complex algebraic variety (possibly
singular), and let D ⊂ V be an effective Cartier divisor on V. There is
a projective birational morphism

µ : V ′ → V,

where V ′ is non singular and µ has divisorial exceptional locus except(µ),
such that

µ−1(D) + except(µ)

is a normal crossing divisor.

One calls V ′ a log-resolution of (V,D).
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2.2. Hyperbolicity and algebraic hyperbolicity. Let X be a com-
plex manifold. We denote by f : ∆ → X an arbitrary holomorphic map
from the unit disk ∆ ⊂ C to X. The Kobayashi-Royden infinitesimal
pseudo-metric [14] on X is the Finsler pseudometric on the tangent
bundle TX defined by

kX(ξ) = inf{λ > 0;∃f : ∆ → X, f(0) = x, λf ′(0) = ξ}, x ∈ X, ξ ∈ TX,x.

The Kobayashi pseudo-distance dX , is the geodesic pseudodistance ob-
tained by integrating the Kobayashi-Royden infinitesimal pseudomet-
ric. The manifold X is hyperbolic in the sense of S. Kobayashi if the
hyperbolic pseudodistance defined on X is a distance.

Directly from the definition of the Kobayashi pseudo-distance one
can see that if f : X → Y is a holomorphic map of complex manifolds
then it is distance decreasing i.e for x, x′ ∈ X we have

dY (f(x), f(x′)) ≤ dX(x, x′).

As mentioned in the introduction, in the case of a general projective
hypersurface X, both X and its complement are conjectured to be
hyperbolic, as soon as the degree of X is high enough.

Conjecture 8. A general hypersurface X ⊂ Pn, n ≥ 3, of degree
degX ≥ 2n− 1 is hyperbolic.

(For n ≥ 4, the natural lower bound should be 2n− 2).
The most important confirmation of Conjecture 8 has been obtained

by Y.-T. Siu [21], who proved it for dn � n. As for the known lower
bounds on the degree, Conjecture 8 has been studied for n = 3 in
[7] and [16], where the bound d ≥ 21 (respectively d ≥ 36) has been
obtained (in the recent preprint [18], this bound has been improved to
d ≥ 18). In [19], the second author proved a weak form of Conjecture
8 for n = 4 and d ≥ 593.

It is widely believed that when dealing with a projective variety V ,
there should exist a property of algebraic nature equivalent to the hy-
perbolicity of V . In the compact case, Demailly (see [6]) introduced the
notion of algebraic hyperbolicity, and proved it is a necessary condition
for the hyperbolicity. S. Lang proposed another property, namely the
fact that any subvariety of V is of general type. Both properties have
been checked for very general hypersurfaces of degree d ≥ 2n − 2, in
[5] and [17], building on ideas and techniques introduced by C. Voisin
[23] (see also [4] and [9]).

In analogy to the compact case, Xi Chen [3] studied the notion of
algebraic hyperbolicity, in the sense of Demailly, for log-manifolds.
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Definition 9. Let (X,D) be a log-manifold. For each reduced curve

C ⊂ X that meets D properly, let ν : C̃ → C be the normalization of

C. Then i(C,D) is the number of distinct points in the set ν−1(D) ⊂ C̃.

Definition 10. A logarithmic variety (X,D) is algebraically hyper-
bolic if there exists a positive number ε such that

2g(C̃)− 2 + i(C,D) ≥ ε degω(C)

for all reduced and irreducible curves C ⊂ X meeting D properly where

C̃ is the normalization of C, g(C̃) its genus and degω(C) =
∫

C
ω with

ω a hermitian metric on X.

In the next section, we prove that the algebraic hyperbolicity in the
sense of Demailly, as well as the algebraic property analogous to that
proposed by Lang, hold for the complement of a very general projective
hypersurface of degree at least equal to 2n+ 1.

3. Algebraic hyperbolicity of the log variety (Pn, X)

In this section we give the proof of theorem 2, using logarithmic tech-
niques, and the global generation of the sheaf of (twisted) logarithmic
vector fields, which we now introduce.

Fix the following notations:
PNd := PH0(Pn,OPn(d)) denotes the parameter space for degree d

hypersurfaces in Pn.
X ⊂ Pn × PNd denotes the universal hypersurface of degree d, and

p and q the projections of Pn × PNd onto the two factors.
XF ⊂ Pn

F is the hypersurface defined by the homogeneous polynomial
F ∈ PNd .

For a smooth hypersurface XF we have the corresponding logarith-
mic manifold (Pn

F , XF ), with logarithmic tangent sheaf T Pn
F

= TPn
F
(− logXF ),

logarithmic cotangent sheaf ΩPn
F

= ΩPn
F
(logXF ) and logarithmic canon-

ical sheaf KPn
F

= KPn
F
⊗ O(d) = O(d− n− 1).

3.1. The global generation result. We shall extend to the logarith-
mic setting an approach initiated by Clemens, Ein, Voisin and Siu (see
[4], [9], [23], [21]):

Proposition 11. The twisted logarithmic tangent bundle

TPn×PNd (− log X )(1, 0) := TPn×PNd (− log X )⊗ p∗OPn(1)

is generated by its global sections.
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Proof. Let X ⊂ Pn × PNd be the universal hypersurface of degree d
given by the equation ∑

|α|=d

aαZ
α = 0

where [a] ∈ PNd and [Z] ∈ Pn, for α = (α0, ..., αn) ∈ Nn+1, |α| =
∑

i αi

and if Z = (Z0, ..., Zn) are homogeneous coordinates on Pn, then Zα =∏
Z

αj

j . Notice that X is a smooth hypersurface of bidegree (d, 1) in

Pn×PNd . We consider the log-manifold (Pn×PNd ,X ). Let us consider

Z = (a0...0dZ
d
n+1 +

∑
|α|=d,αn+2=0

aαZ
α = 0) ⊂ Pn+1 × U

where α ∈ Nn+2, and

U := (a0...0d 6= 0) ∩
(

∪
|α|=d,αn+2=0

(aα 6= 0)

)
⊂ PNd+1.

Consider the natural projection π : Z → Pn × PNd and set

H := π−1(X ) = {Zn+1 = 0}.
Therefore we obtain a dominant log-morphism π : (Z ,H ) → (Pn ×
PNd ,X ) which induces a map

π∗ : TZ (1, 0) := TZ (− log H )(1, 0) → T Pn×PNd (1, 0) := TPn×PN (− log X )(1, 0).

Therefore we are reduced to prove that TZ (1, 0) is generated by its
global sections. Consider the open set U0 = {Z0 6= 0}×U in Pn+1 ×U
with the induced inhomogeneous coordinates. The equation of Z on
U0 becomes

Z0 := {zd
n+1 +

∑
|α|≤d,αn+1=0

aαz
α = 0}.

Consider the vector field

Vα,j =
∂

∂aα

− zj
∂

∂aα̃

where α ∈ Nn+1, αn+1 = 0,∃j αj ≥ 1, α̃k = αk if k 6= j and α̃j = αj−1.
Notice that Vα,j is a logarithmic vector field of (Z0,H0 := H ∩ U0)
which extends to (Z ,H ) with a pole order equal to 1.

Consider a vector field

V0 =
n∑

j=1

vj
∂

∂zj

+ vn+1zn+1
∂

∂zn+1

where

vj =
n∑

k=1

v
(j)
k zk + vj

0, 1 ≤ j ≤ n
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is linear in the variables zk, and vn+1 ∈ C. We claim that there exists
a logarithmic vector field

V =
∑

|α|≤d,αn+1=0

vα
∂

∂aα

+ V0

tangent to Z0. Indeed, the condition to be satisfied is∑
α

vαz
α +

∑
α,j

aαvj
∂zα

∂zj

= 0

and the complex numbers vα are chosen such that the coefficient of zα

in the above equation is equal to zero. This logarithmic vector field of
(Z0,H0) extends to (Z ,H ).

The previous vector fields give the global generation of TZ (1, 0). �

3.2. Sharp algebraic hyperbolicity properties for (Pn, X). Hav-
ing recorded in the previous subsection the needed positivity result, we
can now prove Theorem 2, together with its corollaries. We also show,
in Example 13, that our results are sharp in the degree.

Proof of Theorem 2. Let U ⊂ PN be the open subset parametrizing
smooth hypersurface. We want to study families of k-dimensional ir-
reducible subvarieties inside Pn × U , intersecting properly the family
of hypersurfaces. So, eventually passing to an étale cover of U , we
consider an irreducible subvariety Y ⊂ Pn × PN such that the pro-
jection map Y → U is dominant of relative dimension k, and such
that Y intersects properly X (and so does its generic fiber YF with
XF ). Let D ⊂ Y the family of divisors induced by the intersections

DF := YF ∩ XF . Let Ỹ → Y be a log resolution of (Y ,D) i.e Ỹ

is smooth and D̃ = ν−1(D) is a normal crossing divisor, and so is its

general fiber D̃F ⊂ ỸF .
For general F ∈ U , and arbitrary degree d we want to produce a non

zero element in H0(ỸF , K ỸF
(2n+ 1− k− d)), where K ỸF

= KỸF
(D̃F ).

We have:

(1) K ỸF
' Ω

N+k

Ỹ |ỸF

Indeed:

ΩN+k

Ỹ
⊗ OỸ (D̃)|ỸF

= ΩN+k

Ỹ |ỸF
⊗ OỸF

(D̃F ),
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and by the adjunction formula

KỸF
= ΩN+k

Ỹ |ỸF
,

since the normal bundle of a fiber in a family is trivial.
Using standard linear algebra, we have:

(2) (
n−k∧

TPn×PN (− log X )|Pn
F
)⊗KPn

F
' ΩN+k

Pn×PN (log X )|Pn
F

The generically surjective map KPn×PN (X ) → KỸ (D̃) induces a
map

ΩN+k
Pn×PN (log X )|Pn

F
(2n+ 1− k − d) → Ω

N+k

Ỹ |ỸF
(2n+ 1 + k − d)

that is non zero for F general in U.
Recalling that

KPn
F

= OPn
F
(d− n− 1)

and using (1) and (2), it is enough to show that

(
n−k∧

TPn×PN (− log X )|Pn
F
)⊗ OPn

F
(n− k)

is globally generated. To conclude, we notice that

(
n−k∧

TPn×PN (− log X )|Pn
F
)⊗OPn

F
(n−k) =

n−k∧
(TPn×PN (− log X )|Pn

F
(1))

and invoke the global generation of TPn×PN (− log X )|Pn
F
(1), that fol-

lows from Proposition 11.
Letting the family Y vary, that is, varying the Hilbert polynomial,

we obtain that for F outside a countable union of proper closed subva-
rieties of U , all the k-dimensional subvarieties Y intersecting properly
XF verify

(3) h0(Ỹ ,K Ỹ ⊗ ν∗OPn(2n+ 1− k − d)) 6= 0.

�

Let us now show how to deduce Corollaries 3 and 4.

Proof of Corollary 3. By the above theorem, the logarithmic canonical

bundle of (Ỹ , D̃) may be written as the sum of the effective line bundle
K Ỹ ⊗ν∗OPn(2n+1−k−d) and the line bundle ν∗OPn(d−(2n+1−k)).
The latter is big, as soon as d ≥ 2n+2−k, so the corollary is proved. �
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Proof of Corollary 4. If C ⊂ Pn is a curve intersecting properly the

general hypersurfaceXF , f : C̃ → C its desingularization, D := C∩XF

the divisor given by the intersection with the hypersurface, and D̃ =
f−1(D), then by (3) we have

0 ≤ deg(KC̃(D̃)⊗f ∗OPn(2n−d)) = 2g(C)−2+i(C,X)−(d−2n) degC,

and we are done. �

A further consequence is the following.

Corollary 12. For a very general hypersurface X of degree d ≥ 2n +
1 in Pn, Pn\X does not contain any algebraic torus C∗. Therefore a
holomorphic map f : C → Pn\X is constant if f(C) is contained in an
algebraic curve.

We end the present section by discussing an example which general-
izes [26], and shows that also Corollary 3 is sharp.

Example 13. Given a degree d hypersurface X ⊂ Pn and an integer
r ≥ 1, consider the bicontact locus ∆r,d−r,X ⊂ X consisting of points
x ∈ X through which passes a line ` such that ` has contact at least r
at x and, if it is not contained in X, ` intersects X is at most another
point x′. In other words, generically we have

` ∩X = r · x+ (d− r) · x′.

If X is general of degree d ≤ 2n, then ∆r,d−r,X is non empty and of the
expected dimension 2n − d (see [23], or [17], §4, for the proof of this
fact, and for a description of (a desingularization of) ∆r,d−r,X as the zero
locus of a section of a vector bundle). Hence, taking d = 2n, we recover
the existence of a line intersecting the general degree d hypersurface
in two points, as first observed in [26]. Now take d = 2n + 1 − k. In
this case the dimension of ∆r,d−r,X equals k − 1. Let Y be the (k-
dimensional) subvariety of Pn spanned by the lines parametrized by

∆r,d−r,X . If its desingularization Ỹ were of log-general type, then by
restriction to the general line ` in the ruling of Y , we would get non

constant sections of H0(`,K
⊗m

` ). So we would get to a contradiction
since K` = O`, as ` intersects X at two points.

4. Hyperbolicity and algebraic hyperbolicty of log
varieties

In this section, we would like to answer a question raised by X. Chen
in [3]:
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Let X be a projective manifold and D an effective divisor on X .
Is it true that if X \D is hyperbolic and hyperbolically imbedded then
(X ,D) is algebraically hyperbolic?

The answer is positive. Namely we have theorem 5.
To give a proof we need the following results.
First, we need a Gauss-Bonnet formula in the non compact case. We

follow the approach of [11] which we recall for the convenience of the
reader. Let M be a Riemann surface. M is said to be of finite type if
there exists a compact Riemann surface M ′ such that M ′\M consists
of finitely many points. The genus of M is defined as the genus of M ′.

A puncture of M is defined to be a domain D0 ⊂ M conformally
equivalent to {z ∈ C; 0 < |z| < 1}. We will identify z = 0 with the
puncture D0.

Recall that a Kleinian group G is a subgroup of PGL2 whose action
on P1 is discontinuous at some point and that a Kleinian group is
called Fuchsian if there is a disc invariant under the action. Let G be
a Fuchsian group acting on the unit disk ∆. Let {x1, x2, ..., xn} be the
set of points of ∆/G that are either punctures or ramified points of the
projection π : ∆ → ∆/G. Let νj be the ramification index of π−1(xj)
and set νj = ∞ for punctures. Let us assume that ∆/G is of finite
type. If π is ramified over finitely many points, then we will say that G
is of finite type over ∆. We let g be the genus of ∆/G. We can define
the characteristic of G :

χ = 2g − 2 +
n∑

j=1

(
1− 1

νj

)
.

We can project the Poincaré metric 4|dz|2

(1−|z|2)2
on ∆/G which gives

the hyperbolic metric of constant curvature −1. We have the following
theorems:

Theorem 14. ([11], p.233) The area of ∆/G with respect to the hy-
perbolic metric is finite and

Area(∆/G) = 2πχ.

Theorem 15. ([11], p.234) Let M be a Riemann surface and {x1, x2, ...}
a discrete sequence on M. To each point xk we assign an integer νk ≥ 2
or ∞.

If M = P1 we exclude two cases:

(i) {x1, x2, ...} consists of one point and ν1 6= ∞.
(ii) {x1, x2, ...} consists of two points and ν1 6= ν2.
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Let M ′ = M\ ∪
νk=∞

{xk}. Then there exists a simply connected Rie-

mann surface M̃, a Kleinian group G of self mappings of M̃ such that

(a) M̃/G ∼= M ′

(b) the natural projection π : M̃ → M ′ is unramified except over
the points xk with νk < ∞ where the branch numbers verify
bπ(x̃) = νk − 1 for all x̃ ∈ π−1({xk}).

The third result we need is related to the notion of hyperbolic imbed-
ding (see [15]). Let Z be a complex manifold and Y a complex subman-
ifold with compact closure Y . Y is hyperbolically imbedded in Z if for
every pair of distinct points p, q in Y ⊂ Z, there exist neighborhoods
Up and Uq of p and q in Z such that dY (Up ∩ Y, Uq ∩ Y ) > 0 which
is equivalent to say that dY (pn, qn) cannot converge to zero when two
sequences {pn} and {qn} in Y approach two distinct points p and q of
the boundary ∂Y = Y \Y.

Let us prove the following proposition which is another version of
Theorem 3.3.3 of [15]:

Proposition 16. Let Y be a relatively compact complex submanifold
(i.e Y is compact) of a complex manifold Z. Then the following are
equivalent:

(a) Y is hyperbolically imbedded in Z.
(b) Given a length function L on Z there is a positive constant ε

such that kY ≥ εL on Y.

Proof. Let us prove that (a) implies (b). If ε does not exist then, from
the definition of the Kobayashi infinitesimal pseudometric, there exists
a sequence {fn} of holomorphic functions from ∆ to Y such that

L(f ′n(0)) > n.

Since Y is compact we may assume that {fn(0)} converges to a point
p ∈ Y .

Let U be a complete hyperbolic neighborhood of p in Z. Assume that
there exists a positive number r < 1 such that fn(∆r) ⊂ U for n ≥ n0.
Then {fn|∆r : ∆r → U} would be relatively compact and woud have a
subsequence which converges to a holomorphic function from ∆r to U,
which contradicts L(f ′n(0)) > n.

This means that for each positive integer k, there exist a point zk ∈ ∆
and an integer nk such that |zk| < 1

k
and fnk

(zk) /∈ U. Let pk = fnk
(0)

and qk = fnk
(zk). By taking a subsequence we may assume that {qk}

converges to a point q not in U. Therefore we have

dY (pk, qk) ≤ d∆(0, zk) → 0 for k →∞,



ON THE LOGARITHMIC KOBAYASHI CONJECTURE 13

and this contradicts the fact that Y is hyperbolically imbedded in
Z.

Let us prove that (b) implies (a). Let δ be the distance function on
Z induced by L. Then

εδ ≤ dY on Y

which implies obviously that Y is hyperbolically imbedded in Z. �

Now, we can prove Theorem 5.

Proof of Theorem 5. Let ν : C̃ → C be the normalization and D̃ =

ν−1(D). As X\D is hyperbolic C ′ = C̃\D̃ is hyperbolic and admits the
unit disk as its universal cover ρ : ∆ → C ′. Let kC′ be the hyperbolic
metric of constant curvature −1 with µC′ its area element. From the
distance decreasing property of Kobayashi metrics and the previous
proposition we have

kC′(t) ≥ kX\D(ν∗(t)) ≥ ε ‖ν∗(t)‖ω , ∀t ∈ TC′ .

Therefore from the preceding two theorems we have

2π(2g(C̃)− 2 + i(C,D)) =

∫
C′
µC′ ≥ ε2

∫
C

ω.

�

5. Families of entire curves in the complement of the
universal hypersurface.

The goal of this section is to prove that a family of entire curves in
the complement of the universal degree d hypersurface X ⊂ Pn × PNd

cannot have maximal rank, as soon as d ≥ 2n+ 1 (as predicted by the
log Kobayashi conjecture). As in the compact case, which has been
treated in [8], such a result points out to the lack of a good parameter
space for entire curves. The proof goes exactly as in the compact case
and relies on the global generation of the bundle TPn×PN (− log X )(1, 0),
proved in Proposition 11.

Let U → PNd be an étale cover of the open subset parametrizing
smooth hypersurfaces. As before, to render the notation less heavy we
will simply write U ⊂ PNd

Consider a holomorphic map Φ : C × U → (Pn × U) \ X over the
base U ⊂ PNd .

As U is an open set, we can shrink it and suppose that it is equal to
a polydisc B(δ0)

Nd . Consider the following sequence of maps

Φk : B(δ0k)
Nd+1 → (Pn × U) \X
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given by Φk(z, ξ1, . . . , ξNd
) = Φ(zkNd ,

1

k
ξ1, . . . ,

1

k
ξNd

). We will point

out where the change of the radius of the disc is used in the proof.
If Φ1 = Φ is of maximal rank, its Jacobian gives a nonzero section

JΦ(z, ξ) =
∂Φ

∂z
∧ ∂Φ

∂ξ1
∧ · · · ∧ ∂Φ

∂ξNd

(z, ξ) ∈
1+Nd∧

Φ∗TX ,Φ(z,ξ)

Let us assume that JΦ(0) is nonzero in the corresponding vector
space. Remark that, by construction, JΦk

(0) = JΦ(0), for any k ≥
1, hence JΦk

∈ Φ∗
kΛ

1+NdTPn×PNd is not identically zero. Thanks to
Proposition 11, we can choose (n− 1) logarithmic vector fields

V1, . . . , Vn−1 ∈ H0(TPn×PN (− log X )(1, 0))

such that the sections

σk := JΦk
∧ Φ∗

k

(
V1 ∧ · · · ∧ Vn−1

)
∈ Φ∗

k(K
−1

Pn×PNd ⊗ p∗OPn(n− 1))
)

are nonzero at the origin.
If q is the projection of Pn × PNd on the parameter space PNd , then

under the assumption d ≥ 2n+1, the restriction ofKPn×PNd⊗p∗OPn(1−
n) to q−1(U) is ample (eventually after shrinking once again the open
subset U), hence we can endow this bundle with a metric h of positive
curvature.

For any w ∈ B(δ0k)
Nd+1 set

(4) fk(w) = ‖σk(w)‖2/(Nd+1)

Φ∗
kh−1 .

Notice that, by construction, there exists a positive number c such
that for each k ≥ 1, we have

(5) fk(0) = c > 0.

On the other hand we have

Proposition 17. For each k ≥ 1 we have fk(0) ≤ C · k−2. In particu-
lar, as k →∞, we have fk(0) → 0.

Theorem 6 follows from the fact that (5) and Proposition 17 contra-
dict each other.

We now give the proof of Proposition 17, which is very close to that
of the classical Ahlfors-Schwarz lemma.

Proof of Proposition 17. First, notice that for each k ≥ 1, there exists
a positive constant C such that we have

(6) ∆ log fk ≥ C · fk
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pointwise over the polydisc B(δ0k)
Nd+1. Indeed, by construction, the

image of the map Φk lies inside q−1(U), for each k ≥ 1, so that

i∂∂̄ log ‖σk‖2
Φ∗

kh−1 ≥ Φ∗
kΘh

(
KPn×PNd ⊗ p∗OPn(2− n)

)
.

Hence we get

∆ log ‖σk‖2
Φ∗

kh−1 ≥ C ′′ ·
(∥∥∥∂Φk

∂z

∥∥∥2

ω
+

Nd∑
j=1

∥∥∥∂Φk

∂ξj

∥∥∥2

ω

)
≥ C ′ · ‖JΦk

‖2/(1+Nd)

Λ1+Ndω

≥ C · ‖σk‖2/(1+Nd)

Φ∗
kh−1

and (6) is proved (the above relations are obtained using the vector
inequalities

‖W1 ∧ · · · ∧Ws‖ ≤ ‖W1‖ . . . ‖Ws‖ ≤ s−s(‖W1‖+ · · ·+ ‖Ws‖)s).

Then, consider the volume form of the Poincaré metric on the poly-
disc

ψk =
1(

1− |z|2
δ2
0k2

)2

Nd∏
j=1

1(
1− |ξj |2

δ2
0k2

)2

A computation shows that

(7) ∆ logψk ≤ C · k−2ψk.

(Remark that the previous inequality can be obtained precisely be-
cause, thanks to the reparameterization, we have the same radius δ0k
for the components of the polydisc which is the domain of ψk.)

Consider the function (z, ξ) 7→ fk(z, ξ)

ψk(z, ξ)
. Its maximum cannot be

achieved at a boundary point of the domain, since ψk goes to infinity
as (z, ξ) goes to the boundary. So at the maximum point (z0, ξ0), we
have

∆ log fk/ψk ≤ 0.

This inequality, combined with (6) and (7), gives

fk(z0, ξ0) ≤ C · k−2ψk(z0, ξ0)

Since the relation (5) is verified at the maximum point of the quotient,
the same is true at an arbitrary point, thus, in particular, at the origin:

fk(0) ≤ C · k−2.

�
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